diff options
Diffstat (limited to 'mlir/test')
-rw-r--r-- | mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir | 172 | ||||
-rw-r--r-- | mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir | 2 | ||||
-rw-r--r-- | mlir/test/Dialect/XeGPU/propagate-layout-inst-data.mlir | 128 | ||||
-rw-r--r-- | mlir/test/Dialect/XeGPU/propagate-layout.mlir | 82 | ||||
-rw-r--r-- | mlir/test/mlir-runner/memref-reshape.mlir | 8 | ||||
-rw-r--r-- | mlir/test/mlir-tblgen/op-properties.td | 14 |
6 files changed, 281 insertions, 125 deletions
diff --git a/mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir b/mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir index 87a31ca..1adc418 100644 --- a/mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir +++ b/mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir @@ -8,11 +8,11 @@ // RUN: mlir-opt --allow-unregistered-dialect \ // RUN: --test-gpu-subgroup-reduce-lowering="expand-to-shuffles target=gfx942" %s \ -// RUN: | FileCheck %s --check-prefix=CHECK-GFX9 +// RUN: | FileCheck %s --check-prefixes=CHECK-GFX,CHECK-GFX9 // RUN: mlir-opt --allow-unregistered-dialect \ // RUN: --test-gpu-subgroup-reduce-lowering="expand-to-shuffles target=gfx1030" %s \ -// RUN: | FileCheck %s --check-prefix=CHECK-GFX10 +// RUN: | FileCheck %s --check-prefixes=CHECK-GFX,CHECK-GFX10 // CHECK-SUB: gpu.module @kernels { // CHECK-SHFL: gpu.module @kernels { @@ -24,8 +24,7 @@ gpu.module @kernels { // CHECK-SUB-SAME: %[[ARG0:.+]]: vector<5xf16>) // // CHECK-SHFL-LABEL: gpu.func @kernel0( - // CHECK-GFX9-LABEL: gpu.func @kernel0( - // CHECK-GFX10-LABEL: gpu.func @kernel0( + // CHECK-GFX-LABEL: gpu.func @kernel0( gpu.func @kernel0(%arg0: vector<5xf16>) kernel { // CHECK-SUB: %[[VZ:.+]] = arith.constant dense<0.0{{.*}}> : vector<5xf16> // CHECK-SUB: %[[E0:.+]] = vector.extract_strided_slice %[[ARG0]] {offsets = [0], sizes = [2], strides = [1]} : vector<5xf16> to vector<2xf16> @@ -56,8 +55,7 @@ gpu.module @kernels { // CHECK-SUB-COUNT-3: gpu.subgroup_reduce mul {{.+}} cluster(size = 4) // CHECK-SUB: "test.consume" - // CHECK-GFX9-COUNT-2: amdgpu.dpp {{.+}} - // CHECK-GFX10-COUNT-2: amdgpu.dpp {{.+}} + // CHECK-GFX-COUNT-2: amdgpu.dpp {{.+}} %sum2 = gpu.subgroup_reduce mul %arg0 cluster(size = 4) : (vector<5xf16>) -> (vector<5xf16>) "test.consume"(%sum2) : (vector<5xf16>) -> () @@ -74,8 +72,7 @@ gpu.module @kernels { // CHECK-SUB-SAME: %[[ARG0:.+]]: vector<1xf32>) // // CHECK-SHFL-LABEL: gpu.func @kernel1( - // CHECK-GFX9-LABEL: gpu.func @kernel1( - // CHECK-GFX10-LABEL: gpu.func @kernel1( + // CHECK-GFX-LABEL: gpu.func @kernel1( gpu.func @kernel1(%arg0: vector<1xf32>) kernel { // CHECK-SUB: %[[E0:.+]] = vector.extract %[[ARG0]][0] : f32 from vector<1xf32> // CHECK-SUB: %[[R0:.+]] = gpu.subgroup_reduce add %[[E0]] : (f32) -> f32 @@ -100,17 +97,14 @@ gpu.module @kernels { // Note stride is dropped because it is == 1. // CHECK-SUB: gpu.subgroup_reduce add {{.+}} cluster(size = 8) : (f32) -> f32 // CHECK-SUB: "test.consume" - // CHECK-GFX9-COUNT-2: amdgpu.dpp {{.+}} quad_perm - // CHECK-GFX9: amdgpu.dpp {{.+}} row_half_mirror - // CHECK-GFX10-COUNT-2: amdgpu.dpp {{.+}} quad_perm - // CHECK-GFX10: amdgpu.dpp {{.+}} row_half_mirror + // CHECK-GFX-COUNT-2: amdgpu.dpp {{.+}} quad_perm + // CHECK-GFX: amdgpu.dpp {{.+}} row_half_mirror %sum2 = gpu.subgroup_reduce add %arg0 cluster(size = 8, stride = 1) : (vector<1xf32>) -> (vector<1xf32>) "test.consume"(%sum2) : (vector<1xf32>) -> () // CHECK-SUB: gpu.subgroup_reduce add {{.+}} uniform cluster(size = 8, stride = 4) : (f32) -> f32 // CHECK-SUB: "test.consume" - // CHECK-GFX9-NOT: amdgpu.dpp - // CHECK-GFX10-NOT: amdgpu.dpp + // CHECK-GFX-NOT: amdgpu.dpp // CHECK-GFX10-NOT: rocdl.permlanex16 %sum3 = gpu.subgroup_reduce add %arg0 uniform cluster(size = 8, stride = 4) : (vector<1xf32>) -> (vector<1xf32>) "test.consume"(%sum3) : (vector<1xf32>) -> () @@ -126,11 +120,8 @@ gpu.module @kernels { // // CHECK-SHFL-LABEL: gpu.func @kernel2( // - // CHECK-GFX9-LABEL: gpu.func @kernel2( - // CHECK-GFX9-NOT: amdgpu.dpp - // - // CHECK-GFX10-LABEL: gpu.func @kernel2( - // CHECK-GFX10-NOT: amdgpu.dpp + // CHECK-GFX-LABEL: gpu.func @kernel2( + // CHECK-GFX-NOT: amdgpu.dpp gpu.func @kernel2(%arg0: vector<3xi8>, %arg1: vector<4xi8>) kernel { // CHECK-SUB: %[[R0:.+]] = gpu.subgroup_reduce add %[[ARG0]] : (vector<3xi8>) -> vector<3xi8> // CHECK-SUB: "test.consume"(%[[R0]]) : (vector<3xi8>) -> () @@ -148,8 +139,7 @@ gpu.module @kernels { // CHECK-SHFL-LABEL: gpu.func @kernel3( // CHECK-SHFL-SAME: %[[ARG0:.+]]: i32) - // CHECK-GFX9-LABEL: gpu.func @kernel3( - // CHECK-GFX10-LABEL: gpu.func @kernel3( + // CHECK-GFX-LABEL: gpu.func @kernel3( gpu.func @kernel3(%arg0: i32) kernel { // CHECK-SHFL-DAG: %[[C1:.+]] = arith.constant 1 : i32 // CHECK-SHFL-DAG: %[[C2:.+]] = arith.constant 2 : i32 @@ -169,9 +159,9 @@ gpu.module @kernels { // CHECK-SHFL: %[[S4:.+]], %{{.+}} = gpu.shuffle xor %[[A3]], %[[C16]], %[[C32]] : i32 // CHECK-SHFL: %[[A4:.+]] = arith.addi %[[A3]], %[[S4]] : i32 // CHECK-SHFL: "test.consume"(%[[A4]]) : (i32) -> () - + // CHECK-GFX9-COUNT-6: amdgpu.dpp - + // CHECK-GFX10-COUNT-4: amdgpu.dpp // CHECK-GFX10: rocdl.permlanex16 // CHECK-GFX10-COUNT-2: rocdl.readlane @@ -185,11 +175,8 @@ gpu.module @kernels { // CHECK-SHFL-LABEL: gpu.func @kernel3_clustered( // CHECK-SHFL-SAME: %[[ARG0:.