aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/CGSCCPassManager.cpp
AgeCommit message (Collapse)AuthorFilesLines
2016-08-30Fixup r279618, instantiate ↵NAKAMURA Takumi1-2/+2
*AnalysisManagerProxy<*AnalysisManager,LazyCallGraph::SCC>, instead of *AnalysisManagerProxy<*AnalysisManager,LazyCallGraph::SCC,LazyCallGraph&>, for PassID. Or they were not instantiated as expected; llvm::InnerAnalysisManagerProxy<llvm::AnalysisManager<llvm::Function>, llvm::LazyCallGraph::SCC>::PassID llvm::InnerAnalysisManagerProxy<llvm::AnalysisManager<llvm::Function>, llvm::LazyCallGraph::SCC>::PassID llvm-svn: 280105
2016-08-24[PM] Introduce basic update capabilities to the new PM's CGSCC passChandler Carruth1-5/+342
manager, including both plumbing and logic to handle function pass updates. There are three fundamentally tied changes here: 1) Plumbing *some* mechanism for updating the CGSCC pass manager as the CG changes while passes are running. 2) Changing the CGSCC pass manager infrastructure to have support for the underlying graph to mutate mid-pass run. 3) Actually updating the CG after function passes run. I can separate them if necessary, but I think its really useful to have them together as the needs of #3 drove #2, and that in turn drove #1. The plumbing technique is to extend the "run" method signature with extra arguments. We provide the call graph that intrinsically is available as it is the basis of the pass manager's IR units, and an output parameter that records the results of updating the call graph during an SCC passes's run. Note that "...UpdateResult" isn't a *great* name here... suggestions very welcome. I tried a pretty frustrating number of different data structures and such for the innards of the update result. Every other one failed for one reason or another. Sometimes I just couldn't keep the layers of complexity right in my head. The thing that really worked was to just directly provide access to the underlying structures used to walk the call graph so that their updates could be informed by the *particular* nature of the change to the graph. The technique for how to make the pass management infrastructure cope with mutating graphs was also something that took a really, really large number of iterations to get to a place where I was happy. Here are some of the considerations that drove the design: - We operate at three levels within the infrastructure: RefSCC, SCC, and Node. In each case, we are working bottom up and so we want to continue to iterate on the "lowest" node as the graph changes. Look at how we iterate over nodes in an SCC running function passes as those function passes mutate the CG. We continue to iterate on the "lowest" SCC, which is the one that continues to contain the function just processed. - The call graph structure re-uses SCCs (and RefSCCs) during mutation events for the *highest* entry in the resulting new subgraph, not the lowest. This means that it is necessary to continually update the current SCC or RefSCC as it shifts. This is really surprising and subtle, and took a long time for me to work out. I actually tried changing the call graph to provide the opposite behavior, and it breaks *EVERYTHING*. The graph update algorithms are really deeply tied to this particualr pattern. - When SCCs or RefSCCs are split apart and refined and we continually re-pin our processing to the bottom one in the subgraph, we need to enqueue the newly formed SCCs and RefSCCs for subsequent processing. Queuing them presents a few challenges: 1) SCCs and RefSCCs use wildly different iteration strategies at a high level. We end up needing to converge them on worklist approaches that can be extended in order to be able to handle the mutations. 2) The order of the enqueuing need to remain bottom-up post-order so that we don't get surprising order of visitation for things like the inliner. 3) We need the worklists to have set semantics so we don't duplicate things endlessly. We don't need a *persistent* set though because we always keep processing the bottom node!!!! This is super, super surprising to me and took a long time to convince myself this is correct, but I'm pretty sure it is... Once we sink down to the bottom node, we can't re-split out the same node in any way, and the postorder of the current queue is fixed and unchanging. 