//===- CIRGenExprAggregrate.cpp - Emit CIR Code from Aggregate Expressions ===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code to emit Aggregate Expr nodes as CIR code. // //===----------------------------------------------------------------------===// #include "CIRGenBuilder.h" #include "CIRGenFunction.h" #include "CIRGenValue.h" #include "clang/CIR/Dialect/IR/CIRAttrs.h" #include "clang/AST/Expr.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include using namespace clang; using namespace clang::CIRGen; namespace { class AggExprEmitter : public StmtVisitor { CIRGenFunction &cgf; AggValueSlot dest; // Calls `fn` with a valid return value slot, potentially creating a temporary // to do so. If a temporary is created, an appropriate copy into `Dest` will // be emitted, as will lifetime markers. // // The given function should take a ReturnValueSlot, and return an RValue that // points to said slot. void withReturnValueSlot(const Expr *e, llvm::function_ref fn); AggValueSlot ensureSlot(mlir::Location loc, QualType t) { if (!dest.isIgnored()) return dest; cgf.cgm.errorNYI(loc, "Slot for ignored address"); return dest; } public: AggExprEmitter(CIRGenFunction &cgf, AggValueSlot dest) : cgf(cgf), dest(dest) {} /// Given an expression with aggregate type that represents a value lvalue, /// this method emits the address of the lvalue, then loads the result into /// DestPtr. void emitAggLoadOfLValue(const Expr *e); void emitArrayInit(Address destPtr, cir::ArrayType arrayTy, QualType arrayQTy, Expr *exprToVisit, ArrayRef args, Expr *arrayFiller); /// Perform the final copy to DestPtr, if desired. void emitFinalDestCopy(QualType type, const LValue &src); void emitCopy(QualType type, const AggValueSlot &dest, const AggValueSlot &src); void emitInitializationToLValue(Expr *e, LValue lv); void emitNullInitializationToLValue(mlir::Location loc, LValue lv); void Visit(Expr *e) { StmtVisitor::Visit(e); } void VisitArraySubscriptExpr(ArraySubscriptExpr *e) { emitAggLoadOfLValue(e); } void VisitCallExpr(const CallExpr *e); void VisitStmtExpr(const StmtExpr *e) { CIRGenFunction::StmtExprEvaluation eval(cgf); Address retAlloca = cgf.createMemTemp(e->getType(), cgf.getLoc(e->getSourceRange())); (void)cgf.emitCompoundStmt(*e->getSubStmt(), &retAlloca, dest); } void VisitDeclRefExpr(DeclRefExpr *e) { emitAggLoadOfLValue(e); } void VisitInitListExpr(InitListExpr *e); void VisitCXXConstructExpr(const CXXConstructExpr *e); void visitCXXParenListOrInitListExpr(Expr *e, ArrayRef args, FieldDecl *initializedFieldInUnion, Expr *arrayFiller); void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *die) { CIRGenFunction::CXXDefaultInitExprScope Scope(cgf, die); Visit(die->getExpr()); } void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *e) { assert(!cir::MissingFeatures::aggValueSlotDestructedFlag()); Visit(e->getSubExpr()); } void VisitLambdaExpr(LambdaExpr *e); // Stubs -- These should be moved up when they are implemented. void VisitCastExpr(CastExpr *e) { switch (e->getCastKind()) { case CK_LValueToRValue: // If we're loading from a volatile type, force the destination // into existence. if (e->getSubExpr()->getType().isVolatileQualified()) cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: volatile lvalue-to-rvalue cast"); [[fallthrough]]; case CK_NoOp: case CK_UserDefinedConversion: case CK_ConstructorConversion: assert(cgf.getContext().hasSameUnqualifiedType(e->getSubExpr()->getType(), e->getType()) && "Implicit cast types must be compatible"); Visit(e->getSubExpr()); break; default: cgf.cgm.errorNYI(e->getSourceRange(), std::string("AggExprEmitter: VisitCastExpr: ") + e->getCastKindName()); break; } } void VisitStmt(Stmt *s) { cgf.cgm.errorNYI(s->getSourceRange(), std::string("AggExprEmitter::VisitStmt: ") + s->getStmtClassName()); } void VisitParenExpr(ParenExpr *pe) { cgf.cgm.errorNYI(pe->getSourceRange(), "AggExprEmitter: VisitParenExpr"); } void VisitGenericSelectionExpr(GenericSelectionExpr *ge) { cgf.cgm.errorNYI(ge->getSourceRange(), "AggExprEmitter: VisitGenericSelectionExpr"); } void VisitCoawaitExpr(CoawaitExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCoawaitExpr"); } void VisitCoyieldExpr(CoyieldExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCoyieldExpr"); } void VisitUnaryCoawait(UnaryOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitUnaryCoawait"); } void VisitUnaryExtension(UnaryOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitUnaryExtension"); } void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitSubstNonTypeTemplateParmExpr"); } void VisitConstantExpr(ConstantExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitConstantExpr"); } void VisitMemberExpr(MemberExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitMemberExpr"); } void VisitUnaryDeref(UnaryOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitUnaryDeref"); } void VisitStringLiteral(StringLiteral *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitStringLiteral"); } void VisitCompoundLiteralExpr(CompoundLiteralExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCompoundLiteralExpr"); } void VisitPredefinedExpr(const PredefinedExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitPredefinedExpr"); } void VisitBinaryOperator(const BinaryOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitBinaryOperator"); } void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitPointerToDataMemberBinaryOperator"); } void VisitBinAssign(const BinaryOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitBinAssign"); } void VisitBinComma(const BinaryOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitBinComma"); } void VisitBinCmp(const BinaryOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitBinCmp"); } void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCXXRewrittenBinaryOperator"); } void VisitObjCMessageExpr(ObjCMessageExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitObjCMessageExpr"); } void VisitObjCIVarRefExpr(ObjCIvarRefExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitObjCIVarRefExpr"); } void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitDesignatedInitUpdateExpr"); } void VisitAbstractConditionalOperator(const AbstractConditionalOperator *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitAbstractConditionalOperator"); } void VisitChooseExpr(const ChooseExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitChooseExpr"); } void VisitCXXParenListInitExpr(CXXParenListInitExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCXXParenListInitExpr"); } void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *e, llvm::Value *outerBegin = nullptr) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitArrayInitLoopExpr"); } void VisitImplicitValueInitExpr(ImplicitValueInitExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitImplicitValueInitExpr"); } void VisitNoInitExpr(NoInitExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitNoInitExpr"); } void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *dae) { cgf.cgm.errorNYI(dae->getSourceRange(), "AggExprEmitter: VisitCXXDefaultArgExpr"); } void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCXXInheritedCtorInitExpr"); } void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCXXStdInitializerListExpr"); } void VisitExprWithCleanups(ExprWithCleanups *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitExprWithCleanups"); } void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCXXScalarValueInitExpr"); } void VisitCXXTypeidExpr(CXXTypeidExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCXXTypeidExpr"); } void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitMaterializeTemporaryExpr"); } void VisitOpaqueValueExpr(OpaqueValueExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitOpaqueValueExpr"); } void VisitPseudoObjectExpr(PseudoObjectExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitPseudoObjectExpr"); } void VisitVAArgExpr(VAArgExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitVAArgExpr"); } void VisitCXXThrowExpr(const CXXThrowExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitCXXThrowExpr"); } void VisitAtomicExpr(AtomicExpr *e) { cgf.cgm.errorNYI(e->getSourceRange(), "AggExprEmitter: VisitAtomicExpr"); } }; } // namespace static bool isTrivialFiller(Expr *e) { if (!e) return true; if (isa(e)) return true; if (auto *ile = dyn_cast(e)) { if (ile->getNumInits()) return false; return isTrivialFiller(ile->getArrayFiller()); } if (const auto *cons = dyn_cast_or_null(e)) return cons->getConstructor()->isDefaultConstructor() && cons->getConstructor()->isTrivial(); return false; } /// Given an expression with aggregate type that represents a value lvalue, this /// method emits the address of the lvalue, then loads the result into DestPtr. void AggExprEmitter::emitAggLoadOfLValue(const Expr *e) { LValue lv = cgf.emitLValue(e); // If the type of the l-value is atomic, then do an atomic load. assert(!cir::MissingFeatures::opLoadStoreAtomic()); emitFinalDestCopy(e->getType(), lv); } void AggExprEmitter::emitArrayInit(Address destPtr, cir::ArrayType arrayTy, QualType arrayQTy, Expr *e, ArrayRef args, Expr *arrayFiller) { CIRGenBuilderTy &builder = cgf.getBuilder(); const mlir::Location loc = cgf.getLoc(e->getSourceRange()); const uint64_t numInitElements = args.size(); const QualType elementType = cgf.getContext().getAsArrayType(arrayQTy)->getElementType(); if (elementType.isDestructedType() && cgf.cgm.getLangOpts().Exceptions) { cgf.cgm.errorNYI(loc, "initialized array requires destruction"); return; } const QualType elementPtrType = cgf.getContext().getPointerType(elementType); const mlir::Type cirElementType = cgf.convertType(elementType); const cir::PointerType cirElementPtrType = builder.getPointerTo(cirElementType); auto begin = cir::CastOp::create(builder, loc, cirElementPtrType, cir::CastKind::array_to_ptrdecay, destPtr.getPointer()); const CharUnits elementSize = cgf.getContext().getTypeSizeInChars(elementType); const CharUnits elementAlign = destPtr.getAlignment().alignmentOfArrayElement(elementSize); // The 'current element to initialize'. The invariants on this // variable are complicated. Essentially, after each iteration of // the loop, it points to the last initialized element, except // that it points to the beginning of the array before any // elements have been initialized. mlir::Value element = begin; // Don't build the 'one' before the cycle to avoid // emmiting the redundant `cir.const 1` instrs. mlir::Value one; // Emit the explicit initializers. for (uint64_t i = 0; i != numInitElements; ++i) { // Advance to the next element. if (i > 0) { one = builder.getConstantInt(loc, cgf.PtrDiffTy, i); element = builder.createPtrStride(loc, begin, one); } const Address address = Address(element, cirElementType, elementAlign); const LValue elementLV = cgf.makeAddrLValue(address, elementType); emitInitializationToLValue(args[i], elementLV); } const uint64_t numArrayElements = arrayTy.getSize(); // Check whether there's a non-trivial array-fill expression. const bool hasTrivialFiller = isTrivialFiller(arrayFiller); // Any remaining elements need to be zero-initialized, possibly // using the filler expression. We can skip this if the we're // emitting to zeroed memory. if (numInitElements != numArrayElements && !(dest.isZeroed() && hasTrivialFiller && cgf.getTypes().isZeroInitializable(elementType))) { // Advance to the start of the rest of the array. if (numInitElements) { one = builder.getConstantInt(loc, cgf.PtrDiffTy, 1); element = cir::PtrStrideOp::create(builder, loc, cirElementPtrType, element, one); } // Allocate the temporary variable // to store the pointer to first unitialized element const Address tmpAddr = cgf.createTempAlloca( cirElementPtrType, cgf.getPointerAlign(), loc, "arrayinit.temp"); LValue tmpLV = cgf.makeAddrLValue(tmpAddr, elementPtrType); cgf.emitStoreThroughLValue(RValue::get(element), tmpLV); // Compute the end of array cir::ConstantOp numArrayElementsConst = builder.getConstInt( loc, mlir::cast(cgf.PtrDiffTy), numArrayElements); mlir::Value end = cir::PtrStrideOp::create(builder, loc, cirElementPtrType, begin, numArrayElementsConst); builder.createDoWhile( loc, /*condBuilder=*/ [&](mlir::OpBuilder &b, mlir::Location loc) { cir::LoadOp currentElement = builder.createLoad(loc, tmpAddr); mlir::Type boolTy = cgf.convertType(cgf.getContext().BoolTy); cir::CmpOp cmp = cir::CmpOp::create( builder, loc, boolTy, cir::CmpOpKind::ne, currentElement, end); builder.createCondition(cmp); }, /*bodyBuilder=*/ [&](mlir::OpBuilder &b, mlir::Location loc) { cir::LoadOp currentElement = builder.createLoad(loc, tmpAddr); assert(!cir::MissingFeatures::requiresCleanups()); // Emit the actual filler expression. LValue elementLV = cgf.makeAddrLValue( Address(currentElement, cirElementType, elementAlign), elementType); if (arrayFiller) emitInitializationToLValue(arrayFiller, elementLV); else emitNullInitializationToLValue(loc, elementLV); // Tell the EH cleanup that we finished with the last element. if (cgf.cgm.getLangOpts().Exceptions) { cgf.cgm.errorNYI(loc, "update destructed array element for EH"); return; } // Advance pointer and store them to temporary variable cir::ConstantOp one = builder.getConstInt( loc, mlir::cast(cgf.PtrDiffTy), 1); auto nextElement = cir::PtrStrideOp::create( builder, loc, cirElementPtrType, currentElement, one); cgf.emitStoreThroughLValue(RValue::get(nextElement), tmpLV); builder.createYield(loc); }); } } /// Perform the final copy to destPtr, if desired. void AggExprEmitter::emitFinalDestCopy(QualType type, const LValue &src) { // If dest is ignored, then we're evaluating an aggregate expression // in a context that doesn't care about the result. Note that loads // from volatile l-values force the existence of a non-ignored // destination. if (dest.isIgnored()) return; assert(!cir::MissingFeatures::aggValueSlotVolatile()); assert(!cir::MissingFeatures::aggEmitFinalDestCopyRValue()); assert(!cir::MissingFeatures::aggValueSlotGC()); AggValueSlot srcAgg = AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, AggValueSlot::IsAliased, AggValueSlot::MayOverlap); emitCopy(type, dest, srcAgg); } /// Perform a copy from the source into the destination. /// /// \param type - the type of the aggregate being copied; qualifiers are /// ignored void AggExprEmitter::emitCopy(QualType type, const AggValueSlot &dest, const AggValueSlot &src) { assert(!cir::MissingFeatures::aggValueSlotGC()); // If the result of the assignment is used, copy the LHS there also. // It's volatile if either side is. Use the minimum alignment of // the two sides. LValue destLV = cgf.makeAddrLValue(dest.getAddress(), type); LValue srcLV = cgf.makeAddrLValue(src.getAddress(), type); assert(!cir::MissingFeatures::aggValueSlotVolatile()); cgf.emitAggregateCopy(destLV, srcLV, type, dest.mayOverlap()); } void AggExprEmitter::emitInitializationToLValue(Expr *e, LValue lv) { const QualType type = lv.getType(); if (isa(e)) { const mlir::Location loc = e->getSourceRange().isValid() ? cgf.getLoc(e->getSourceRange()) : *cgf.currSrcLoc; return emitNullInitializationToLValue(loc, lv); } if (isa(e)) return; if (type->isReferenceType()) { RValue rv = cgf.emitReferenceBindingToExpr(e); return cgf.emitStoreThroughLValue(rv, lv); } switch (cgf.getEvaluationKind(type)) { case cir::TEK_Complex: cgf.emitComplexExprIntoLValue(e, lv, /*isInit*/ true); break; case cir::TEK_Aggregate: cgf.emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsDestructed, AggValueSlot::IsNotAliased, AggValueSlot::MayOverlap, dest.isZeroed())); return; case cir::TEK_Scalar: if (lv.isSimple()) cgf.emitScalarInit(e, cgf.getLoc(e->getSourceRange()), lv); else cgf.emitStoreThroughLValue(RValue::get(cgf.emitScalarExpr(e)), lv); return; } } void AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *e) { AggValueSlot slot = ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType()); cgf.emitCXXConstructExpr(e, slot); } void AggExprEmitter::emitNullInitializationToLValue(mlir::Location loc, LValue lv) { const QualType type = lv.getType(); // If the destination slot is already zeroed