+]]: i32) // - // CHECK-GFX9-LABEL: gpu.func @kernel3_clustered( - // CHECK-GFX9-SAME: %[[ARG0:.+]]: i32) - // - // CHECK-GFX10-LABEL: gpu.func @kernel3_clustered( - // CHECK-GFX10-SAME: %[[ARG0:.+]]: i32) + // CHECK-GFX-LABEL: gpu.func @kernel3_clustered( + // CHECK-GFX-SAME: %[[ARG0:.+]]: i32) gpu.func @kernel3_clustered(%arg0: i32) kernel { // CHECK-SHFL-DAG: %[[C1:.+]] = arith.constant 1 : i32 // CHECK-SHFL-DAG: %[[C2:.+]] = arith.constant 2 : i32 @@ -204,19 +191,13 @@ gpu.module @kernels { // CHECK-SHFL: %[[A2:.+]] = arith.addi %[[A1]], %[[S2]] : i32 // CHECK-SHFL: "test.consume"(%[[A2]]) : (i32) -> () - // CHECK-GFX9: %[[D0:.+]] = amdgpu.dpp %[[ARG0]] %[[ARG0]] quad_perm([1 : i32, 0 : i32, 3 : i32, 2 : i32]) {bound_ctrl = true} : i32 - // CHECK-GFX9: %[[A0:.+]] = arith.addi %[[ARG0]], %[[D0]] : i32 - // CHECK-GFX9: %[[D1:.+]] = amdgpu.dpp %[[A0]] %[[A0]] quad_perm([2 : i32, 3 : i32, 0 : i32, 1 : i32]) {bound_ctrl = true} : i32 - // CHECK-GFX9: %[[A1:.+]] = arith.addi %[[A0]], %[[D1]] : i32 - // CHECK-GFX9: %[[D2:.+]] = amdgpu.dpp %[[A1]] %[[A1]] row_half_mirror(unit) {bound_ctrl = true} : i32 - // CHECK-GFX9: %[[A2:.+]] = arith.addi %[[A1]], %[[D2]] : i32 - - // CHECK-GFX10: %[[D0:.+]] = amdgpu.dpp %[[ARG0]] %[[ARG0]] quad_perm([1 : i32, 0 : i32, 3 : i32, 2 : i32]) {bound_ctrl = true} : i32 - // CHECK-GFX10: %[[A0:.+]] = arith.addi %[[ARG0]], %[[D0]] : i32 - // CHECK-GFX10: %[[D1:.+]] = amdgpu.dpp %[[A0]] %[[A0]] quad_perm([2 : i32, 3 : i32, 0 : i32, 1 : i32]) {bound_ctrl = true} : i32 - // CHECK-GFX10: %[[A1:.+]] = arith.addi %[[A0]], %[[D1]] : i32 - // CHECK-GFX10: %[[D2:.+]] = amdgpu.dpp %[[A1]] %[[A1]] row_half_mirror(unit) {bound_ctrl = true} : i32 - // CHECK-GFX10: %[[A2:.+]] = arith.addi %[[A1]], %[[D2]] : i32 + // CHECK-GFX: %[[D0:.+]] = amdgpu.dpp %[[ARG0]] %[[ARG0]] quad_perm([1 : i32, 0 : i32, 3 : i32, 2 : i32]) {bound_ctrl = true} : i32 + // CHECK-GFX: %[[A0:.+]] = arith.addi %[[ARG0]], %[[D0]] : i32 + // CHECK-GFX: %[[D1:.+]] = amdgpu.dpp %[[A0]] %[[A0]] quad_perm([2 : i32, 3 : i32, 0 : i32, 1 : i32]) {bound_ctrl = true} : i32 + // CHECK-GFX: %[[A1:.+]] = arith.addi %[[A0]], %[[D1]] : i32 + // CHECK-GFX: %[[D2:.+]] = amdgpu.dpp %[[A1]] %[[A1]] row_half_mirror(unit) {bound_ctrl = true} : i32 + // CHECK-GFX: %[[A2:.+]] = arith.addi %[[A1]], %[[D2]] : i32 + // CHECK-GFX10: "test.consume"(%[[A2]]) : (i32) -> () %sum0 = gpu.subgroup_reduce add %arg0 cluster(size = 8) : (i32) -> i32 "test.consume"(%sum0) : (i32) -> () @@ -228,11 +209,8 @@ gpu.module @kernels { // CHECK-SHFL-LABEL: gpu.func @kernel3_clustered_strided( // CHECK-SHFL-SAME: %[[ARG0:.+]]: i32) // - // CHECK-GFX9-LABEL: gpu.func @kernel3_clustered_strided( - // CHECK-GFX9-NOT: amdgpu.dpp - // - // CHECK-GFX10-LABEL: gpu.func @kernel3_clustered_strided( - // CHECK-GFX10-NOT: amdgpu.dpp + // CHECK-GFX-LABEL: gpu.func @kernel3_clustered_strided( + // CHECK-GFX-NOT: amdgpu.dpp gpu.func @kernel3_clustered_strided(%arg0: i32) kernel { // CHECK-SHFL-DAG: %[[C1:.+]] = arith.constant 4 : i32 // CHECK-SHFL-DAG: %[[C2:.+]] = arith.constant 8 : i32 @@ -256,11 +234,8 @@ gpu.module @kernels { // CHECK-SHFL-LABEL: gpu.func @kernel4( // CHECK-SHFL-SAME: %[[ARG0:.+]]: vector<2xf16>) // - // CHECK-GFX9-LABEL: gpu.func @kernel4( - // CHECK-GFX9-NOT: amdgpu.dpp - // - // CHECK-GFX10-LABEL: gpu.func @kernel4( - // CHECK-GFX10-NOT: amdgpu.dpp + // CHECK-GFX-LABEL: gpu.func @kernel4( + // CHECK-GFX-NOT: amdgpu.dpp gpu.func @kernel4(%arg0: vector<2xf16>) kernel { // CHECK-SHFL-DAG: %[[C1:.+]] = arith.constant 1 : i32 // CHECK-SHFL-DAG: %[[C2:.+]] = arith.constant 2 : i32 @@ -298,11 +273,8 @@ gpu.module @kernels { // CHECK-SHFL-LABEL: gpu.func @kernel4_clustered( // CHECK-SHFL-SAME: %[[ARG0:.+]]: vector<2xf16>) // - // CHECK-GFX9-LABEL: gpu.func @kernel4_clustered( - // CHECK-GFX9-NOT: amdgpu.dpp - // - // CHECK-GFX10-LABEL: gpu.func @kernel4_clustered( - // CHECK-GFX10-NOT: amdgpu.dpp + // CHECK-GFX-LABEL: gpu.func @kernel4_clustered( + // CHECK-GFX-NOT: amdgpu.dpp gpu.func @kernel4_clustered(%arg0: vector<2xf16>) kernel { // CHECK-SHFL-DAG: %[[C1:.+]] = arith.constant 1 : i32 // CHECK-SHFL-DAG: %[[C2:.+]] = arith.constant 2 : i32 @@ -319,10 +291,8 @@ gpu.module @kernels { // CHECK-SHFL-LABEL: gpu.func @kernel5( // CHECK-SHFL-SAME: %[[ARG0:.+]]: i16) // - // CHECK-GFX9-LABEL: gpu.func @kernel5( - // - // CHECK-GFX10-LABEL: gpu.func @kernel5( - // CHECK-GFX10-SAME: %[[ARG0:.+]]: i16) + // CHECK-GFX-LABEL: gpu.func @kernel5( + // CHECK-GFX-SAME: %[[ARG0:.+]]: i16) gpu.func @kernel5(%arg0: i16) kernel { // CHECK-SHFL: %[[E0:.+]] = arith.extui %[[ARG0]] : i16 to i32 // CHECK-SHFL: %[[S0:.+]], %{{.+}} = gpu.shuffle xor %[[E0]], {{.+}} : i32 @@ -334,7 +304,7 @@ gpu.module @kernels { // CHECK-SHFL: arith.trunci {{.+}} : i32 to i16 // CHECK-SHFL: %[[AL:.+]] = arith.addi {{.+}} : i16 // CHECK-SHFL: "test.consume"(%[[AL]]) : (i16) -> () - + // CHECK-GFX9-COUNT-6: amdgpu.dpp // CHECK-GFX10: %[[D0:.+]] = amdgpu.dpp %[[ARG0]] %[[ARG0]] quad_perm([1 : i32, 0 : i32, 3 : i32, 2 : i32]) {bound_ctrl = true} : i16 @@ -361,11 +331,8 @@ gpu.module @kernels { // CHECK-SHFL-LABEL: gpu.func @kernel5_clustered( // CHECK-SHFL-SAME: %[[ARG0:.