4) We need to make sure that the "current" SCC or RefSCC actually gets enqueued here such that we re-visit it because we continue processing a *new*, *bottom* SCC/RefSCC. - We also need the ability to *skip* SCCs and RefSCCs that get merged into a larger component. We even need the ability to skip *nodes* from an SCC that are no longer part of that SCC. This led to the design you see in the patch which uses SetVector-based worklists. The RefSCC worklist is always empty until an update occurs and is just used to handle those RefSCCs created by updates as the others don't even exist yet and are formed on-demand during the bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and we push new SCCs onto it and blacklist existing SCCs on it to get the desired processing. We then *directly* update these when updating the call graph as I was never able to find a satisfactory abstraction around the update strategy. Finally, we need to compute the updates for function passes. This is mostly used as an initial customer of all the update mechanisms to drive their design to at least cover some real set of use cases. There are a bunch of interesting things that came out of doing this: - It is really nice to do this a function at a time because that function is likely hot in the cache. This means we want even the function pass adaptor to support online updates to the call graph! - To update the call graph after arbitrary function pass mutations is quite hard. We have to build a fairly comprehensive set of data structures and then process them. Fortunately, some of this code is related to the code for building the cal graph in the first place. Unfortunately, very little of it makes any sense to share because the nature of what we're doing is so very different. I've factored out the one part that made sense at least. - We need to transfer these updates into the various structures for the CGSCC pass manager. Once those were more sanely worked out, this became relatively easier. But some of those needs necessitated changes to the LazyCallGraph interface to make it significantly easier to extract the changed SCCs from an update operation. - We also need to update the CGSCC analysis manager as the shape of the graph changes. When an SCC is merged away we need to clear analyses associated with it from the analysis manager which we didn't have support for in the analysis manager infrsatructure. New SCCs are easy! But then we have the case that the original SCC has its shape changed but remains in the call graph. There we need to *invalidate* the analyses associated with it. - We also need to invalidate analyses after we *finish* processing an SCC. But the analyses we need to invalidate here are *only those for the newly updated SCC*!!! Because we only continue processing the bottom SCC, if we split SCCs apart the original one gets invalidated once when its shape changes and is not processed farther so its analyses will be correct. It is the bottom SCC which continues being processed and needs to have the "normal" invalidation done based on the preserved analyses set. All of this is mostly background and context for the changes here. Many thanks to all the reviewers who helped here. Especially Sanjoy who caught several interesting bugs in the graph algorithms, David, Sean, and others who all helped with feedback. Differential Revision: http://reviews.llvm.org/D21464 llvm-svn: 279618
2016-04-18[NFC] Header cleanupMehdi Amini1-2/+0
Removed some unused headers, replaced some headers with forward class declarations. Found using simple scripts like this one: clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap' Patch by Eugene Kosov <claprix@yandex.ru> Differential Revision: http://reviews.llvm.org/D19219 From: Mehdi Amini <mehdi.amini@apple.com> llvm-svn: 266595
2016-03-11[PM] Implement the final conclusion as to how the analysis IDs shouldChandler Carruth1-3/+0
work in the face of the limitations of DLLs and templated static variables. This requires passes that use the AnalysisBase mixin provide a static variable themselves. So as to keep their APIs clean, I've made these private and befriended the CRTP base class (which is the common practice). I've added documentation to AnalysisBase for why this is necessary and at what point we can go back to the much simpler system. This is clearly a better pattern than the extern template as it caught *numerous* places where the template magic hadn't been applied and things were "just working" but would eventually have broken mysteriously. llvm-svn: 263216
2016-02-28[PM] Appease mingw32's auto-import DLL build with minimal tweaks, with fix ↵NAKAMURA Takumi1-0/+3
for clang. char AnalysisBase::ID should be declared as extern and defined in one module. llvm-svn: 262188
2016-02-28Revert r262185, "[PM] Appease mingw32's auto-import DLL build with minimal ↵NAKAMURA Takumi1-3/+0
tweaks." I'll rework soon. llvm-svn: 262186
2016-02-28[PM] Appease mingw32's auto-import DLL build with minimal tweaks.NAKAMURA Takumi1-0/+3
char AnalysisBase::ID should be declared as extern and defined in one module. llvm-svn: 262185
2016-02-27[PM] Provide explicit instantiation declarations and definitions for theChandler Carruth1-0/+2
