//===-- x86 implementation of memory function building blocks -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides x86 specific building blocks to compose memory functions. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_X86_H #define LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_X86_H #include "src/__support/macros/attributes.h" // LIBC_INLINE #include "src/__support/macros/config.h" // LIBC_NAMESPACE_DECL #include "src/__support/macros/properties/architectures.h" #include "src/__support/macros/properties/compiler.h" #if defined(LIBC_TARGET_ARCH_IS_X86) #include "src/__support/common.h" #include "src/string/memory_utils/op_builtin.h" #include "src/string/memory_utils/op_generic.h" #if defined(__AVX512BW__) || defined(__AVX512F__) || defined(__AVX2__) || \ defined(__SSE2__) #include #endif // Define fake functions to prevent the compiler from failing on undefined // functions in case the CPU extension is not present. #if !defined(__AVX512BW__) && (defined(_MSC_VER) || defined(__SCE__)) #undef _mm512_cmpneq_epi8_mask #define _mm512_cmpneq_epi8_mask(A, B) 0 #endif #if !defined(__AVX2__) && (defined(_MSC_VER) || defined(__SCE__)) #undef _mm256_movemask_epi8 #define _mm256_movemask_epi8(A) 0 #endif #if !defined(__SSE2__) && (defined(_MSC_VER) || defined(__SCE__)) #undef _mm_movemask_epi8 #define _mm_movemask_epi8(A) 0 #endif namespace LIBC_NAMESPACE_DECL { namespace x86 { // A set of constants to check compile time features. LIBC_INLINE_VAR constexpr bool K_SSE2 = LLVM_LIBC_IS_DEFINED(__SSE2__); LIBC_INLINE_VAR constexpr bool K_SSE41 = LLVM_LIBC_IS_DEFINED(__SSE4_1__); LIBC_INLINE_VAR constexpr bool K_AVX = LLVM_LIBC_IS_DEFINED(__AVX__); LIBC_INLINE_VAR constexpr bool K_AVX2 = LLVM_LIBC_IS_DEFINED(__AVX2__); LIBC_INLINE_VAR constexpr bool K_AVX512_F = LLVM_LIBC_IS_DEFINED(__AVX512F__); LIBC_INLINE_VAR constexpr bool K_AVX512_BW = LLVM_LIBC_IS_DEFINED(__AVX512BW__); /////////////////////////////////////////////////////////////////////////////// // Memcpy repmovsb implementation struct Memcpy { LIBC_INLINE static void repmovsb(void *dst, const void *src, size_t count) { #ifdef LIBC_COMPILER_IS_MSVC __movsb(static_cast(dst), static_cast(src), count); #else asm volatile("rep movsb" : "+D"(dst), "+S"(src), "+c"(count) : : "memory"); #endif // LIBC_COMPILER_IS_MSVC } }; } // namespace x86 } // namespace LIBC_NAMESPACE_DECL namespace LIBC_NAMESPACE_DECL { namespace generic { // Not equals: returns non-zero iff values at head or tail differ. // This function typically loads more data than necessary when the two buffer // differs. template LIBC_INLINE uint32_t branchless_head_tail_neq(CPtr p1, CPtr p2, size_t count) { static_assert(cpp::is_integral_v); return neq(p1, p2, 0) | neq(p1, p2, count - sizeof(T)); } /////////////////////////////////////////////////////////////////////////////// // Specializations for uint16_t template <> struct cmp_is_expensive : public cpp::false_type {}; template <> LIBC_INLINE bool eq(CPtr p1, CPtr p2, size_t offset) { return load(p1, offset) == load(p2, offset); } template <> LIBC_INLINE uint32_t neq(CPtr p1, CPtr p2, size_t offset) { return load(p1, offset) ^ load(p2, offset); } template <> LIBC_INLINE MemcmpReturnType cmp(CPtr p1, CPtr p2, size_t offset) { return static_cast(load_be(p1, offset)) - static_cast(load_be(p2, offset)); } template <> LIBC_INLINE MemcmpReturnType cmp_neq(CPtr p1, CPtr p2, size_t offset); /////////////////////////////////////////////////////////////////////////////// // Specializations for uint32_t template <> struct cmp_is_expensive : public cpp::false_type {}; template <> LIBC_INLINE bool eq(CPtr p1, CPtr p2, size_t offset) { return