+]]: i16) // - // CHECK-GFX9-LABEL: gpu.func @kernel5_clustered - // CHECK-GFX9-SAME: %[[ARG0:.+]]: i16) - // - // CHECK-GFX10-LABEL: gpu.func @kernel5_clustered - // CHECK-GFX10-SAME: %[[ARG0:.+]]: i16) + // CHECK-GFX-LABEL: gpu.func @kernel5_clustered + // CHECK-GFX-SAME: %[[ARG0:.+]]: i16) gpu.func @kernel5_clustered(%arg0: i16) kernel { // CHECK-SHFL: %[[E0:.+]] = arith.extui %[[ARG0]] : i16 to i32 // CHECK-SHFL: %[[S0:.+]], %{{.+}} = gpu.shuffle xor %[[E0]], {{.+}} : i32 @@ -378,25 +345,15 @@ gpu.module @kernels { // CHECK-SHFL: %[[AL:.+]] = arith.addi {{.+}} : i16 // CHECK-SHFL: "test.consume"(%[[AL]]) : (i16) -> () - // CHECK-GFX9: %[[VAR0:.+]] = amdgpu.dpp %[[ARG0]] %[[ARG0]] quad_perm([1 : i32, 0 : i32, 3 : i32, 2 : i32]) {bound_ctrl = true} : i16 - // CHECK-GFX9: %[[VAR1:.+]] = arith.addi %[[ARG0]], %[[VAR0]] : i16 - // CHECK-GFX9: %[[VAR2:.+]] = amdgpu.dpp %[[VAR1]] %[[VAR1]] quad_perm([2 : i32, 3 : i32, 0 : i32, 1 : i32]) {bound_ctrl = true} : i16 - // CHECK-GFX9: %[[VAR3:.+]] = arith.addi %[[VAR1]], %[[VAR2]] : i16 - // CHECK-GFX9: %[[VAR4:.+]] = amdgpu.dpp %[[VAR3]] %[[VAR3]] row_half_mirror(unit) {bound_ctrl = true} : i16 - // CHECK-GFX9: %[[VAR5:.+]] = arith.addi %[[VAR3]], %[[VAR4]] : i16 - // CHECK-GFX9: %[[VAR6:.+]] = amdgpu.dpp %[[VAR5]] %[[VAR5]] row_mirror(unit) {bound_ctrl = true} : i16 - // CHECK-GFX9: %[[VAR7:.+]] = arith.addi %[[VAR5]], %[[VAR6]] : i16 - // CHECK-GFX9: "test.consume"(%[[VAR7]]) : (i16) -> () - - // CHECK-GFX10: %[[VAR0:.+]] = amdgpu.dpp %[[ARG0]] %[[ARG0]] quad_perm([1 : i32, 0 : i32, 3 : i32, 2 : i32]) {bound_ctrl = true} : i16 - // CHECK-GFX10: %[[VAR1:.+]] = arith.addi %[[ARG0]], %[[VAR0]] : i16 - // CHECK-GFX10: %[[VAR2:.+]] = amdgpu.dpp %[[VAR1]] %[[VAR1]] quad_perm([2 : i32, 3 : i32, 0 : i32, 1 : i32]) {bound_ctrl = true} : i16 - // CHECK-GFX10: %[[VAR3:.+]] = arith.addi %[[VAR1]], %[[VAR2]] : i16 - // CHECK-GFX10: %[[VAR4:.+]] = amdgpu.dpp %[[VAR3]] %[[VAR3]] row_half_mirror(unit) {bound_ctrl = true} : i16 - // CHECK-GFX10: %[[VAR5:.+]] = arith.addi %[[VAR3]], %[[VAR4]] : i16 - // CHECK-GFX10: %[[VAR6:.+]] = amdgpu.dpp %[[VAR5]] %[[VAR5]] row_mirror(unit) {bound_ctrl = true} : i16 - // CHECK-GFX10: %[[VAR7:.+]] = arith.addi %[[VAR5]], %[[VAR6]] : i16 - // CHECK-GFX10: "test.consume"(%[[VAR7]]) : (i16) -> () + // CHECK-GFX: %[[VAR0:.+]] = amdgpu.dpp %[[ARG0]] %[[ARG0]] quad_perm([1 : i32, 0 : i32, 3 : i32, 2 : i32]) {bound_ctrl = true} : i16 + // CHECK-GFX: %[[VAR1:.+]] = arith.addi %[[ARG0]], %[[VAR0]] : i16 + // CHECK-GFX: %[[VAR2:.+]] = amdgpu.dpp %[[VAR1]] %[[VAR1]] quad_perm([2 : i32, 3 : i32, 0 : i32, 1 : i32]) {bound_ctrl = true} : i16 + // CHECK-GFX: %[[VAR3:.+]] = arith.addi %[[VAR1]], %[[VAR2]] : i16 + // CHECK-GFX: %[[VAR4:.+]] = amdgpu.dpp %[[VAR3]] %[[VAR3]] row_half_mirror(unit) {bound_ctrl = true} : i16 + // CHECK-GFX: %[[VAR5:.+]] = arith.addi %[[VAR3]], %[[VAR4]] : i16 + // CHECK-GFX: %[[VAR6:.+]] = amdgpu.dpp %[[VAR5]] %[[VAR5]] row_mirror(unit) {bound_ctrl = true} : i16 + // CHECK-GFX: %[[VAR7:.+]] = arith.addi %[[VAR5]], %[[VAR6]] : i16 + // CHECK-GFX: "test.consume"(%[[VAR7]]) : (i16) -> () %sum0 = gpu.subgroup_reduce add %arg0 cluster(size = 16) : (i16) -> i16 "test.consume"(%sum0) : (i16) -> () @@ -407,11 +364,8 @@ gpu.module @kernels { // CHECK-SHFL-LABEL: gpu.func @kernel6( // CHECK-SHFL-SAME: %[[ARG0:.+]]: vector<3xi8>) // - // CHECK-GFX9-LABEL: gpu.func @kernel6( - // CHECK-GFX9-NOT: amdgpu.dpp - // - // CHECK-GFX10-LABEL: gpu.func @kernel6( - // CHECK-GFX10-NOT: amdgpu.dpp + // CHECK-GFX-LABEL: gpu.func @kernel6( + // CHECK-GFX-NOT: amdgpu.dpp gpu.func @kernel6(%arg0: vector<3xi8>) kernel { // CHECK-SHFL: %[[CZ:.+]] = arith.constant dense<0> : vector<4xi8> // CHECK-SHFL: %[[V0:.+]] = vector.insert_strided_slice %[[ARG0]], %[[CZ]] {offsets = [0], strides = [1]} : vector<3xi8> into vector<4xi8> @@ -433,6 +387,44 @@ gpu.module @kernels { gpu.return } + // CHECK-GFX-LABEL: gpu.func @kernel7( + // CHECK-GFX-SAME: %[[ARG0:.+]]: f32) + // + // Checks, common to gfx942 and gfx1030, of + // (1) quad_perm, followed by reduction resulting in reduction over 2 consecutive lanes, + // (2) quad_perm, followed by reduction resulting in reduction over 4 consecutive lanes, + // (3) row_half_mirror, followed by reduction resulting in reduction over 8 consecutive lanes, and + // (4) row_mirror, followed by reduction resulting in reduction over 16 consecutive lanes. + // CHECK-GFX: %[[D0:.+]] = amdgpu.dpp %[[ARG0]] %[[ARG0]] quad_perm([1 : i32, 0 : i32, 3 : i32, 2 : i32]) {bound_ctrl = true} : f32 + // CHECK-GFX: %[[A0:.+]] = arith.addf %[[ARG0]], %[[D0]] : f32 + // CHECK-GFX: %[[D1:.+]] = amdgpu.dpp %[[A0]] %[[A0]] quad_perm([2 : i32, 3 : i32, 0 : i32, 1 : i32]) {bound_ctrl = true} : f32 + // CHECK-GFX: %[[A1:.+]] = arith.addf %[[A0]], %[[D1]] : f32 + // CHECK-GFX: %[[D2:.+]] = amdgpu.dpp %[[A1]] %[[A1]] row_half_mirror(unit) {bound_ctrl = true} : f32 + // CHECK-GFX: %[[A2:.+]] = arith.addf %[[A1]], %[[D2]] : f32 + // CHECK-GFX: %[[D3:.+]] = amdgpu.dpp %[[A2]] %[[A2]] row_mirror(unit) {bound_ctrl = true} : f32 + // CHECK-GFX: %[[A3:.