PassManager and AnalysisManager template specializations as well. llvm-svn: 262128
2016-02-27[PM] Provide two templates for the two directionalities of analysisChandler Carruth1-55/+8
manager proxies and use those rather than repeating their definition four times. There are real differences between the two directions: outer AMs are const and don't need to have invalidation tracked. But every proxy in a particular direction is identical except for the analysis manager type and the IR unit they proxy into. This makes them prime candidates for nice templates. I've started introducing explicit template instantiation declarations and definitions as well because we really shouldn't be emitting all this everywhere. I'm going to go back and add the same for the other templates like this in a follow-up patch. I've left the analysis manager as an opaque type rather than using two IR units and requiring it to be an AnalysisManager template specialization. I think its important that users retain the ability to provide their own custom analysis management layer and provided it has the appropriate API everything should Just Work. llvm-svn: 262127
2016-02-26[PM] Introduce CRTP mixin base classes to help define passes andChandler Carruth1-8/+0
analyses in the new pass manager. These just handle really basic stuff: turning a type name into a string statically that is nice to print in logs, and getting a static unique ID for each analysis. Sadly, the format of passes in anonymous namespaces makes using their names in tests really annoying so I've customized the names of the no-op passes to keep tests sane to read. This is the first of a few simplifying refactorings for the new pass manager that should reduce boilerplate and confusion. llvm-svn: 262004
2016-02-23[PM] Remove an overly aggressive assert now that I can actually test theChandler Carruth1-1/+0
pattern that triggers it. This essentially requires an immutable function analysis, as that will survive anything we do to invalidate it. When we have such patterns, the function analysis manager will not get cleared between runs of the proxy. If we actually need an assert about how things are queried, we can add more elaborate machinery for computing it, but so far I'm not aware of significant value provided. Thanks to Justin Lebar for noticing this when he made a (seemingly innocuous) change to FunctionAttrs that is enough to trigger it in one test there. Now it is covered by a direct test of the pass manager code. llvm-svn: 261627
2016-02-23[PM] Improve the API and comments around the analysis manager proxies.Chandler Carruth1-0/+8
These are really handles that ensure the analyses get cleared at appropriate places, and as such copying doesn't really make sense. Instead, they should look more like unique ownership objects. Make that the case. Relatedly, if you create a temporary of one and move out of it its destructor shouldn't actually clear anything. I don't think there is any code that can trigger this currently, but it seems like a more robust implementation. If folks want, I can add a unittest that forces this to be exercised, but that seems somewhat pointless -- whether a temporary is ever created in the innards of AnalysisManager is not really something we should be adding a reliance on, but I didn't want to leave a timebomb in the code here. If anyone has a cleaner way to represent this, I'm all ears, but I wanted to assure myself that this wasn't in fact responsible for another bug I'm chasing down (it wasn't) and figured I'd commit that. llvm-svn: 261594
2015-01-13[PM] Remove the defunt CGSCC-specific debug flag.Chandler Carruth1-4/+0
Even before I sunk the debug flag into the opt tool this had been made obsolete by factoring the pass and analysis managers into a single set of templates that all used the core flag. No functionality changed here. llvm-svn: 225842
2015-01-13[PM] Refactor the new pass manager to use a single template to implementChandler Carruth1-32/+0
the generic functionality of the pass managers themselves. In the new infrastructure, the pass "manager" isn't actually interesting at all. It just pipelines a single chunk of IR through N passes. We don't need to know anything about the IR or the passes to do this really and we can replace the 3 implementations of the exact same functionality with a single generic PassManager template, complementing the single generic AnalysisManager template. I've left typedefs in place to give convenient names to the various obvious instantiations of the template. With this, I think I've nuked almost all of the redundant logic in the managers, and I think the overall design is actually simpler for having single templates that clearly indicate there is no special logic here. The logging is made somewhat more annoying by this change, but I don't think the difference is worth having heavy-weight traits to help log things. llvm-svn: 225783