out before the aggregate is // copied into it, we don't have to emit any zeros here. if (dest.isZeroed() && cgf.getTypes().isZeroInitializable(type)) return; if (cgf.hasScalarEvaluationKind(type)) { // For non-aggregates, we can store the appropriate null constant. mlir::Value null = cgf.cgm.emitNullConstant(type, loc); if (lv.isSimple()) { cgf.emitStoreOfScalar(null, lv, /* isInitialization */ true); return; } cgf.cgm.errorNYI("emitStoreThroughBitfieldLValue"); return; } // There's a potential optimization opportunity in combining // memsets; that would be easy for arrays, but relatively // difficult for structures with the current code. cgf.emitNullInitialization(loc, lv.getAddress(), lv.getType()); } void AggExprEmitter::VisitLambdaExpr(LambdaExpr *e) { CIRGenFunction::SourceLocRAIIObject loc{cgf, cgf.getLoc(e->getSourceRange())}; AggValueSlot slot = ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType()); [[maybe_unused]] LValue slotLV = cgf.makeAddrLValue(slot.getAddress(), e->getType()); // We'll need to enter cleanup scopes in case any of the element // initializers throws an exception or contains branch out of the expressions. assert(!cir::MissingFeatures::opScopeCleanupRegion()); for (auto [curField, capture, captureInit] : llvm::zip( e->getLambdaClass()->fields(), e->captures(), e->capture_inits())) { // Pick a name for the field. llvm::StringRef fieldName = curField->getName(); if (capture.capturesVariable()) { assert(!curField->isBitField() && "lambdas don't have bitfield members!"); ValueDecl *v = capture.getCapturedVar(); fieldName = v->getName(); cgf.cgm.lambdaFieldToName[curField] = fieldName; } else if (capture.capturesThis()) { cgf.cgm.lambdaFieldToName[curField] = "this"; } else { cgf.cgm.errorNYI(e->getSourceRange(), "Unhandled capture kind"); cgf.cgm.lambdaFieldToName[curField] = "unhandled-capture-kind"; } // Emit initialization LValue lv = cgf.emitLValueForFieldInitialization(slotLV, curField, fieldName); if (curField->hasCapturedVLAType()) cgf.cgm.errorNYI(e->getSourceRange(), "lambda captured VLA type"); emitInitializationToLValue(captureInit, lv); // Push a destructor if necessary. if ([[maybe_unused]] QualType::DestructionKind DtorKind = curField->getType().isDestructedType()) cgf.cgm.errorNYI(e->getSourceRange(), "lambda with destructed field"); } } void AggExprEmitter::VisitCallExpr(const CallExpr *e) { if (e->getCallReturnType(cgf.getContext())->isReferenceType()) { cgf.cgm.errorNYI(e->getSourceRange(), "reference return type"); return; } withReturnValueSlot( e, [&](ReturnValueSlot slot) { return cgf.emitCallExpr(e, slot); }); } void AggExprEmitter::withReturnValueSlot( const Expr *e, llvm::function_ref fn) { QualType retTy = e->getType(); assert(!cir::MissingFeatures::aggValueSlotDestructedFlag()); bool requiresDestruction = retTy.isDestructedType() == QualType::DK_nontrivial_c_struct; if (requiresDestruction) cgf.cgm.errorNYI( e->getSourceRange(), "withReturnValueSlot: return value requiring destruction is NYI"); // If it makes no observable difference, save a memcpy + temporary. // // We need to always provide our own temporary if destruction is required. // Otherwise, fn will emit its own, notice that it's "unused", and end its // lifetime before we have the chance to emit a proper destructor call. assert(!cir::MissingFeatures::aggValueSlotAlias()); assert(!cir::MissingFeatures::aggValueSlotGC()); Address retAddr = dest.getAddress(); assert(!cir::MissingFeatures::emitLifetimeMarkers()); assert(!cir::MissingFeatures::aggValueSlotVolatile()); assert(!cir::MissingFeatures::aggValueSlotDestructedFlag()); fn(ReturnValueSlot(retAddr)); } void AggExprEmitter::VisitInitListExpr(InitListExpr *e) { if (e->hadArrayRangeDesignator()) llvm_unreachable("GNU array range designator extension"); if (e->isTransparent()) return Visit(e->getInit(0)); visitCXXParenListOrInitListExpr( e, e->inits(), e->getInitializedFieldInUnion(), e->getArrayFiller()); } void AggExprEmitter::visitCXXParenListOrInitListExpr( Expr *e, ArrayRef