//===-- Unittests for wcstof ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/wchar/wcstof.h" #include "test/UnitTest/ErrnoCheckingTest.h" #include "test/UnitTest/FPMatcher.h" #include "test/UnitTest/RoundingModeUtils.h" #include "test/UnitTest/Test.h" using LIBC_NAMESPACE::fputil::testing::ForceRoundingModeTest; using LIBC_NAMESPACE::fputil::testing::RoundingMode; class LlvmLibcWcstofTest : public LIBC_NAMESPACE::testing::ErrnoCheckingTest, ForceRoundingModeTest { public: void run_test(const wchar_t *inputString, const ptrdiff_t expectedStrLen, const uint32_t expectedRawData, const int expectedErrno = 0) { // expectedRawData is the expected float result as a uint32_t, organized // according to IEEE754: // // +-- 1 Sign Bit +-- 23 Mantissa bits // | | // | +----------+----------+ // | | | // SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM // | | // +--+---+ // | // +-- 8 Exponent Bits // // This is so that the result can be compared in parts. wchar_t *str_end = nullptr; LIBC_NAMESPACE::fputil::FPBits expected_fp = LIBC_NAMESPACE::fputil::FPBits(expectedRawData); float result = LIBC_NAMESPACE::wcstof(inputString, &str_end); EXPECT_EQ(str_end - inputString, expectedStrLen); EXPECT_FP_EQ(result, expected_fp.get_val()); ASSERT_ERRNO_EQ(expectedErrno); } }; TEST_F(LlvmLibcWcstofTest, BasicDecimalTests) { run_test(L"1", 1, 0x3f800000); run_test(L"123", 3, 0x42f60000); run_test(L"1234567890", 10, 0x4e932c06u); run_test(L"123456789012345678901", 21, 0x60d629d4); run_test(L"0.1", 3, 0x3dcccccdu); run_test(L".1", 2, 0x3dcccccdu); run_test(L"-0.123456789", 12, 0xbdfcd6eau); run_test(L"0.11111111111111111111", 22, 0x3de38e39u); run_test(L"0.0000000000000000000000001", 27, 0x15f79688u); } TEST_F(LlvmLibcWcstofTest, DecimalOutOfRangeTests) { run_test(L"555E36", 6, 0x7f800000, ERANGE); run_test(L"1e-10000", 8, 0x0, ERANGE); } TEST_F(LlvmLibcWcstofTest, DecimalsWithRoundingProblems) { run_test(L"20040229", 8, 0x4b98e512); run_test(L"20040401", 8, 0x4b98e568); run_test(L"9E9", 3, 0x50061c46); } TEST_F(LlvmLibcWcstofTest, DecimalSubnormals) { run_test(L"1.4012984643248170709237295832899161312802619418765e-45", 55, 0x1, ERANGE); } TEST_F(LlvmLibcWcstofTest, DecimalWithLongExponent) { run_test(L"1e2147483648", 12, 0x7f800000, ERANGE); run_test(L"1e2147483646", 12, 0x7f800000, ERANGE); run_test(L"100e2147483646", 14, 0x7f800000, ERANGE); run_test(L"1e-2147483647", 13, 0x0, ERANGE); run_test(L"1e-2147483649", 13, 0x0, ERANGE); } TEST_F(LlvmLibcWcstofTest, BasicHexadecimalTests) { run_test(L"0x1", 3, 0x3f800000); run_test(L"0x10", 4, 0x41800000); run_test(L"0x11", 4, 0x41880000); run_test(L"0x0.1234", 8, 0x3d91a000); } TEST_F(LlvmLibcWcstofTest, HexadecimalSubnormalTests) { run_test(L"0x0.0000000000000000000000000000000002", 38, 0x4000, ERANGE); // This is the largest subnormal number as represented in hex run_test(L"0x0.00000000000000000000000000000003fffff8", 42, 0x7fffff, ERANGE); } TEST_F(LlvmLibcWcstofTest, HexadecimalSubnormalRoundingTests) { // This is the largest subnormal number that gets rounded down to 0 (as a // float) run_test(L"0x0.00000000000000000000000000000000000004", 42, 0x0, ERANGE); // This is slightly larger, and thus rounded up run_test(L"0x0.000000000000000000000000000000000000041", 43, 0x00000001, ERANGE); // These check that we're rounding to even properly