2015-01-13[PM] Fold all three analysis managers into a single AnalysisManagerChandler Carruth1-100/+0
template. This consolidates three copies of nearly the same core logic. It adds "complexity" to the ModuleAnalysisManager in that it makes it possible to share a ModuleAnalysisManager across multiple modules... But it does so by deleting *all of the code*, so I'm OK with that. This will naturally make fixing bugs in this code much simpler, etc. The only down side here is that we have to use 'typename' and 'this->' in various places, and the implementation is lifted into the header. I'll take that for the code size reduction. The convenient names are still typedef-ed and used throughout so that users can largely ignore this aspect of the implementation. The follow-up change to this will do the exact same refactoring for the PassManagers. =D It turns out that the interesting different code is almost entirely in the adaptors. At the end, that should be essentially all that is left. llvm-svn: 225757
2015-01-13[PM] Re-clang-format much of this code as the code has changed some andChandler Carruth1-2/+2
so has clang-format. Notably, this fixes a bunch of formatting in the CGSCC pass manager side of things that has been improved in clang-format recently. llvm-svn: 225743
2015-01-07[PM] Fix a pretty nasty bug where the new pass manager would invalidateChandler Carruth1-6/+28
passes too many time. I think this is actually the issue that someone raised with me at the developer's meeting and in an email, but that we never really got to the bottom of. Having all the testing utilities made it much easier to dig down and uncover the core issue. When a pass manager is running many passes over a single function, we need it to invalidate the analyses between each run so that they can be re-computed as needed. We also need to track the intersection of preserved higher-level analyses across all the passes that we run (for example, if there is one module analysis which all the function analyses preserve, we want to track that and propagate it). Unfortunately, this interacted poorly with any enclosing pass adaptor between two IR units. It would see the intersection of preserved analyses, and need to invalidate any other analyses, but some of the un-preserved analyses might have already been invalidated *and recomputed*! We would fail to propagate the fact that the analysis had already been invalidated. The solution to this struck me as really strange at first, but the more I thought about it, the more natural it seemed. After a nice discussion with Duncan about it on IRC, it seemed even nicer. The idea is that invalidating an analysis *causes* it to be preserved! Preserving the lack of result is trivial. If it is recomputed, great. Until something *else* invalidates it again, we're good. The consequence of this is that the invalidate methods on the analysis manager which operate over many passes now consume their PreservedAnalyses object, update it to "preserve" every analysis pass to which it delivers an invalidation (regardless of whether the pass chooses to be removed, or handles the invalidation itself by updating itself). Then we return this augmented set from the invalidate routine, letting the pass manager take the result and use the intersection of *that* across each pass run to compute the final preserved set. This accounts for all the places where the early invalidation of an analysis has already "preserved" it for a future run. I've beefed up the testing and adjusted the assertions to show that we no longer repeatedly invalidate or compute the analyses across nested pass managers. llvm-svn: 225333
2015-01-06[PM] Add a utility pass template that synthesizes the invalidation ofChandler Carruth1-0/+1
a specific analysis result. This is quite handy to test things, and will also likely be very useful for debugging issues. You could narrow down pass validation failures by walking these invalidate pass runs up and down the pass pipeline, etc. I've added support to the pass pipeline parsing to be able to create one of these for any analysis pass desired. Just adding this class uncovered one latent bug where the AnalysisManager CRTP base class had a hard-coded Module type rather than using IRUnitT. I've also added tests for invalidation and caching of analyses in a basic way across all the pass managers. These in turn uncovered two more bugs where we failed to correctly invalidate an analysis -- its results were invalidated but the key for re-running the pass was never cleared and so it was never re-run. Quite nasty. I'm very glad to debug this here rather than with a full system. Also, yes, the naming here is horrid. I'm going to update some of the names to be slightly less awful shortly. But really, I've no "good" ideas for naming. I'll be satisfied if I can get it to "not bad". llvm-svn: 225246