load(p1, offset) == load(p2, offset); } template <> LIBC_INLINE uint32_t neq(CPtr p1, CPtr p2, size_t offset) { return load(p1, offset) ^ load(p2, offset); } template <> LIBC_INLINE MemcmpReturnType cmp(CPtr p1, CPtr p2, size_t offset) { const auto a = load_be(p1, offset); const auto b = load_be(p2, offset); return cmp_uint32_t(a, b); } template <> LIBC_INLINE MemcmpReturnType cmp_neq(CPtr p1, CPtr p2, size_t offset); /////////////////////////////////////////////////////////////////////////////// // Specializations for uint64_t template <> struct cmp_is_expensive : public cpp::true_type {}; template <> LIBC_INLINE bool eq(CPtr p1, CPtr p2, size_t offset) { return load(p1, offset) == load(p2, offset); } template <> LIBC_INLINE uint32_t neq(CPtr p1, CPtr p2, size_t offset) { return !eq(p1, p2, offset); } template <> LIBC_INLINE MemcmpReturnType cmp(CPtr p1, CPtr p2, size_t offset); template <> LIBC_INLINE MemcmpReturnType cmp_neq(CPtr p1, CPtr p2, size_t offset) { const auto a = load_be(p1, offset); const auto b = load_be(p2, offset); return cmp_neq_uint64_t(a, b); } // SIMD types are defined with attributes. e.g., '__m128i' is defined as // long long __attribute__((__vector_size__(16), __aligned__(16))) // When we use these SIMD types in template specialization GCC complains: // "ignoring attributes on template argument ā€˜__m128i’ [-Wignored-attributes]" // Therefore, we disable this warning in this file. #ifndef LIBC_COMPILER_IS_MSVC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wignored-attributes" #endif // !LIBC_COMPILER_IS_MSVC /////////////////////////////////////////////////////////////////////////////// // Specializations for __m128i #if defined(__SSE4_1__) template <> struct is_vector<__m128i> : cpp::true_type {}; template <> struct cmp_is_expensive<__m128i> : cpp::true_type {}; LIBC_INLINE __m128i load_and_xor_m128i(CPtr p1, CPtr p2, size_t offset) { const auto a = load<__m128i>(p1, offset); const auto b = load<__m128i>(p2, offset); return _mm_xor_si128(a, b); } LIBC_INLINE __m128i bytewise_max(__m128i a, __m128i b) { return _mm_max_epu8(a, b); } LIBC_INLINE __m128i bytewise_reverse(__m128i value) { return _mm_shuffle_epi8(value, _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, // 8, 9, 10, 11, 12, 13, 14, 15)); } LIBC_INLINE uint16_t big_endian_cmp_mask(__m128i max, __m128i value) { return static_cast( _mm_movemask_epi8(bytewise_reverse(_mm_cmpeq_epi8(max, value)))); } LIBC_INLINE bool is_zero(__m128i value) { return _mm_testz_si128(value, value) == 1; } template <> LIBC_INLINE bool eq<__m128i>(CPtr p1, CPtr p2, size_t offset) { return is_zero(load_and_xor_m128i(p1, p2, offset)); } template <> LIBC_INLINE uint32_t neq<__m128i>(CPtr p1, CPtr p2, size_t offset) { return !is_zero(load_and_xor_m128i(p1, p2, offset)); } template <> LIBC_INLINE uint32_t branchless_head_tail_neq<__m128i>(CPtr p1, CPtr p2, size_t count) { const __m128i head = load_and_xor_m128i(p1, p2, 0); const __m128i tail = load_and_xor_m128i(p1, p2, count - sizeof(__m128i)); return !is_zero(_mm_or_si128(head, tail)); } template <> LIBC_INLINE MemcmpReturnType cmp_neq<__m128i>(CPtr p1, CPtr p2, size_t offset) { const auto a = load<__m128i>(p1, offset); const auto b = load<__m128i>(p2, offset); const auto vmax = bytewise_max(a, b); const auto le = big_endian_cmp_mask(vmax, b); const auto ge = big_endian_cmp_mask(vmax, a); static_assert(cpp::is_same_v, uint16_t>); return static_cast(ge) - static_cast(le); } #endif // __SSE4_1__ /////////////////////////////////////////////////////////////////////////////// // Specializations for __m256i #if defined(__AVX__) template <> struct is_vector<__m256i> : cpp::true_type {}; template <> struct