//===-- Double-precision acos function ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/acos.h" #include "asin_utils.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/double_double.h" #include "src/__support/FPUtil/dyadic_float.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/sqrt.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA namespace LIBC_NAMESPACE_DECL { using DoubleDouble = fputil::DoubleDouble; using Float128 = fputil::DyadicFloat<128>; LLVM_LIBC_FUNCTION(double, acos, (double x)) { using FPBits = fputil::FPBits; FPBits xbits(x); int x_exp = xbits.get_biased_exponent(); // |x| < 0.5. if (x_exp < FPBits::EXP_BIAS - 1) { // |x| < 2^-55. if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 55)) { // When |x| < 2^-55, acos(x) = pi/2 #if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS) return PI_OVER_TWO.hi; #else // Force the evaluation and prevent constant propagation so that it // is rounded correctly for FE_UPWARD rounding mode. return (xbits.abs().get_val() + 0x1.0p-160) + PI_OVER_TWO.hi; #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS } #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS // acos(x) = pi/2 - asin(x) // = pi/2 - x * P(x^2) double p = asin_eval(x * x); return PI_OVER_TWO.hi + fputil::multiply_add(-x, p, PI_OVER_TWO.lo); #else unsigned idx; DoubleDouble x_sq = fputil::exact_mult(x, x); double err = xbits.abs().get_val() * 0x1.0p-51; // Polynomial approximation: // p ~ asin(x)/x DoubleDouble p = asin_eval(x_sq, idx, err); // asin(x) ~ x * p DoubleDouble r0 = fputil::exact_mult(x, p.hi); // acos(x) = pi/2 - asin(x) // ~ pi/2 - x * p // = pi/2 - x * (p.hi + p.lo) double r_hi = fputil::multiply_add(-x, p.hi, PI_OVER_TWO.hi); // Use Dekker's 2SUM algorithm to compute the lower part. double r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo; r_lo = fputil::multiply_add(-x, p.lo, r_lo + PI_OVER_TWO.lo); // Ziv's accuracy test. double r_upper = r_hi + (r_lo + err); double r_lower = r_hi + (r_lo - err); if (LIBC_LIKELY(r_upper == r_lower)) return r_upper; // Ziv's accuracy test failed, perform 128-bit calculation. // Recalculate mod 1/64. idx = static_cast(fputil::nearest_integer(x_sq.hi * 0x1.0p6)); // Get x^2 - idx/64 exactly. When FMA is available, double-double // multiplication will be correct for all rounding modes. Otherwise we use // Float128 directly. Float128 x_f128(x); #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE // u = x^2 - idx/64 Float128 u_hi( fputil::multiply_add(static_cast(idx), -0x1.0p-6, x_sq.hi)); Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo)); #else Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128); Float128 u = fputil::quick_add( x_sq_f128, Float128(static_cast(idx) * (-0x1.0p-6))); #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE Float128 p_f128 = asin_eval(u, idx); // Flip the sign of x_f128 to perform subtraction. x_f128.sign = x_f128.sign.negate(); Float128 r = fputil::quick_add(PI_OVER_TWO_F128, fputil::quick_mul(x_f128, p_f128)); return static_cast(r); #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS } // |x| >= 0.5 double x_abs = xbits.abs().get_val(); // Maintaining the sign: constexpr double SIGN[2] = {1.0, -1.0}; double x_sign = SIGN[xbits.is_neg()]; // |x| >= 1 if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) { // x = +-1, asin(x) = +- pi/2 if (x_abs == 1.0) { // x = 1, acos(x) = 0, // x = -1, acos(x) = pi return x == 1.0 ? 0.0 : fputil::multiply_add(-x_sign, PI.hi, PI.lo); } // |x| > 1, return NaN. if (xbits.is_quiet_nan()) return x; // Set domain error for non-NaN input. if (!xbits.is_nan()) fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } // When |x| >= 0.5, we perform range reduction as follow: // // When 0.5 <= x < 1, let: // y = acos(x) // We will use the double angle formula: // cos(2y) = 1 - 2 sin^2(y) // and the complement angle identity: // x = cos(y) = 1 - 2 sin^2 (y/2) // So: // sin(y/2) = sqrt( (1 - x)/2 ) // And hence: // y/2 = asin( sqrt( (1 - x)/2 ) ) // Equivalently: // acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) ) // Let