2015-01-06[PM] Add a collection of no-op analysis passes and switch the new passChandler Carruth1-1/+4
manager tests to use them and be significantly more comprehensive. This, naturally, uncovered a bug where the CGSCC pass manager wasn't printing analyses when they were run. The only remaining core manipulator is I think an invalidate pass similar to the require pass. That'll be next. =] llvm-svn: 225240
2015-01-05[PM] Don't run the machinery of invalidating all the analysis passesChandler Carruth1-0/+4
when all are being preserved. We want to short-circuit this for a couple of reasons. One, I don't really want passes to grow a dependency on actually receiving their invalidate call when they've been preserved. I'm thinking about removing this entirely. But more importantly, preserving everything is likely to be the common case in a lot of scenarios, and it would be really good to bypass all of the invalidation and preservation machinery there. Avoiding calling N opaque functions to try to invalidate things that are by definition still valid seems important. =] This wasn't really inpsired by much other than seeing the spam in the logging for analyses, but it seems better ot get it checked in rather than forgetting about it. llvm-svn: 225163
2015-01-05[PM] Add names and debug logging for analysis passes to the new passChandler Carruth1-0/+11
manager. This starts to allow us to test analyses more easily, but it's really only the beginning. Some of the code here is still untestable without manual changes to create analysis passes, but I wanted to factor it into a small of chunks as possible. Next up in order to be able to test things are, in no particular order: - No-op analyses passes so we don't have to use real ones to exercise the pass maneger itself. - Automatic way of generating dummy passes that require an analysis be run, including a variant that calls a 'print' method on a pass to make it even easier to print out the results of an analysis. - Dummy passes that invalidate all analyses for their IR unit so we can test invalidation and re-runs. - Automatic way to print each analysis pass as it is re-run. - Automatic but optional verification of analysis passes everywhere possible. I'm not claiming I'll get to all of these immediately, but that's what is in the pipeline at some stage. I'm fleshing out exactly what I need and what to prioritize by working on converting analyses and then trying to test the conversion. =] llvm-svn: 225162
2015-01-05[PM] Switch the new pass manager to use a reference-based API for IRChandler Carruth1-17/+17
units. This was debated back and forth a bunch, but using references is now clearly cleaner. Of all the code written using pointers thus far, in only one place did it really make more sense to have a pointer. In most cases, this just removes immediate dereferencing from the code. I think it is much better to get errors on null IR units earlier, potentially at compile time, than to delay it. Most notably, the legacy pass manager uses references for its routines and so as more and more code works with both, the use of pointers was likely to become really annoying. I noticed this when I ported the domtree analysis over and wrote the entire thing with references only to have it fail to compile. =/ It seemed better to switch now than to delay. We can, of course, revisit this is we learn that references are really problematic in the API. llvm-svn: 225145
2014-04-21[PM] Add a new-PM-style CGSCC pass manager using the newly addedChandler Carruth1-0/+167
LazyCallGraph analysis framework. Wire it up all the way through the opt driver and add some very basic testing that we can build pass pipelines including these components. Still a lot more to do in terms of testing that all of this works, but the basic pieces are here. There is a *lot* of boiler plate here. It's something I'm going to actively look at reducing, but I don't have any immediate ideas that don't end up making the code terribly complex in order to fold away the boilerplate. Until I figure out something to minimize the boilerplate, almost all of this is based on the code for the existing pass managers, copied and heavily adjusted to suit the needs of the CGSCC pass management layer. The actual CG management still has a bunch of FIXMEs in it. Notably, we don't do *any* updating of the CG as it is potentially invalidated. I wanted to get this in place to motivate the new analysis, and add update APIs to the analysis and the pass management layers in concert to make sure that the *right* APIs are present. llvm-svn: 206745