run_test(L"0x0.0000000000000000000000000000000000000b", 42, 0x00000001, ERANGE); run_test(L"0x0.0000000000000000000000000000000000000c", 42, 0x00000002, ERANGE); // These check that we're rounding to even properly even when the input bits // are longer than the bit fields can contain. run_test(L"0x1.000000000000000000000p-150", 30, 0x00000000, ERANGE); run_test(L"0x1.000010000000000001000p-150", 30, 0x00000001, ERANGE); run_test(L"0x1.000100000000000001000p-134", 30, 0x00008001, ERANGE); run_test(L"0x1.FFFFFC000000000001000p-127", 30, 0x007FFFFF, ERANGE); run_test(L"0x1.FFFFFE000000000000000p-127", 30, 0x00800000); } TEST_F(LlvmLibcWcstofTest, HexadecimalNormalRoundingTests) { // This also checks the round to even behavior by checking three adjacent // numbers. // This gets rounded down to even run_test(L"0x123456500", 11, 0x4f91a2b2); // This doesn't get rounded at all run_test(L"0x123456600", 11, 0x4f91a2b3); // This gets rounded up to even run_test(L"0x123456700", 11, 0x4f91a2b4); // Correct rounding for long input run_test(L"0x1.000001000000000000000", 25, 0x3f800000); run_test(L"0x1.000001000000000000100", 25, 0x3f800001); } TEST_F(LlvmLibcWcstofTest, HexadecimalsWithRoundingProblems) { run_test(L"0xFFFFFFFF", 10, 0x4f800000); } TEST_F(LlvmLibcWcstofTest, HexadecimalOutOfRangeTests) { run_test(L"0x123456789123456789123456789123456789", 38, 0x7f800000, ERANGE); run_test(L"-0x123456789123456789123456789123456789", 39, 0xff800000, ERANGE); run_test(L"0x0.00000000000000000000000000000000000001", 42, 0x0, ERANGE); } TEST_F(LlvmLibcWcstofTest, InfTests) { run_test(L"INF", 3, 0x7f800000); run_test(L"INFinity", 8, 0x7f800000); run_test(L"infnity", 3, 0x7f800000); run_test(L"infinit", 3, 0x7f800000); run_test(L"infinfinit", 3, 0x7f800000); run_test(L"innf", 0, 0x0); run_test(L"-inf", 4, 0xff800000); run_test(L"-iNfInItY", 9, 0xff800000); } TEST_F(LlvmLibcWcstofTest, SimpleNaNTests) { run_test(L"NaN", 3, 0x7fc00000); run_test(L"-nAn", 4, 0xffc00000); } // These NaNs are of the form `NaN(n-character-sequence)` where the // n-character-sequence is 0 or more letters or numbers. If there is anything // other than a letter or a number, then the valid number is just `NaN`. If // the sequence is valid, then the interpretation of them is implementation // defined, in this case it's passed to strtoll with an automatic base, and // the result is put into the mantissa if it takes up the whole width of the // parentheses. TEST_F(LlvmLibcWcstofTest, NaNWithParenthesesEmptyTest) { run_test(L"NaN()", 5, 0x7fc00000); } TEST_F(LlvmLibcWcstofTest, NaNWithParenthesesValidNumberTests) { run_test(L"NaN(1234)", 9, 0x7fc004d2); run_test(L"NaN(0x1234)", 11, 0x7fc01234); run_test(L"NaN(01234)", 10, 0x7fc0029c); } TEST_F(LlvmLibcWcstofTest, NaNWithParenthesesInvalidSequenceTests) { run_test(L"NaN( 1234)", 3, 0x7fc00000); run_test(L"NaN(-1234)", 3, 0x7fc00000); run_test(L"NaN(asd&f)", 3, 0x7fc00000); run_test(L"NaN(123 )", 3, 0x7fc00000); run_test(L"NaN(123+asdf)", 3, 0x7fc00000); run_test(L"NaN(123", 3, 0x7fc00000); } TEST_F(LlvmLibcWcstofTest, NaNWithParenthesesValidSequenceInvalidNumberTests) { run_test(L"NaN(1a)", 7, 0x7fc00000); run_test(L"NaN(asdf)", 9, 0x7fc00000); run_test(L"NaN(1A1)", 8, 0x7fc00000); run_test(L"NaN(underscores_are_ok)", 23, 0x7fc00000); run_test( L"NaN(1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM_)", 68, 0x7fc00000); }