cmp_is_expensive<__m256i> : cpp::true_type {}; LIBC_INLINE __m256i xor_m256i(__m256i a, __m256i b) { return _mm256_castps_si256( _mm256_xor_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b))); } LIBC_INLINE __m256i or_m256i(__m256i a, __m256i b) { return _mm256_castps_si256( _mm256_or_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b))); } LIBC_INLINE __m256i load_and_xor_m256i(CPtr p1, CPtr p2, size_t offset) { const auto a = load<__m256i>(p1, offset); const auto b = load<__m256i>(p2, offset); return xor_m256i(a, b); } LIBC_INLINE bool is_zero(__m256i value) { return _mm256_testz_si256(value, value) == 1; } template <> LIBC_INLINE bool eq<__m256i>(CPtr p1, CPtr p2, size_t offset) { return is_zero(load_and_xor_m256i(p1, p2, offset)); } template <> LIBC_INLINE uint32_t neq<__m256i>(CPtr p1, CPtr p2, size_t offset) { return !is_zero(load_and_xor_m256i(p1, p2, offset)); } template <> LIBC_INLINE uint32_t branchless_head_tail_neq<__m256i>(CPtr p1, CPtr p2, size_t count) { const __m256i head = load_and_xor_m256i(p1, p2, 0); const __m256i tail = load_and_xor_m256i(p1, p2, count - sizeof(__m256i)); return !is_zero(or_m256i(head, tail)); } #endif // __AVX__ #if defined(__AVX2__) LIBC_INLINE __m256i bytewise_max(__m256i a, __m256i b) { return _mm256_max_epu8(a, b); } LIBC_INLINE uint32_t big_endian_cmp_mask(__m256i max, __m256i value) { // Bytewise comparison of 'max' and 'value'. const __m256i little_endian_byte_mask = _mm256_cmpeq_epi8(max, value); // Because x86 is little endian, bytes in the vector must be reversed before // using movemask. #if defined(__AVX512VBMI__) && defined(__AVX512VL__) // When AVX512BMI is available we can completely reverse the vector through // VPERMB __m256i _mm256_permutexvar_epi8( __m256i idx, __m256i a); const __m256i big_endian_byte_mask = _mm256_permutexvar_epi8(_mm256_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, // 8, 9, 10, 11, 12, 13, 14, 15, // 16, 17, 18, 19, 20, 21, 22, 23, // 24, 25, 26, 27, 28, 29, 30, 31), little_endian_byte_mask); // And turn the byte vector mask into an 'uint32_t' for direct scalar // comparison. return _mm256_movemask_epi8(big_endian_byte_mask); #else // We can't byte-reverse '__m256i' in a single instruction with AVX2. // '_mm256_shuffle_epi8' can only shuffle within each 16-byte lane // leading to: // ymm = ymm[15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, // 31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16] // So we first shuffle each 16-byte lane leading to half-reversed vector mask. const __m256i half_reversed = _mm256_shuffle_epi8( little_endian_byte_mask, _mm256_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, // 8, 9, 10, 11, 12, 13, 14, 15, // 0, 1, 2, 3, 4, 5, 6, 7, // 8, 9, 10, 11, 12, 13, 14, 15)); // Then we turn the vector into an uint32_t. const uint32_t half_reversed_scalar = _mm256_movemask_epi8(half_reversed); // And swap the lower and upper parts. This is optimized into a single `rorx` // instruction. return (half_reversed_scalar << 16) | (half_reversed_scalar >> 16); #endif } template <> LIBC_INLINE MemcmpReturnType cmp_neq<__m256i>(CPtr p1, CPtr p2, size_t offset) { const auto a = load<__m256i>(p1, offset); const auto b = load<__m256i>(p2, offset); const auto vmax = bytewise_max(a, b); const auto le = big_endian_cmp_mask(vmax, b); const auto ge = big_endian_cmp_mask(vmax, a); static_assert(cpp::is_same_v, uint32_t>); return cmp_neq_uint64_t(ge, le); } #endif // __AVX2__ /////////////////////////////////////////////////////////////////////////////// // Specializations for __m512i #if defined(__AVX512BW__) template <> struct is_vector<__m512i> : cpp::true_type {}; template <> struct