+]] = arith.addf %[[A2]], %[[D3]] : f32 + // + // Now, on gfx942: + // (1) Lane 15 gets broadcast to lanes [16, 32) and lane 31 gets broadcast to lanes [48, 64], after which + // the reduction in lanes [16, 32) is over the full cluster of the first 32 lanes, and the reduction in lanes + // [48, 64) is over the full cluster of the last 32 lanes. + // (2) Update the reduction value in lanes [0, 16) and [32, 48) with the final reduction result from + // lanes [16, 32) and [48, 64), respectively. + // CHECK-GFX9: %[[BCAST15:.+]] = amdgpu.dpp %[[A3]] %[[A3]] row_bcast_15(unit) {row_mask = 10 : i32} : f32 + // CHECK-GFX9: %[[SUM:.+]] = arith.addf %[[A3]], %[[BCAST15]] : f32 + // CHECK-GFX9: %[[SWIZ:.+]] = amdgpu.swizzle_bitmode %[[SUM]] 0 31 0 : f32 + // CHECK-GFX9: "test.consume"(%[[SWIZ]]) : (f32) -> () + // + // On gfx1030, the final step is to permute the lanes and perform final reduction: + // CHECK-GFX10: rocdl.permlanex16 + // CHECK-GFX10: arith.addf + // CHECK-GFX10: "test.consume" + gpu.func @kernel7(%arg0: f32) kernel { + %sum0 = gpu.subgroup_reduce add %arg0 cluster(size = 32) : (f32) -> (f32) + "test.consume"(%sum0) : (f32) -> () + gpu.return + } + // CHECK-SHFL-LABEL: gpu.func @kernel_cluster_size_is_subgroup_size( // CHECK-SHFL-SAME: %[[ARG0:.+]]: vector<3xi8>) // diff --git a/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir b/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir index d289d73..2780212 100644 --- a/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir +++ b/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir @@ -1,4 +1,4 @@ -// RUN: mlir-opt -test-xegpu-move-func-to-warp-op -split-input-file --allow-unregistered-dialect %s | FileCheck %s +// RUN: mlir-opt -xevm-attach-target='chip=pvc' -test-xegpu-move-func-to-warp-op -split-input-file --allow-unregistered-dialect %s | FileCheck %s gpu.module @test { gpu.func @empty() { diff --git a/mlir/test/Dialect/XeGPU/propagate-layout-inst-data.mlir b/mlir/test/Dialect/XeGPU/propagate-layout-inst-data.mlir new file mode 100644 index 0000000..58461b8 --- /dev/null +++ b/mlir/test/Dialect/XeGPU/propagate-layout-inst-data.mlir @@ -0,0 +1,128 @@ +// RUN: mlir-opt -xevm-attach-target='chip=pvc' -xegpu-propagate-layout="layout-kind=inst" -split-input-file %s | FileCheck %s + +// CHECK-LABEL: func.func @dpas_f16( +// CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) { +// CHECK: %[[CST:.*]] = arith.constant {layout_result_0 = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>} dense<0.000000e+00> : vector<8x16xf32> +// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][{{.*}}] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>> +// CHECK: %[[T1:.*]] = xegpu.create_nd_tdesc %[[ARG1]][{{.*}}] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout<inst_data = [16, 16], lane_layout = [1, 16], lane_data = [2, 1]>> +// CHECK: %[[T2:.*]] = xegpu.load_nd %[[T0]] {layout_result_0 = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>} : +// CHECK-SAME: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<8x16xf16> +// CHECK: %[[T3:.*]] = xegpu.load_nd %[[T1]] {layout_result_0 = #xegpu.layout<inst_data = [16, 16], lane_layout = [1, 16], lane_data = [2, 1]>} : +// CHECK-SAME: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<inst_data = [16, 16], lane_layout = [1, 16], lane_data = [2, 1]>> -> vector<16x16xf16> +// CHECK: %[[T4:.*]] = xegpu.dpas %[[T2]], %[[T3]], %[[CST]] {layout_result_0 = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>} : +// CHECK-SAME: vector<8x16xf16>, vector<16x16xf16>, vector<8x16xf32> -> vector<8x16xf32> +// CHECK: %[[T5:.*]] = xegpu.create_nd_tdesc %[[ARG2]][{{.*}}] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>> +// CHECK: xegpu.store_nd %[[T4]], %[[T5]] : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>> +gpu.module @test { + +func.func @dpas_f16(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<8x16xf32>) { + %c0 = arith.constant 0 : index + %cst = arith.constant dense<0.000000e+00> : vector<8x16xf32> + %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16> + %1 = xegpu.create_nd_tdesc %arg1[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> + %2 = xegpu.load_nd %0 : !xegpu.tensor_desc<8x16xf16> -> vector<8x16xf16> + %3 = xegpu.load_nd %1 : !xegpu.tensor_desc<16x16xf16> -> vector<16x16xf16> + %4 = xegpu.dpas %2, %3, %cst : vector<8x16xf16>, vector<16x16xf16>, vector<8x16xf32> -> vector<8x16xf32> + %5 = xegpu.create_nd_tdesc %arg2[%c0, %c0] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32> + xegpu.store_nd %4, %5 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> + return +} +} + +// ----- +gpu.module @test_kernel { + gpu.func @elementwise_with_inst_data_only(%A: memref<1024x1024xf16>, %B: memref<1024x1024xf16>, %C: memref<1024x1024xf16>) { + %c0 = arith.constant 0 : index + %c32 = arith.constant 32 : index + %c1024 = arith.constant 1024 : index + %block_id_x = gpu.block_id x + %block_id_y = gpu.block_id y + %m = arith.muli %block_id_x, %c32 : index + + %a_tdesc = xegpu.create_nd_tdesc %A[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16> + %b_tdesc = xegpu.create_nd_tdesc %B[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16> + %c_tdesc = xegpu.create_nd_tdesc %C[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<16x32xf16> + + %out:3 = scf.for %k = %c0 to %c1024 step %c32 + iter_args(%arg0 = %a_tdesc, %arg1 = %b_tdesc, %arg2 = %c_tdesc) + -> (!xegpu.tensor_desc<16x32xf16>, !xegpu.tensor_desc<16x32xf16>, !xegpu.tensor_desc<16x32xf16>) { + //CHECK: xegpu.load_nd {{.