args, FieldDecl *initializedFieldInUnion, Expr *arrayFiller) { const AggValueSlot dest = ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType()); if (e->getType()->isConstantArrayType()) { cir::ArrayType arrayTy = cast(dest.getAddress().getElementType()); emitArrayInit(dest.getAddress(), arrayTy, e->getType(), e, args, arrayFiller); return; } else if (e->getType()->isVariableArrayType()) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr variable array type"); return; } if (e->getType()->isArrayType()) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr array type"); return; } assert(e->getType()->isRecordType() && "Only support structs/unions here!"); // Do struct initialization; this code just sets each individual member // to the approprate value. This makes bitfield support automatic; // the disadvantage is that the generated code is more difficult for // the optimizer, especially with bitfields. unsigned numInitElements = args.size(); auto *record = e->getType()->castAsRecordDecl(); // We'll need to enter cleanup scopes in case any of the element // initializers throws an exception. assert(!cir::MissingFeatures::requiresCleanups()); unsigned curInitIndex = 0; // Emit initialization of base classes. if (auto *cxxrd = dyn_cast(record)) { assert(numInitElements >= cxxrd->getNumBases() && "missing initializer for base class"); if (cxxrd->getNumBases() > 0) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr base class init"); return; } } LValue destLV = cgf.makeAddrLValue(dest.getAddress(), e->getType()); if (record->isUnion()) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr union type"); return; } // Here we iterate over the fields; this makes it simpler to both // default-initialize fields and skip over unnamed fields. for (const FieldDecl *field : record->fields()) { // We're done once we hit the flexible array member. if (field->getType()->isIncompleteArrayType()) break; // Always skip anonymous bitfields. if (field->isUnnamedBitField()) continue; // We're done if we reach the end of the explicit initializers, we // have a zeroed object, and the rest of the fields are // zero-initializable. if (curInitIndex == numInitElements && dest.isZeroed() && cgf.getTypes().isZeroInitializable(e->getType())) break; LValue lv = cgf.emitLValueForFieldInitialization(destLV, field, field->getName()); // We never generate write-barriers for initialized fields. assert(!cir::MissingFeatures::setNonGC()); if (curInitIndex < numInitElements) { // Store the initializer into the field. CIRGenFunction::SourceLocRAIIObject loc{ cgf, cgf.getLoc(record->getSourceRange())}; emitInitializationToLValue(args[curInitIndex++], lv); } else { // We're out of initializers; default-initialize to null emitNullInitializationToLValue(cgf.getLoc(e->getSourceRange()), lv); } // Push a destructor if necessary. // FIXME: if we have an array of structures, all explicitly // initialized, we can end up pushing a linear number of cleanups. if (field->getType().isDestructedType()) { cgf.cgm.errorNYI(e->getSourceRange(), "visitCXXParenListOrInitListExpr destructor"); return; } // From classic codegen, maybe not useful for CIR: // If the GEP didn't get used because of a dead zero init or something // else, clean it up for -O0 builds and general tidiness. } } // TODO(cir): This could be shared with classic codegen. AggValueSlot::Overlap_t CIRGenFunction::getOverlapForBaseInit( const CXXRecordDecl *rd, const CXXRecordDecl *baseRD, bool isVirtual) { // If the most-derived object is a field declared with [[no_unique_address]], // the tail padding of any virtual base could be reused for other subobjects // of that field's class. if (isVirtual) return AggValueSlot::MayOverlap; // If the base class is laid out entirely within the nvsize of the derived // class, its tail padding cannot yet be initialized, so we can issue // stores at the full width of the base class. const ASTRecordLayout &layout = getContext().getASTRecordLayout(rd); if (layout.getBaseClassOffset(baseRD) + getContext().getASTRecordLayout(baseRD).getSize() <= layout.getNonVirtualSize()) return AggValueSlot::DoesNotOverlap; // The tail padding may contain values we need to preserve. return AggValueSlot::MayOverlap; } void CIRGenFunction::emitAggExpr(const Expr *e, AggValueSlot slot) { AggExprEmitter(*this, slot).Visit(const_cast(e)); } void CIRGenFunction::emitAggregateCopy(LValue dest, LValue src, QualType ty, AggValueSlot::Overlap_t mayOverlap) { // TODO(cir): this function needs improvements, commented code for now since // this will be touched again soon. assert(!ty->isAnyComplexType() && "Unexpected copy of complex"); Address destPtr = dest.getAddress(); Address srcPtr = src.getAddress(); if (getLangOpts().CPlusPlus) { if (auto *record = ty->getAsCXXRecordDecl()) { assert((record->hasTrivialCopyConstructor() || record->hasTrivialCopyAssignment() || record->hasTrivialMoveConstructor() || record->hasTrivialMoveAssignment() || record->hasAttr() || record->isUnion()) && "Trying to aggregate-copy a type without a trivial copy/move " "constructor or assignment operator"); // Ignore empty classes in C++. if (record->isEmpty()) return; } } assert(!cir::MissingFeatures::cudaSupport()); // Aggregate assignment turns into llvm.memcpy. This is almost valid per // C99 6.5.16.1p3, which states "If the value being stored in an object is // read from another object that overlaps in anyway the storage of the first // object, then the overlap shall be exact and the two objects shall have // qualified or unqualified versions of a compatible type." // // memcpy is not defined if the source and destination pointers are exactly // equal, but other compilers do this optimization, and almost every memcpy // implementation handles this case safely. If there is a libc that does not // safely handle this, we can add a target hook. // Get data size info for this aggregate. Don't copy the tail padding if this // might be a potentially-overlapping subobject, since the tail padding might // be occupied by a different object. Otherwise, copying it is fine. TypeInfoChars typeInfo; if (mayOverlap) typeInfo = getContext().getTypeInfoDataSizeInChars(ty); else typeInfo = getContext().getTypeInfoInChars(ty); assert(!cir::MissingFeatures::aggValueSlotVolatile()); // NOTE(cir): original codegen would normally convert destPtr and srcPtr to // i8* since memcpy operates on bytes. We don't need that in CIR because // cir.copy will operate on any CIR pointer that points to a sized type. // Don't do any of the memmove_collectable tests if GC isn't set. if (cgm.getLangOpts().getGC() != LangOptions::NonGC) cgm.errorNYI("emitAggregateCopy: GC"); [[maybe_unused]] cir::CopyOp copyOp = builder.createCopy(destPtr.getPointer(), srcPtr.getPointer()); assert(!cir::MissingFeatures::opTBAA()); } // TODO(cir): This could be shared with classic codegen. AggValueSlot::Overlap_t CIRGenFunction::getOverlapForFieldInit(const FieldDecl *fd) { if (!fd->hasAttr() || !fd->getType()->isRecordType()) return AggValueSlot::DoesNotOverlap; // If the field lies entirely within the enclosing class's nvsize, its tail // padding cannot overlap any already-initialized object. (The only subobjects // with greater addresses that might already be initialized are vbases.) const RecordDecl *classRD = fd->getParent(); const ASTRecordLayout &layout = getContext().getASTRecordLayout(classRD); if (layout.getFieldOffset(fd->getFieldIndex()) + getContext().getTypeSize(fd->getType()) <= (uint64_t)getContext().toBits(layout.getNonVirtualSize())) return AggValueSlot::DoesNotOverlap; // The tail padding may contain values we need to preserve. return AggValueSlot::MayOverlap; } LValue CIRGenFunction::emitAggExprToLValue(const Expr *e) { assert(hasAggregateEvaluationKind(e->getType()) && "Invalid argument!"); Address temp = createMemTemp(e->getType(), getLoc(e->getSourceRange())); LValue lv = makeAddrLValue(temp, e->getType()); emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsNotDestructed, AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); return lv; }