Age | Commit message (Collapse) | Author | Files | Lines |
|
This patch adds #include <optional> to those files containing
llvm::Optional<...> or Optional<...>.
I'll post a separate patch to actually replace llvm::Optional with
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
|
|
Fixes https://github.com/llvm/llvm-project/issues/59941
Differential Revision: https://reviews.llvm.org/D141531
|
|
It is unclear to me what happens if we have two thread_limit clauses to
choose from. I will recommend to the standards committee to disallow
that. For now, we pick the teams one.
Fixes https://github.com/llvm/llvm-project/issues/59940
Differential Revision: https://reviews.llvm.org/D141540
|
|
Support for taskwait nowait clause with placeholder for runtime changes.
Reviewed By: cchen, ABataev
Differential Revision: https://reviews.llvm.org/D131830
|
|
|
|
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
This makes `ninja clang` work in the absence of llvm::Optional::value.
|
|
This patch gives basic parsing and semantic support for "modifiers" of order clause introduced in OpenMP 5.1 ( section 2.11.3 )
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D127855
|
|
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
|
|
|
|
This patch gives basic parsing and semantic analysis support for 'strict'
modifier with 'num_tasks' clause of 'taskloop' construct introduced in
OpenMP 5.1 (section 2.12.2)
Differential Revision: https://reviews.llvm.org/D138328
|
|
enter/exit data
|
|
This patch gives basic parsing and semantic analysis support for 'strict'
modifier with 'grainsize' clause of 'taskloop' construct introduced in
OpenMP 5.1 (section 2.12.2)
Differential Revision: https://reviews.llvm.org/D138217
|
|
Differential Revision:https://reviews.llvm.org/D138227
|
|
|
|
Error directive is allowed in both declared and executable contexts.
The function ActOnOpenMPAtClause is called in both places during the
parsers.
Adding a param "bool InExContext" to identify context which is used to
emit error massage.
Differential Revision: https://reviews.llvm.org/D137851
|
|
This revision fixes typos where there are 2 consecutive words which are
duplicated. There should be no code changes in this revision (only
changes to comments and docs). Do let me know if there are any
undesirable changes in this revision. Thanks.
|
|
|
|
Differential Revision: https://reviews.llvm.org/D137209
|
|
Two another atomic compare capture forms, `{ v = x; expr-stmt }` and `{ expr-stmt; v = x; }`
where `expr-stmt` could be `cond-expr-stmt` are missing.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D135236
|
|
dependent
Currently the following case fails:
```
template<typename Ty>
Ty foo(Ty *addr, Ty val) {
Ty v;
#pragma omp atomic compare capture
{
v = *addr;
if (*addr > val)
*addr = val;
}
return v;
}
```
The compiler complains `addr` is not a lvalue. That's because when an expression
is instantiation dependent, we cannot tell if it is lvalue or not.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D135224
|
|
This patch add codegen support for the has_device_addr clause. It use
the same logic of is_device_ptr. But passing &var instead pointer to var
to kernal.
Differential Revision: https://reviews.llvm.org/D134268
|
|
This reverts commit 7539e9cf811e590d9f12ae39673ca789e26386b4.
|
|
Parallel regions are outlined as functions with capture variables explicitly generated as distinct parameters in the function's argument list. That complicates the fork_call interface in the OpenMP runtime: (1) the fork_call is variadic since there is a variable number of arguments to forward to the outlined function, (2) wrapping/unwrapping arguments happens in the OpenMP runtime, which is sub-optimal, has been a source of ABI bugs, and has a hardcoded limit (16) in the number of arguments, (3) forwarded arguments must cast to pointer types, which complicates debugging. This patch avoids those issues by aggregating captured arguments in a struct to pass to the fork_call.
Reviewed By: jdoerfert, jhuber6, ABataev
Differential Revision: https://reviews.llvm.org/D102107
|
|
|
|
In preparation for allowing the prefer_type list in the append_args clause,
use the OMPInteropInfo in the attribute for 'declare variant'.
This requires adding a new Argument kind to the attribute code. This change
adds a specific attribute to pass an array of OMPInteropInfo. It implements
new tablegen needed to handle the interop-type part of the structure. When
prefer_type is added, more work will be needed to dump, instantiate, and
serialize the PreferTypes field in OMPInteropInfo.
Differential Revision: https://reviews.llvm.org/D132270
|
|
clauses
The 'init' clause allows an interop-modifier of prefer_type(list) and
and interop-types 'target' and 'targetsync'.
The 'append_args' clause uses an append-op that also includes
interop-types ('target' and 'targetsync') and will allow
a prefer_type list in the next OpenMP version.
This change adds a helper struct OMPInteropInfo and uses it in the parsing
of both the 'init' and 'append_args' clauses.
One OMPInteropInfo object represents the info in a single 'init' clause.
Since 'append_args' allows a variable number of interop items it will
require an array of OMPInteropInfo objects once that is supported.
Differential Revision: https://reviews.llvm.org/D132171
|
|
|
|
Previously a diagnostic was given if the expression was not strictly a
DeclRef. Now also allow use of data members inside member functions.
Differential Revision: https://reviews.llvm.org/D131222
|
|
With C++17 there is no Clang pedantic warning or MSVC C5051.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D131346
|
|
|
|
This completes the implementation of P1091R3 and P1381R1.
This patch allow the capture of structured bindings
both for C++20+ and C++17, with extension/compat warning.