*}} {layout_result_0 = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>} : + //CHECK-SAME: !xegpu.tensor_desc<16x32xf16, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<16x32xf16> + %a = xegpu.load_nd %arg0 : !xegpu.tensor_desc<16x32xf16> -> vector<16x32xf16> + %b = xegpu.load_nd %arg1 : !xegpu.tensor_desc<16x32xf16> -> vector<16x32xf16> + + //CHECK-COUNT: arith.addf {{.*}} {layout_result_0 = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>} : vector<16x32xf16> + %c = arith.addf %a, %b : vector<16x32xf16> + + //CHECK-COUNT: xegpu.store_nd {{.*}} : vector<16x32xf16>, !xegpu.tensor_desc<16x32xf16, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>>> + xegpu.store_nd %c, %arg2: vector<16x32xf16>, !xegpu.tensor_desc<16x32xf16> + + //CHECK-COUNT: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<16x32xf16, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>> + %a_next_tdesc = xegpu.update_nd_offset %arg0, [%c0, %c32] : !xegpu.tensor_desc<16x32xf16> + %b_next_tdesc = xegpu.update_nd_offset %arg1, [%c0, %c32] : !xegpu.tensor_desc<16x32xf16> + %c_next_tdesc = xegpu.update_nd_offset %arg2, [%c0, %c32] : !xegpu.tensor_desc<16x32xf16> + scf.yield %a_next_tdesc, %b_next_tdesc, %c_next_tdesc + : !xegpu.tensor_desc<16x32xf16>, !xegpu.tensor_desc<16x32xf16>, !xegpu.tensor_desc<16x32xf16> + } + gpu.return + } +} + +// ----- +gpu.module @test_kernel { + gpu.func @elementwise_with_inst_data_12(%A: memref<1024x1024xf16>, %B: memref<1024x1024xf16>, %C: memref<1024x1024xf16>) { + %c0 = arith.constant 0 : index + %c32 = arith.constant 32 : index + %c1024 = arith.constant 1024 : index + %block_id_x = gpu.block_id x + %block_id_y = gpu.block_id y + %m = arith.muli %block_id_x, %c32 : index + + %a_tdesc = xegpu.create_nd_tdesc %A[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<12x32xf16> + %b_tdesc = xegpu.create_nd_tdesc %B[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<12x32xf16> + %c_tdesc = xegpu.create_nd_tdesc %C[%m, %c0] : memref<1024x1024xf16> -> !xegpu.tensor_desc<12x32xf16> + + %out:3 = scf.for %k = %c0 to %c1024 step %c32 + iter_args(%arg0 = %a_tdesc, %arg1 = %b_tdesc, %arg2 = %c_tdesc) + -> (!xegpu.tensor_desc<12x32xf16>, !xegpu.tensor_desc<12x32xf16>, !xegpu.tensor_desc<12x32xf16>) { + //CHECK: xegpu.load_nd {{.*}} {layout_result_0 = #xegpu.layout<inst_data = [4, 16], lane_layout = [1, 16], lane_data = [1, 1]>} : + //CHECK-SAME: !xegpu.tensor_desc<12x32xf16, #xegpu.layout<inst_data = [4, 16], lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<12x32xf16> + %a = xegpu.load_nd %arg0 : !xegpu.tensor_desc<12x32xf16> -> vector<12x32xf16> + %b = xegpu.load_nd %arg1 : !xegpu.tensor_desc<12x32xf16> -> vector<12x32xf16> + + //CHECK-COUNT: arith.addf {{.*}} {layout_result_0 = #xegpu.layout<inst_data = [4, 16], lane_layout = [1, 16], lane_data = [1, 1]>} : vector<12x32xf16> + %c = arith.addf %a, %b : vector<12x32xf16> + + //CHECK-COUNT: xegpu.store_nd {{.*}} : vector<12x32xf16>, !xegpu.tensor_desc<12x32xf16, #xegpu.layout<inst_data = [4, 16], lane_layout = [1, 16], lane_data = [1, 1]>>> + xegpu.store_nd %c, %arg2: vector<12x32xf16>, !xegpu.tensor_desc<12x32xf16> + + //CHECK-COUNT: xegpu.update_nd_offset {{.*}} : !xegpu.tensor_desc<12x32xf16, #xegpu.layout<inst_data = [4, 16], lane_layout = [1, 16], lane_data = [1, 1]>> + %a_next_tdesc = xegpu.update_nd_offset %arg0, [%c0, %c32] : !xegpu.tensor_desc<12x32xf16> + %b_next_tdesc = xegpu.update_nd_offset %arg1, [%c0, %c32] : !xegpu.tensor_desc<12x32xf16> + %c_next_tdesc = xegpu.update_nd_offset %arg2, [%c0, %c32] : !xegpu.tensor_desc<12x32xf16> + scf.yield %a_next_tdesc, %b_next_tdesc, %c_next_tdesc + : !xegpu.tensor_desc<12x32xf16>, !xegpu.tensor_desc<12x32xf16>, !xegpu.tensor_desc<12x32xf16> + } + gpu.return + } +} + +// ----- +gpu.module @test { +// CHECK-LABEL: func.func @scatter_ops_chunksize( +// CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf16>) { +// CHECK: %{{.*}} = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} dense<true> : vector<16xi1> +// CHECK: %{{.*}} = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} dense<12> : vector<16xindex> +// CHECK: %{{.*}} = xegpu.load %[[ARG0]][%{{.*}}], %{{.*}} <{chunk_size = 8 : i64}> +// CHECK-SAME: {layout_result_0 = #xegpu.layout<inst_data = [16, 8], lane_layout = [16, 1], lane_data = [1, 2]>} : memref<256xf16>, vector<16xindex>, vector<16xi1> -> vector<16x8xf16> +// CHECK: xegpu.store %0, %[[ARG0]][%{{.*}}], %{{.