//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // template // class linear_congruential_engine; // result_type operator()(); #include #include #include "test_macros.h" int main(int, char**) { typedef unsigned long long T; // m might overflow, but the overflow is OK so it shouldn't use Schrage's algorithm typedef std::linear_congruential_engine E1; E1 e1; // make sure the right algorithm was used assert(e1() == 25214903918ull); assert(e1() == 205774354444503ull); assert(e1() == 158051849450892ull); // make sure result is in bounds assert(e1() < (1ull << 48)); assert(e1() < (1ull << 48)); assert(e1() < (1ull << 48)); assert(e1() < (1ull << 48)); assert(e1() < (1ull << 48)); // m might overflow. The overflow is not OK and result will be in bounds // so we should use Schrage's algorithm typedef std::linear_congruential_engine E2; E2 e2; // make sure Schrage's algorithm is used (it would be 0s after the first otherwise) assert(e2() == (1ull << 32)); assert(e2() == (1ull << 63) - 1ull); assert(e2() == (1ull << 63) - 0x1ffffffffull); // make sure result is in bounds assert(e2() < (1ull << 63) + 1); assert(e2() < (1ull << 63) + 1); assert(e2() < (1ull << 63) + 1); assert(e2() < (1ull << 63) + 1); assert(e2() < (1ull << 63) + 1); // m might overflow. The overflow is not OK and result will be in bounds // so we should use Schrage's algorithm. m is even typedef std::linear_congruential_engine E3; E3 e3; // make sure Schrage's algorithm is used assert(e3() == 0x18012348ull); assert(e3() == 0x2401b4ed802468full); assert(e3() == 0x18051ec400369d6ull); // make sure result is in bounds assert(e3() < (3ull << 56)); assert(e3() < (3ull << 56)); assert(e3() < (3ull << 56)); assert(e3() < (3ull << 56)); assert(e3() < (3ull << 56)); // 32-bit case: // m might overflow. The overflow is not OK, result will be in bounds, // and Schrage's algorithm is incompatible here. Need to use 64 bit arithmetic. typedef std::linear_congruential_engine E4; E4 e4; // make sure enough precision is used assert(e4() == 0x10009u); assert(e4() == 0x120053u); assert(e4() == 0xf5030fu); // make sure result is in bounds assert(e4() < 0x7fffffffu); assert(e4() < 0x7fffffffu); assert(e4() < 0x7fffffffu); assert(e4() < 0x7fffffffu); assert(e4() < 0x7fffffffu); #ifndef TEST_HAS_NO_INT128 // m might overflow. The overflow is not OK, result will be in bounds, // and Schrage's algorithm is incompatible here. Need to use 128 bit arithmetic. typedef std::linear_congruential_engine E5; E5 e5; // make sure enough precision is used assert(e5() == 0x100000001ull); assert(e5() == 0x200000009ull); assert(e5() == 0xb00000019ull); // make sure result is in bounds assert(e5() < (1ull << 61) - 1ull); assert(e5() < (1ull << 61) - 1ull); assert(e5() < (1ull << 61) - 1ull); assert(e5() < (1ull << 61) - 1ull); assert(e5() < (1ull << 61) - 1ull); #endif // m will not overflow so we should not use Schrage's algorithm typedef std::linear_congruential_engine E6; E6 e6; // make sure the correct algorithm was used assert(e6() == 2ull); assert(e6() == 3ull); assert(e6() == 4ull); // make sure result is in bounds assert(e6() < (1ull << 48)); assert(e6() < (1ull << 48)); assert(e6() < (1ull << 48)); assert(e6() < (1ull << 48)); assert(e6() < (1ull << 48)); return 0; }