In addition, capturing an anonymous union member,
a bitfield, or a structured binding thereof now has a
better diagnostic.
We only support structured bindings - as opposed to other kinds
of structured statements/blocks. We still emit an error for those.
In addition, support for structured bindings capture is entirely disabled in
OpenMP mode as this needs more investigation - a specific diagnostic indicate the feature is not yet supported there.
Note that the rest of P1091R3 (static/thread_local structured bindings) was already implemented.
at the request of @shafik, i can confirm the correct behavior of lldb wit this change.
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/52720
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122768
|
|
This reverts commit 44f2baa3804a62ca793f0ff3e43aa71cea91a795.
Breaks self builds and seems to have conformance issues.
|
|
This completes the implementation of P1091R3 and P1381R1.
This patch allow the capture of structured bindings
both for C++20+ and C++17, with extension/compat warning.
In addition, capturing an anonymous union member,
a bitfield, or a structured binding thereof now has a
better diagnostic.
We only support structured bindings - as opposed to other kinds
of structured statements/blocks. We still emit an error for those.
In addition, support for structured bindings capture is entirely disabled in
OpenMP mode as this needs more investigation - a specific diagnostic indicate the feature is not yet supported there.
Note that the rest of P1091R3 (static/thread_local structured bindings) was already implemented.
at the request of @shafik, i can confirm the correct behavior of lldb wit this change.
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/52720
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122768
|
|
https://github.com/llvm/llvm-project/issues/56884
The root problem is in isOpenMPRebuildMemberExpr, it is only need to rebuild
for field expression. No need for member function call.
The fix is to check field for member expression and skip rebuild for member
function call.
Differential Revision: https://reviews.llvm.org/D131024
|
|
|
|
|
|
D127041 introduced the support for `fmax` and `fmin` such that we can also reprent
`atomic compare` and `atomic compare capture` with `atomicrmw` instruction. This
patch simply lifts the limitation we set before.
Depend on D127041.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D127042
|
|
This is a recommit of b822efc7404bf09ccfdc1ab7657475026966c3b2,
reverted in dc34d8df4c48b3a8f474360970cae8a58e6c84f0. The commit caused
fails because the test ast-print-fp-pragmas.c did not specify particular
target, and it failed on targets which do not support constrained
intrinsics. The original commit message is below.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
|
|
region with implicit default inside the member function.
This is to fix assert when field is referenced in OpenMP region with
default (first|private) clause inside member function.
The problem of assert is that the capture is not generated for the field.
This patch is to generate capture when the field is used with implicit
default, use it in the code, and save the capture off to make sure it is
considered from that point and add first/private clauses.
1> Add new field ImplicitDefaultFirstprivateFDs in SharingMapTy, used to
store generated capture fields info.
2> In function isOpenMPCaptureDecl: the caputer is generated and saved
in ImplicitDefaultFirstprivateFDs.
3> Add new help functions:
getImplicitFDCapExprDecl
isImplicitDefaultFirstprivateFD
addImplicitDefaultFirstprivateFD
4> Add addition argument in hasDSA to check default attribute for
default(first|private).
5> The isImplicitDefaultFirstprivateFD is used in VisitDeclRefExpr to
build the implicit clause.
6> Add new parameter "Context" for buildCaptureDecl, due to when capture
field, the parent context is needed to be used.
7> Change in isOpenMPPrivateDecl where stop propagate the capture from
the enclosing region for private variable.
8> In ActOnOpenMPFirstprivate/ActOnOpenMPPrivate, using captured info
to generate first|private clause.
9> Add new function isOpenMPRebuildMemberExpr: use to determine if field
needs to be rebuild during template instantiation.
Differential Revision: https://reviews.llvm.org/D127803
|
|
simd' construct
This patch gives basic parsing and semantic support for
"parallel masked taskloop simd" construct introduced in
OpenMP 5.1 (section 2.16.10)
Differential Revision: https://reviews.llvm.org/D128946
|
|
On some buildbots test `ast-print-fp-pragmas.c` fails, need to investigate it.
This reverts commit 0401fd12d4aa0553347fe34d666fb236d8719173.
This reverts commit b822efc7404bf09ccfdc1ab7657475026966c3b2.
|
|
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
|
|
construct
This patch gives basic parsing and semantic support for
"parallel masked taskloop" construct introduced in
OpenMP 5.1 (section 2.16.9)
Differential Revision: https://reviews.llvm.org/D128834
|
|
This patch gives basic parsing and semantic support for
"masked taskloop simd" construct introduced in OpenMP 5.1 (section 2.16.8)
Differential Revision: https://reviews.llvm.org/D128693
|
|
Implementing target in_reduction by wrapping target task with host task with in_reduction and if clause. This is in compliance with OpenMP 5.0 section: 2.19.5.6.
So, this
```
for (int i=0; i<N; i++) {
res = res+i
}
```
will become
```
#pragma omp task in_reduction(+:res) if(0)
#pragma omp target map(res)
for (int i=0; i<N; i++) {
res = res+i
}
```
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D125669
|
|
This patch replaces Optional::hasValue with the implicit cast to bool
in conditionals only.
|
|
This reverts commit aa8feeefd3ac6c78ee8f67bf033976fc7d68bc6d.
|
|
|
|
This patch gives basic parsing and semantic support for "masked taskloop"
construct introduced in OpenMP 5.1 (section 2.16.7)
Differential Revision: https://reviews.llvm.org/D128478
|
|
Differential Revision: https://reviews.llvm.org/D128397
|