*}} <{chunk_size = 8 : i64}> : vector<16x8xf16>, memref<256xf16>, vector<16xindex>, vector<16xi1> +func.func @scatter_ops_chunksize(%src: memref<256xf16>) { + %1 = arith.constant dense<1>: vector<16xi1> + %offset = arith.constant dense<12> : vector<16xindex> + %3 = xegpu.load %src[%offset], %1 <{chunk_size=8}> + : memref<256xf16>, vector<16xindex>, vector<16xi1> -> vector<16x8xf16> + xegpu.store %3, %src[%offset], %1 <{chunk_size=8}> + : vector<16x8xf16>, memref<256xf16>, vector<16xindex>, vector<16xi1> + return +} +} diff --git a/mlir/test/Dialect/XeGPU/propagate-layout.mlir b/mlir/test/Dialect/XeGPU/propagate-layout.mlir index 30f785d..543e119 100644 --- a/mlir/test/Dialect/XeGPU/propagate-layout.mlir +++ b/mlir/test/Dialect/XeGPU/propagate-layout.mlir @@ -1,5 +1,6 @@ -// RUN: mlir-opt -xegpu-propagate-layout -split-input-file %s | FileCheck %s +// RUN: mlir-opt -xevm-attach-target='chip=pvc' -xegpu-propagate-layout -split-input-file %s | FileCheck %s +gpu.module @test { // CHECK-LABEL: func.func @dpas_f16( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) { // CHECK: %[[CST:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} dense<0.000000e+00> : vector<8x16xf32> @@ -25,8 +26,10 @@ func.func @dpas_f16(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, %arg2: me xegpu.store_nd %4, %5 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> return } +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @dpas_i8( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: vector<8x32xi8>, %[[ARG1:[0-9a-zA-Z]+]]: vector<32x16xi8>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xi32>) { // CHECK: %[[T0:.*]] = xegpu.dpas %[[ARG0]], %[[ARG1]] {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], @@ -37,8 +40,10 @@ func.func @dpas_i8(%arg0: vector<8x32xi8>, %arg1: vector<32x16xi8>, %arg2: memre xegpu.store_nd %0, %1 : vector<8x16xi32>, !xegpu.tensor_desc<8x16xi32> return } +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @load_with_transpose_effect( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG0:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf32>) { // CHECK: %{{.*}} = xegpu.load_nd %{{.*}} <{transpose = array<i64: 1, 0>}> {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>} : @@ -55,8 +60,10 @@ func.func @load_with_transpose_effect(%arg0: memref<8x16xf16>, %arg1: memref<16x xegpu.store_nd %4, %5 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> return } +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @vector_transpose( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) { // CHECK: %{{.*}} = vector.transpose %{{.*}}, [1, 0] {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>} : vector<16x16xf16> to vector<16x16xf16> @@ -73,8 +80,10 @@ func.func @vector_transpose(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, % xegpu.store_nd %5, %6 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> return } +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @extf_truncf( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, %[[ARG1:[0-9a-zA-Z]+]]: // CHECK-SAME: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>) -> vector<8x16xf32> { @@ -88,8 +97,10 @@ func.func @extf_truncf(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: !xegpu.tensor %4 = xegpu.dpas %0, %3 : vector<8x16xf16>, vector<16x16xf16> -> vector<8x16xf32> return %4 : vector<8x16xf32> } +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @load_gather_with_chunksize( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<256xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) { // CHECK: %[[CST:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} @@ -113,8 +124,10 @@ func.func @load_gather_with_chunksize(%arg0: memref<8x16xf16>, %arg1: memref<256 xegpu.store_nd %5, %6 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> return } +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @load_gather_1d( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf32>, %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>) { // CHECK: %[[CST:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} @@ -132,8 +145,9 @@ func.func @load_gather_1d(%arg0: memref<256xf32>, %arg1: !xegpu.tensor_desc<16xf xegpu.store_nd %1, %arg1 : vector<16xf32>, !xegpu.tensor_desc<16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @store_scatter_with_chunksize( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<128xf32>) { // CHECK: %[[T0:.*]] = xegpu.create_tdesc %[[ARG0]], %{{.*}} : memref<128xf32>, vector<16xindex> -> @@ -148,8 +162,9 @@ func.func @store_scatter_with_chunksize(%arg0: memref<128xf32>) { xegpu.store %cst, %0, %cst_0 : vector<16x8xf32>, !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<chunk_size = 8 : i64>>, vector<16xi1> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @store_scatter_1d( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: vector<16xf32>, %[[ARG1:[0-9a-zA-Z]+]]: memref<256xf32>) { // CHECK: xegpu.store %[[ARG0]], %{{.*}}, %{{.*}} : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>, @@ -161,8 +176,9 @@ func.func @store_scatter_1d(%arg0: vector<16xf32>, %arg1: memref<256xf32>) { xegpu.store %arg0, %0, %cst_0 : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>, vector<16xi1> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @scatter_ops_chunksize( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf16>) { // CHECK: %[[MASK:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} dense<true> : vector<16xi1> @@ -179,8 +195,9 @@ func.func @scatter_ops_chunksize(%src: memref<256xf16>) { : vector<16x8xf16>, memref<256xf16>, vector<16xindex>, vector<16xi1> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @scatter_ops( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf16>) { // CHECK: %[[MASK:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} dense<true> : vector<16xi1> @@ -195,8 +212,9 @@ func.func @scatter_ops(%src: memref<256xf16>) { xegpu.store %3, %src[%offset], %1 : vector<16xf16>, memref<256xf16>, vector<16xindex>, vector<16xi1> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @vector_bitcast_i16_to_f16( // CHECK: %[[LOAD0:.