cmp_is_expensive<__m512i> : cpp::true_type {}; LIBC_INLINE __m512i bytewise_max(__m512i a, __m512i b) { return _mm512_max_epu8(a, b); } LIBC_INLINE uint64_t big_endian_cmp_mask(__m512i max, __m512i value) { // The AVX512BMI version is disabled due to bad codegen. // https://github.com/llvm/llvm-project/issues/77459 // https://github.com/llvm/llvm-project/pull/77081 // TODO: Re-enable when clang version meets the fixed version. #if false && defined(__AVX512VBMI__) // When AVX512BMI is available we can completely reverse the vector through // VPERMB __m512i _mm512_permutexvar_epi8( __m512i idx, __m512i a); const auto indices = _mm512_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, // 8, 9, 10, 11, 12, 13, 14, 15, // 16, 17, 18, 19, 20, 21, 22, 23, // 24, 25, 26, 27, 28, 29, 30, 31, // 32, 33, 34, 35, 36, 37, 38, 39, // 40, 41, 42, 43, 44, 45, 46, 47, // 48, 49, 50, 51, 52, 53, 54, 55, // 56, 57, 58, 59, 60, 61, 62, 63); // Then we compute the mask for equal bytes. return _mm512_cmpeq_epi8_mask(_mm512_permutexvar_epi8(indices, max), // _mm512_permutexvar_epi8(indices, value)); #else // We can't byte-reverse '__m512i' in a single instruction with __AVX512BW__. // '_mm512_shuffle_epi8' can only shuffle within each 16-byte lane. // So we only reverse groups of 8 bytes, these groups are necessarily within a // 16-byte lane. // zmm = | 16 bytes | 16 bytes | 16 bytes | 16 bytes | // zmm = | <8> | <8> | <8> | <8> | <8> | <8> | <8> | <8> | const __m512i indices = _mm512_set_epi8(8, 9, 10, 11, 12, 13, 14, 15, // 0, 1, 2, 3, 4, 5, 6, 7, // 8, 9, 10, 11, 12, 13, 14, 15, // 0, 1, 2, 3, 4, 5, 6, 7, // 8, 9, 10, 11, 12, 13, 14, 15, // 0, 1, 2, 3, 4, 5, 6, 7, // 8, 9, 10, 11, 12, 13, 14, 15, // 0, 1, 2, 3, 4, 5, 6, 7); // Then we compute the mask for equal bytes. In this mask the bits of each // byte are already reversed but the byte themselves should be reversed, this // is done by using a bswap instruction. return __builtin_bswap64( _mm512_cmpeq_epi8_mask(_mm512_shuffle_epi8(max, indices), // _mm512_shuffle_epi8(value, indices))); #endif } template <> LIBC_INLINE bool eq<__m512i>(CPtr p1, CPtr p2, size_t offset) { const auto a = load<__m512i>(p1, offset); const auto b = load<__m512i>(p2, offset); return _mm512_cmpneq_epi8_mask(a, b) == 0; } template <> LIBC_INLINE uint32_t neq<__m512i>(CPtr p1, CPtr p2, size_t offset) { const auto a = load<__m512i>(p1, offset); const auto b = load<__m512i>(p2, offset); return _mm512_cmpneq_epi8_mask(a, b) != 0; } LIBC_INLINE __m512i load_and_xor_m512i(CPtr p1, CPtr p2, size_t offset) { const auto a = load<__m512i>(p1, offset); const auto b = load<__m512i>(p2, offset); return _mm512_xor_epi64(a, b); } LIBC_INLINE bool is_zero(__m512i value) { return _mm512_test_epi32_mask(value, value) == 0; } template <> LIBC_INLINE uint32_t branchless_head_tail_neq<__m512i>(CPtr p1, CPtr p2, size_t count) { const __m512i head = load_and_xor_m512i(p1, p2, 0); const __m512i tail = load_and_xor_m512i(p1, p2, count - sizeof(__m512i)); return !is_zero(_mm512_or_epi64(head, tail)); } template <> LIBC_INLINE MemcmpReturnType cmp_neq<__m512i>(CPtr p1, CPtr p2, size_t offset) { const auto a = load<__m512i>(p1, offset); const auto b = load<__m512i>(p2, offset); const auto vmax = bytewise_max(a, b); const auto le = big_endian_cmp_mask(vmax, b); const auto ge = big_endian_cmp_mask(vmax, a); static_assert(cpp::is_same_v, uint64_t>); return cmp_neq_uint64_t(ge, le); } #endif // __AVX512BW__ #ifndef LIBC_COMPILER_IS_MSVC #pragma GCC diagnostic pop #endif // !LIBC_COMPILER_IS_MSVC } // namespace generic } // namespace LIBC_NAMESPACE_DECL #endif // LIBC_TARGET_ARCH_IS_X86 #endif // LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_X86_H