//===-- Single-precision atanf float function -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LIBC_SRC___SUPPORT_MATH_ATANF_FLOAT_H #define LIBC_SRC___SUPPORT_MATH_ATANF_FLOAT_H #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/double_double.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY namespace LIBC_NAMESPACE_DECL { namespace math { namespace atanf_internal { using fputil::FloatFloat; // atan(i/64) with i = 0..16, generated by Sollya with: // > for i from 0 to 16 do { // a = round(atan(i/16), SG, RN); // b = round(atan(i/16) - a, SG, RN); // print("{", b, ",", a, "},"); // }; static constexpr FloatFloat ATAN_I[17] = { {0.0f, 0.0f}, {-0x1.1a6042p-30f, 0x1.ff55bcp-5f}, {-0x1.54f424p-30f, 0x1.fd5baap-4f}, {0x1.79cb6p-28f, 0x1.7b97b4p-3f}, {-0x1.b4dfc8p-29f, 0x1.f5b76p-3f}, {-0x1.1f0286p-27f, 0x1.362774p-2f}, {0x1.e4defp-30f, 0x1.6f6194p-2f}, {0x1.e611fep-29f, 0x1.a64eecp-2f}, {0x1.586ed4p-28f, 0x1.dac67p-2f}, {-0x1.6499e6p-26f, 0x1.0657eap-1f}, {0x1.7bdfd6p-26f, 0x1.1e00bap-1f}, {-0x1.98e422p-28f, 0x1.345f02p-1f}, {0x1.934f7p-28f, 0x1.4978fap-1f}, {0x1.c5a6c6p-27f, 0x1.5d5898p-1f}, {0x1.5e118cp-27f, 0x1.700a7cp-1f}, {-0x1.1d4eb6p-26f, 0x1.819d0cp-1f}, {-0x1.777a5cp-26f, 0x1.921fb6p-1f}, }; // 1 / (1 + (i/16)^2) with i = 0..16, generated by Sollya with: // > for i from 0 to 16 do { // a = round(1 / (1 + (i/16)^2), SG, RN); // print(a, ","); // }; static constexpr float ATANF_REDUCED_ARG[17] = { 0x1.0p0f, 0x1.fe01fep-1f, 0x1.f81f82p-1f, 0x1.ee9c8p-1f, 0x1.e1e1e2p-1f, 0x1.d272cap-1f, 0x1.c0e07p-1f, 0x1.adbe88p-1f, 0x1.99999ap-1f, 0x1.84f00cp-1f, 0x1.702e06p-1f, 0x1.5babccp-1f, 0x1.47ae14p-1f, 0x1.34679ap-1f, 0x1.21fb78p-1f, 0x1.107fbcp-1f, 0x1p-1f, }; // Approximating atan( u / (1 + u * k/16) ) // atan( u / (1 + u * k/16) ) / u ~ 1 - k/16 * u + (k^2/256 - 1/3) * u^2 + // + (k/16 - (k/16)^3) * u^3 + O(u^4) LIBC_INLINE static float atanf_eval(float u, float k_over_16) { // (k/16)^2 float c2 = k_over_16 * k_over_16; // -(k/16)^3 float c3 = fputil::multiply_add(-k_over_16, c2, k_over_16); float u2 = u * u; // (k^2/256 - 1/3) + u * (k/16 - (k/16)^3) float a0 = fputil::multiply_add(c3, u, c2 - 0x1.555556p-2f); // -k/16 + u*(k^2/256 - 1/3) + u^2 * (k/16 - (k/16)^3) float a1 = fputil::multiply_add(u, a0, -k_over_16); // u - u^2 * k/16 + u^3 * ((k^2/256 - 1/3) + u^4 * (k/16 - (k/16)^3)) return fputil::multiply_add(u2, a1, u); } } // namespace atanf_internal // There are several range reduction steps we can take for atan2(y, x) as // follow: LIBC_INLINE static float atanf(float x) { using namespace atanf_internal; using FPBits = typename fputil::FPBits; using FPBits = typename fputil::FPBits; constexpr float SIGN[2] = {1.0f, -1.0f}; constexpr FloatFloat PI_OVER_2 = {-0x1.777a5cp-25f, 0x1.921fb6p0f}; FPBits x_bits(x); Sign s = x_bits.sign(); float sign = SIGN[s.is_neg()]; uint32_t x_abs = x_bits.uintval() & 0x7fff'ffffU; // x is inf or nan, |x| <= 2^-11 or |x|= > 2^11. if (LIBC_UNLIKELY(x_abs <= 0x3a00'0000U || x_abs >= 0x4500'0000U)) { if (LIBC_UNLIKELY(x_bits.is_inf())) return sign * PI_OVER_2.hi; // atan(NaN) = NaN if (LIBC_UNLIKELY(x_bits.is_nan())) { if (x_bits.is_signaling_nan()) { fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } return x; } // |x| >= 2^11: // atan(x) = sign(x) * pi/2 - atan(1/x) // ~ sign(x) * pi/2 - 1/x if (LIBC_UNLIKELY(x_abs >= 0x4200'0000)) return fputil::multiply_add(sign, PI_OVER_2.hi, -1.0f / x); // x <= 2^-11: // atan(x) ~ x return x; } // Range reduction steps: // 1) atan(x) = sign(x) * atan(|x|) // 2) If |x| > 1, atan(|x|) = pi/2 - atan(1/|x|) // 3) For 1/16 < |x| < 1 + 1/32, we find k such that: | |x| - k/16 | <= 1/32. // Let y = |x| - k/16, then using the angle summation formula, we have: // atan(|x|) = atan(k/16) + atan( (|x| - k/16) / (1 + |x| * k/16) ) // = atan(k/16) + atan( y / (1 + (y + k/16) * k/16 ) // = atan(k/16) + atan( y / ((1 + k^2/256) + y * k/16) ) // 4) Let u = y / (1 + k^2/256), then we can rewritten the above as: // atan(|x|) = atan(k/16) + atan( u / (1 + u * k/16) ) // ~ atan(k/16) + (u - k/16 * u^2 + (k^2/256 - 1/3) * u^3 + // + (k/16 - (k/16)^3) * u^4) + O(u^5) float x_a = cpp::bit_cast(x_abs); // |x| > 1 + 1/32, we need to invert x, so we will perform the division in // float-float. if (x_abs > 0x3f84'0000U) x_a = 1.0f / x_a; // Perform range reduction. // k = nearestint(x * 16) float k_f = fputil::nearest_integer(x_a * 0x1.0p4f); unsigned idx = static_cast(k_f); float k_over_16 = k_f * 0x1.0p-4f; float y = x_a - k_over_16; // u = (x - k/16) / (1 + (k/16)^2) float u = y * ATANF_REDUCED_ARG[idx]; // atan(x) = sign(x) * atan(|x|) // = sign(x) * (atan(k/16) + atan(|)) // p ~ atan(u) float p = atanf_eval(u, k_over_16); // |x| > 1 + 1/32: q ~ (pi/2 - atan(1/|x|)) // |x| <= 1 + 1/32: q ~ atan(|x|) float q = (p + ATAN_I[idx].lo) + ATAN_I[idx].hi; if (x_abs > 0x3f84'0000U) q = PI_OVER_2.hi + (PI_OVER_2.lo - q); // |x| > 1 + 1/32: sign(x) * (pi/2 - atan(1/|x|)) // |x| <= 1 + 1/32: sign(x) * atan(|x|) return sign * q; } } // namespace math } // namespace LIBC_NAMESPACE_DECL #endif // LIBC_SRC___SUPPORT_MATH_ATANF_FLOAT_H