*]] = xegpu.load_nd %{{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} // CHECK-SAME: !xegpu.tensor_desc<8x16xi16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<8x16xi16> @@ -219,8 +237,9 @@ func.func @vector_bitcast_i16_to_f16(%arg0: memref<8x16xi16>, %arg1: memref<16x1 xegpu.store_nd %6, %7 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @vector_bitcast_i32_to_f16( // CHECK: %[[LOAD:.*]] = xegpu.load_nd %{{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>} // CHECK-SAME: !xegpu.tensor_desc<16x8xi32, #xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>> -> vector<16x8xi32> @@ -239,8 +258,9 @@ func.func @vector_bitcast_i32_to_f16(%arg0: memref<8x16xf16>, %arg1: memref<16x8 xegpu.store_nd %6, %7 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @vector_bitcast_i16_to_i32( // CHECK: %[[LOAD:.*]] = xegpu.load_nd %{{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 2]>} // CHECK-SAME: !xegpu.tensor_desc<8x32xi16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 2]>> -> vector<8x32xi16> @@ -255,8 +275,9 @@ func.func @vector_bitcast_i16_to_i32(%arg0: memref<8x32xi16>, %arg1: memref<8x16 xegpu.store_nd %3, %1 : vector<8x16xi32>, !xegpu.tensor_desc<8x16xi32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @vector_bitcast_require_cross_lane_shuffle( // CHECK: %[[LOAD:.*]] = xegpu.load_nd %{{.*}} : !xegpu.tensor_desc<8x16xi32> -> vector<8x16xi32> // CHECK: %{{.*}} = vector.bitcast %[[LOAD]] {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} @@ -270,9 +291,10 @@ func.func @vector_bitcast_require_cross_lane_shuffle(%arg0: memref<8x16xi32>, %a xegpu.store_nd %3, %1 : vector<8x32xi16>, !xegpu.tensor_desc<8x32xi16> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @binary_op_one_use( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>, @@ -291,8 +313,9 @@ func.func @binary_op_one_use(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: !xegpu. xegpu.store_nd %4, %arg2 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @binary_op_multiple_uses( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, @@ -312,8 +335,9 @@ func.func @binary_op_multiple_uses(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: ! xegpu.store_nd %2, %arg3 : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @for_op( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x128xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<128x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) { // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<8x128xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> @@ -353,8 +377,9 @@ func.func @for_op(%arg0: memref<8x128xf16>, %arg1: memref<128x16xf16>, %arg2: me xegpu.store_nd %2#2, %3 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @if_single_use( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>, @@ -381,8 +406,9 @@ func.func @if_single_use(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: !xegpu.tens xegpu.store_nd %2, %arg3 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @if_multiple_uses( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, @@ -411,8 +437,9 @@ func.func @if_multiple_uses(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: !xegpu.t xegpu.store_nd %1, %arg4 : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @vector_outer_reduction( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: vector<16x16xf32>, %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>) { // CHECK: %{{.*}} = vector.multi_reduction <add>, %[[ARG0]], %{{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} [0] : vector<16x16xf32> to vector<16xf32> @@ -422,8 +449,9 @@ func.func @vector_outer_reduction(%arg0: vector<16x16xf32>, %arg1: !xegpu.tensor xegpu.store_nd %0, %arg1 : vector<16xf32>, !xegpu.tensor_desc<16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @vector_inner_reduction( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: vector<16x16xf32>, %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>) { // CHECK: %{{.*}} = vector.multi_reduction <add>, %[[ARG0]], %{{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} [1] : vector<16x16xf32> to vector<16xf32> @@ -433,8 +461,9 @@ func.func @vector_inner_reduction(%arg0: vector<16x16xf32>, %arg1: !xegpu.tensor xegpu.store_nd %0, %arg1 : vector<16xf32>, !xegpu.tensor_desc<16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @update_nd_offset_1d( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf32>) { // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<256xf32> -> !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>> @@ -448,8 +477,9 @@ func.func @update_nd_offset_1d(%arg0: memref<256xf32>){ xegpu.store_nd %1, %2 : vector<16xf32>, !xegpu.tensor_desc<16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @update_nd_offset_2d( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256x256xf32>) { // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}, %{{.