//===-- Half-precision acosh(x) function ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/acoshf16.h" #include "explogxf.h" #include "hdr/errno_macros.h" #include "hdr/fenv_macros.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/cast.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/sqrt.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" namespace LIBC_NAMESPACE_DECL { static constexpr size_t N_EXCEPTS = 2; static constexpr fputil::ExceptValues ACOSHF16_EXCEPTS{{ // (input, RZ output, RU offset, RD offset, RN offset) // x = 0x1.6dcp+1, acoshf16(x) = 0x1.b6p+0 (RZ) {0x41B7, 0x3ED8, 1, 0, 0}, // x = 0x1.39p+0, acoshf16(x) = 0x1.4f8p-1 (RZ) {0x3CE4, 0x393E, 1, 0, 1}, }}; LLVM_LIBC_FUNCTION(float16, acoshf16, (float16 x)) { using FPBits = fputil::FPBits; FPBits xbits(x); uint16_t x_u = xbits.uintval(); // Check for NaN input first. if (LIBC_UNLIKELY(xbits.is_inf_or_nan())) { if (xbits.is_signaling_nan()) { fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } if (xbits.is_neg()) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } return x; } // Domain error for inputs less than 1.0. if (LIBC_UNLIKELY(x <= 1.0f)) { if (x == 1.0f) return FPBits::zero().get_val(); fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } if (auto r = ACOSHF16_EXCEPTS.lookup(xbits.uintval()); LIBC_UNLIKELY(r.has_value())) return r.value(); float xf = x; // High-precision polynomial approximation for inputs close to 1.0 // ([1, 1.25)). // // Brief derivation: // 1. Expand acosh(1 + delta) using Taylor series around delta=0: // acosh(1 + delta) ≈ sqrt(2 * delta) * [1 - delta/12 + 3*delta^2/160 // - 5*delta^3/896 + 35*delta^4/18432 + ...] // 2. Truncate the series to fit accurately for delta in [0, 0.25]. // 3. Polynomial coefficients (from sollya) used here are: // P(delta) ≈ 1 - 0x1.555556p-4 * delta + 0x1.333334p-6 * delta^2 // - 0x1.6db6dcp-8 * delta^3 + 0x1.f1c71cp-10 * delta^4 // 4. The Sollya commands used to generate these coefficients were: // > display = hexadecimal; // > round(1/12, SG, RN); // > round(3/160, SG, RN); // > round(5/896, SG, RN); // > round(35/18432, SG, RN); // With hexadecimal display mode enabled, the outputs were: // 0x1.555556p-4 // 0x1.333334p-6 // 0x1.6db6dcp-8 // 0x1.f1c71cp-10 // 5. The maximum absolute error, estimated using: // dirtyinfnorm(acosh(1 + x) - sqrt(2*x) * P(x), [0, 0.25]) // is: // 0x1.d84281p-22 if (LIBC_UNLIKELY(x_u < 0x3D00U)) { float delta = xf - 1.0f; float sqrt_2_delta = fputil::sqrt(2.0 * delta); float pe = fputil::polyeval(delta, 0x1p+0f, -0x1.555556p-4f, 0x1.333334p-6f, -0x1.6db6dcp-8f, 0x1.f1c71cp-10f); float approx = sqrt_2_delta * pe; return fputil::cast(approx); } // acosh(x) = log(x + sqrt(x^2 - 1)) float sqrt_term = fputil::sqrt(fputil::multiply_add(xf, xf, -1.0f)); float result = static_cast(log_eval(xf + sqrt_term)); return fputil::cast(result); } } // namespace LIBC_NAMESPACE_DECL