//===-- Half-precision asinpif16(x) function ------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. // //===----------------------------------------------------------------------===// #include "src/math/asinpif16.h" #include "hdr/errno_macros.h" #include "hdr/fenv_macros.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/cast.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/sqrt.h" #include "src/__support/macros/optimization.h" namespace LIBC_NAMESPACE_DECL { LLVM_LIBC_FUNCTION(float16, asinpif16, (float16 x)) { using FPBits = fputil::FPBits; FPBits xbits(x); bool is_neg = xbits.is_neg(); double x_abs = fputil::cast(xbits.abs().get_val()); auto signed_result = [is_neg](auto r) -> auto { return is_neg ? -r : r; }; if (LIBC_UNLIKELY(x_abs > 1.0)) { // aspinf16(NaN) = NaN if (xbits.is_nan()) { if (xbits.is_signaling_nan()) { fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } return x; } // 1 < |x| <= +/-inf fputil::raise_except_if_required(FE_INVALID); fputil::set_errno_if_required(EDOM); return FPBits::quiet_nan().get_val(); } // the coefficients for the polynomial approximation of asin(x)/pi in the // range [0, 0.5] extracted using python-sympy // // Python code to generate the coefficients: // > from sympy import * // > import math // > x = symbols('x') // > print(series(asin(x)/math.pi, x, 0, 21)) // // OUTPUT: // // 0.318309886183791*x + 0.0530516476972984*x**3 + 0.0238732414637843*x**5 + // 0.0142102627760621*x**7 + 0.00967087327815336*x**9 + // 0.00712127941391293*x**11 + 0.00552355646848375*x**13 + // 0.00444514782463692*x**15 + 0.00367705242846804*x**17 + // 0.00310721681820837*x**19 + O(x**21) // // it's very accurate in the range [0, 0.5] and has a maximum error of // 0.0000000000000001 in the range [0, 0.5]. constexpr double POLY_COEFFS[] = { 0x1.45f306dc9c889p-2, // x^1 0x1.b2995e7b7b5fdp-5, // x^3 0x1.8723a1d588a36p-6, // x^5 0x1.d1a452f20430dp-7, // x^7 0x1.3ce52a3a09f61p-7, // x^9 0x1.d2b33e303d375p-8, // x^11 0x1.69fde663c674fp-8, // x^13 0x1.235134885f19bp-8, // x^15 }; // polynomial evaluation using horner's method // work only for |x| in [0, 0.5] auto asinpi_polyeval = [](double x) -> double { return x * fputil::polyeval(x * x, POLY_COEFFS[0], POLY_COEFFS[1], POLY_COEFFS[2], POLY_COEFFS[3], POLY_COEFFS[4], POLY_COEFFS[5], POLY_COEFFS[6], POLY_COEFFS[7]); }; // if |x| <= 0.5: if (LIBC_UNLIKELY(x_abs <= 0.5)) { // Use polynomial approximation of asin(x)/pi in the range [0, 0.5] double result = asinpi_polyeval(fputil::cast(x)); return fputil::cast(result); } // If |x| > 0.5, we need to use the range reduction method: // y = asin(x) => x = sin(y) // because: sin(a) = cos(pi/2 - a) // therefore: // x = cos(pi/2 - y) // let z = pi/2 - y, // x = cos(z) // because: cos(2a) = 1 - 2 * sin^2(a), z = 2a, a = z/2 // therefore: // cos(z) = 1 - 2 * sin^2(z/2) // sin(z/2) = sqrt((1 - cos(z))/2) // sin(z/2) = sqrt((1 - x)/2) // let u = (1 - x)/2 // then: // sin(z/2) = sqrt(u) // z/2 = asin(sqrt(u)) // z = 2 * asin(sqrt(u)) // pi/2 - y = 2 * asin(sqrt(u)) // y = pi/2 - 2 * asin(sqrt(u)) // y/pi = 1/2 - 2 * asin(sqrt(u))/pi // // Finally, we can write: // asinpi(x) = 1/2 - 2 * asinpi(sqrt(u)) // where u = (1 - x) /2 // = 0.5 - 0.5 * x // = multiply_add(-0.5, x, 0.5) double u = fputil::multiply_add(-0.5, x_abs, 0.5); double asinpi_sqrt_u = asinpi_polyeval(fputil::sqrt(u)); double result = fputil::multiply_add(-2.0, asinpi_sqrt_u, 0.5); return fputil::cast(signed_result(result)); } } // namespace LIBC_NAMESPACE_DECL