// RUN: %clang_cc1 -fopenacc -triple x86_64-linux-gnu -Wno-openacc-self-if-potential-conflict -emit-cir -fclangir -triple x86_64-linux-pc %s -o - | FileCheck %s extern "C" bool condition(int x, unsigned int y, float f); extern "C" double do_thing(float f); struct ConvertsToScalar { operator float(); }; void use(int x, unsigned int y, float f, ConvertsToScalar cts) { // CHECK: cir.func{{.*}}(%[[X_ARG:.*]]: !s32i{{.*}}, %[[Y_ARG:.*]]: !u32i{{.*}}, %[[F_ARG:.*]]: !cir.float{{.*}}){{.*}}, %[[CTS_ARG:.*]]: !rec_ConvertsToScalar{{.*}}) { // CHECK-NEXT: %[[X_ALLOC:.*]] = cir.alloca !s32i, !cir.ptr, ["x", init] // CHECK-NEXT: %[[Y_ALLOC:.*]] = cir.alloca !u32i, !cir.ptr, ["y", init] // CHECK-NEXT: %[[F_ALLOC:.*]] = cir.alloca !cir.float, !cir.ptr, ["f", init] // CHECK-NEXT: %[[CTS_ALLOC:.*]] = cir.alloca !rec_ConvertsToScalar, !cir.ptr, ["cts", init] // // CHECK-NEXT: cir.store %[[X_ARG]], %[[X_ALLOC]] : !s32i, !cir.ptr // CHECK-NEXT: cir.store %[[Y_ARG]], %[[Y_ALLOC]] : !u32i, !cir.ptr // CHECK-NEXT: cir.store %[[F_ARG]], %[[F_ALLOC]] : !cir.float, !cir.ptr // CHECK-NEXT: cir.store %[[CTS_ARG]], %[[CTS_ALLOC]] : !rec_ConvertsToScalar, !cir.ptr // CHECK-NEXT: %[[Y_LOAD:.*]] = cir.load {{.*}}%[[Y_ALLOC]] : !cir.ptr, !u32i // CHECK-NEXT: %[[Y_TO_FLOAT:.*]] = cir.cast int_to_float %[[Y_LOAD]] : !u32i -> !cir.float // CHECK-NEXT: %[[F_LOAD:.*]] = cir.load {{.*}}%[[F_ALLOC]] : !cir.ptr, !cir.float // CHECK-NEXT: %[[MUL:.*]] = cir.binop(mul, %[[Y_TO_FLOAT]], %[[F_LOAD]]) : !cir.float // CHECK-NEXT: %[[RHS_CAST:.*]] = cir.cast float_to_int %[[MUL]] : !cir.float -> !s32i // CHECK-NEXT: acc.atomic.write %[[X_ALLOC]] = %[[RHS_CAST]] : !cir.ptr, !s32i #pragma acc atomic write x = y * f; // CHECK-NEXT: %[[F_LOAD:.*]] = cir.load {{.*}}%[[F_ALLOC]] : !cir.ptr, !cir.float // CHECK-NEXT: %[[CALL:.*]] = cir.call @do_thing(%[[F_LOAD]]) : (!cir.float) -> !cir.double // CHECK-NEXT: %[[CALL_CAST:.*]] = cir.cast float_to_int %[[CALL]] : !cir.double -> !u32i // CHECK-NEXT: acc.atomic.write %[[Y_ALLOC]] = %[[CALL_CAST]] : !cir.ptr, !u32i #pragma acc atomic write y = do_thing(f); // CHECK-NEXT: %[[X_LOAD:.*]] = cir.load {{.*}}%[[X_ALLOC]] : !cir.ptr, !s32i // CHECK-NEXT: %[[X_CAST:.*]] = cir.cast int_to_float %[[X_LOAD]] : !s32i -> !cir.float // CHECK-NEXT: %[[THING_CALL:.*]] = cir.call @do_thing(%[[X_CAST]]) : (!cir.float) -> !cir.double // CHECK-NEXT: %[[THING_CAST:.*]] = cir.cast floating %[[THING_CALL]] : !cir.double -> !cir.float // CHECK-NEXT: %[[X_LOAD:.*]] = cir.load {{.*}}%[[X_ALLOC]] : !cir.ptr, !s32i // CHECK-NEXT: %[[Y_LOAD:.*]] = cir.load {{.*}}%[[Y_ALLOC]] : !cir.ptr, !u32i // CHECK-NEXT: %[[F_LOAD:.*]] = cir.load {{.*}}%[[F_ALLOC]] : !cir.ptr, !cir.float // CHECK-NEXT: %[[COND_CALL:.*]] = cir.call @condition(%[[X_LOAD]], %[[Y_LOAD]], %[[F_LOAD]]) : (!s32i, !u32i, !cir.float) -> !cir.bool // CHECK-NEXT: %[[COND_CAST:.*]] = builtin.unrealized_conversion_cast %[[COND_CALL]] : !cir.bool to i1 // CHECK-NEXT: acc.atomic.write if(%[[COND_CAST]]) %[[F_ALLOC]] = %[[THING_CAST]] : !cir.ptr, !cir.float #pragma acc atomic write if (condition(x, y, f)) f = do_thing(x); // CHECK-NEXT: %[[CTS_CONV_CALL:.*]] = cir.call @{{.*}}(%[[CTS_ALLOC]]) : (!cir.ptr) -> !cir.float // CHECK-NEXT: acc.atomic.write %[[F_ALLOC]] = %[[CTS_CONV_CALL]] : !cir.ptr, !cir.float #pragma acc atomic write f = cts; }