u = (1 - x)/2, then: // acos(x) = 2 * asin( sqrt(u) ) // Moreover, since 0.5 <= x < 1: // 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5, // And hence we can reuse the same polynomial approximation of asin(x) when // |x| <= 0.5: // acos(x) ~ 2 * sqrt(u) * P(u). // // When -1 < x <= -0.5, we reduce to the previous case using the formula: // acos(x) = pi - acos(-x) // = pi - 2 * asin ( sqrt( (1 + x)/2 ) ) // ~ pi - 2 * sqrt(u) * P(u), // where u = (1 - |x|)/2. // u = (1 - |x|)/2 double u = fputil::multiply_add(x_abs, -0.5, 0.5); // v_hi + v_lo ~ sqrt(u). // Let: // h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi) // Then: // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) // ~ v_hi + h / (2 * v_hi) // So we can use: // v_lo = h / (2 * v_hi). double v_hi = fputil::sqrt(u); #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS constexpr DoubleDouble CONST_TERM[2] = {{0.0, 0.0}, PI}; DoubleDouble const_term = CONST_TERM[xbits.is_neg()]; double p = asin_eval(u); double scale = x_sign * 2.0 * v_hi; double r = const_term.hi + fputil::multiply_add(scale, p, const_term.lo); return r; #else #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE double h = fputil::multiply_add(v_hi, -v_hi, u); #else DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi); double h = (u - v_hi_sq.hi) - v_hi_sq.lo; #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE // Scale v_lo and v_hi by 2 from the formula: // vh = v_hi * 2 // vl = 2*v_lo = h / v_hi. double vh = v_hi * 2.0; double vl = h / v_hi; // Polynomial approximation: // p ~ asin(sqrt(u))/sqrt(u) unsigned idx; double err = vh * 0x1.0p-51; DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err); // Perform computations in double-double arithmetic: // asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p) DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p); double r_hi, r_lo; if (xbits.is_pos()) { r_hi = r0.hi; r_lo = r0.lo; } else { DoubleDouble r = fputil::exact_add(PI.hi, -r0.hi); r_hi = r.hi; r_lo = (PI.lo - r0.lo) + r.lo; } // Ziv's accuracy test. double r_upper = r_hi + (r_lo + err); double r_lower = r_hi + (r_lo - err); if (LIBC_LIKELY(r_upper == r_lower)) return r_upper; // Ziv's accuracy test failed, we redo the computations in Float128. // Recalculate mod 1/64. idx = static_cast(fputil::nearest_integer(u * 0x1.0p6)); // After the first step of Newton-Raphson approximating v = sqrt(u), we have // that: // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) // v_lo = h / (2 * v_hi) // With error: // sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) ) // = -h^2 / (2*v * (sqrt(u) + v)^2). // Since: // (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u, // we can add another correction term to (v_hi + v_lo) that is: // v_ll = -h^2 / (2*v_hi * 4u) // = -v_lo * (h / 4u) // = -vl * (h / 8u), // making the errors: // sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3) // well beyond 128-bit precision needed. // Get the rounding error of vl = 2 * v_lo ~ h / vh // Get full product of vh * vl #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi; #else DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl); double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi; #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE // vll = 2*v_ll = -vl * (h / (4u)). double t = h * (-0.25) / u; double vll = fputil::multiply_add(vl, t, vl_lo); // m_v = -(v_hi + v_lo + v_ll). Float128 m_v = fputil::quick_add( Float128(vh), fputil::quick_add(Float128(vl), Float128(vll))); m_v.sign = xbits.sign(); // Perform computations in Float128: // acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1, // = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5. Float128 y_f128(fputil::multiply_add(static_cast(idx), -0x1.0p-6, u)); Float128 p_f128 = asin_eval(y_f128, idx); Float128 r_f128 = fputil::quick_mul(m_v, p_f128); if (xbits.is_neg()) r_f128 = fputil::quick_add(PI_F128, r_f128); return static_cast(r_f128); #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS } } // namespace LIBC_NAMESPACE_DECL