*}}] : memref<256x256xf32> -> !xegpu.tensor_desc<16x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> @@ -463,8 +493,9 @@ func.func @update_nd_offset_2d(%arg0: memref<256x256xf32>){ xegpu.store_nd %1, %2 : vector<16x16xf32>, !xegpu.tensor_desc<16x16xf32> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @prefetch_2d( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256x256xf16>) { // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}, %{{.*}}] : memref<256x256xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> @@ -475,8 +506,9 @@ func.func @prefetch_2d(%arg0: memref<256x256xf16>){ xegpu.prefetch_nd %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<16x16xf16> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @prefetch_1d( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf16>) { // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<256xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>> @@ -487,8 +519,9 @@ func.func @prefetch_1d(%arg0: memref<256xf16>){ xegpu.prefetch_nd %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<16xf16> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @scf_while_and_condition( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf32>, %[[ARG1:[0-9a-zA-Z]+]]: memref<256xf32>) { // CHECK: %{{.*}}:3 = scf.while ({{.*}}) : (vector<16xf32>, i32, !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>) @@ -520,8 +553,9 @@ func.func @scf_while_and_condition(%arg0: memref<256xf32>, %arg1: memref<256xf32 } return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @vector_shape_cast_1d_to_2d_dim1_distributed( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>) { @@ -541,8 +575,9 @@ func.func @vector_shape_cast_1d_to_2d_dim1_distributed(%arg0: !xegpu.tensor_desc xegpu.store_nd %5, %arg1 : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16> return } - +} // ----- +gpu.module @test { // CHECK-LABEL: func.func @vector_shape_cast_1d_to_2d_dim0_broadcasted( // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>) { @@ -563,3 +598,4 @@ func.func @vector_shape_cast_1d_to_2d_dim0_broadcasted(%arg0: !xegpu.tensor_desc xegpu.store_nd %5, %arg1 : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16> return } +} diff --git a/mlir/test/mlir-runner/memref-reshape.mlir b/mlir/test/mlir-runner/memref-reshape.mlir index 8c17f1fd..b264e02 100644 --- a/mlir/test/mlir-runner/memref-reshape.mlir +++ b/mlir/test/mlir-runner/memref-reshape.mlir @@ -65,8 +65,8 @@ func.func @reshape_ranked_memref_to_ranked(%input : memref<2x3xf32>, func.func @reshape_unranked_memref_to_ranked(%input : memref<2x3xf32>, %shape : memref<2xindex>) { %unranked_input = memref.cast %input : memref<2x3xf32> to memref<*xf32> - %output = memref.reshape %input(%shape) - : (memref<2x3xf32>, memref<2xindex>) -> memref<?x?xf32> + %output = memref.reshape %unranked_input(%shape) + : (memref<*xf32>, memref<2xindex>) -> memref<?x?xf32> %unranked_output = memref.cast %output : memref<?x?xf32> to memref<*xf32> call @printMemrefF32(%unranked_output) : (memref<*xf32>) -> () @@ -95,8 +95,8 @@ func.func @reshape_unranked_memref_to_unranked(%input : memref<2x3xf32>, %shape : memref<2xindex>) { %unranked_input = memref.cast %input : memref<2x3xf32> to memref<*xf32> %dyn_size_shape = memref.cast %shape : memref<2xindex> to memref<?xindex> - %output = memref.reshape %input(%dyn_size_shape) - : (memref<2x3xf32>, memref<?xindex>) -> memref<*xf32> + %output = memref.reshape %unranked_input(%dyn_size_shape) + : (memref<*xf32>, memref<?xindex>) -> memref<*xf32> call @printMemrefF32(%output) : (memref<*xf32>) -> () // CHECK: rank = 2 offset = 0 sizes = [3, 2] strides = [2, 1] data = diff --git a/mlir/test/mlir-tblgen/op-properties.td b/mlir/test/mlir-tblgen/op-properties.td index a9c784c..cb9bd3d 100644 --- a/mlir/test/mlir-tblgen/op-properties.td +++ b/mlir/test/mlir-tblgen/op-properties.td @@ -32,7 +32,7 @@ def OpWithProps : NS_Op<"op_with_props"> { ArrayProp<StringProp>:$strings, DefaultValuedProp<I32Prop, "0">:$default_int, OptionalProp<I64Prop>:$optional, - DefaultI64Array:$intArray + DefaultI64Array:$value ); } @@ -94,10 +94,10 @@ def OpWithOptionalPropsAndAttrs : // DECL: ::llvm::ArrayRef<std::string> getStrings() // DECL: using default_intTy = int32_t; // DECL: default_intTy default_int = 0; -// DECL: intArrayTy intArray = ::llvm::SmallVector<int64_t>{}; -// DECL: ::llvm::ArrayRef<int64_t> getIntArray() +// DECL: valueTy value = ::llvm::SmallVector<int64_t>{}; +// DECL: ::llvm::ArrayRef<int64_t> getValue() // DECL: return ::llvm::ArrayRef<int64_t>{propStorage} -// DECL: void setIntArray(::llvm::ArrayRef<int64_t> propValue) +// DECL: void setValue(::llvm::ArrayRef<int64_t> propValue) // DECL: propStorage.assign // DECL-LABEL: class OpWithProps : // DECL: setString(::llvm::StringRef newString) @@ -111,14 +111,14 @@ def OpWithOptionalPropsAndAttrs : // DECL-SAME: ::llvm::ArrayRef<std::string> strings, // DECL-SAME: /*optional*/int32_t default_int = 0, // DECL-SAME: /*optional*/std::optional<int64_t> optional = std::nullopt, -// DECL-SAME: /*optional*/::llvm::ArrayRef<int64_t> intArray = ::llvm::ArrayRef<int64_t>{}); +// DECL-SAME: /*optional*/::llvm::ArrayRef<int64_t> value = ::llvm::ArrayRef<int64_t>{}); // DEFS-LABEL: OpWithProps::computePropertiesHash -// DEFS: hash_intArray +// DEFS: hash_value_ // DEFS: using ::llvm::hash_value; // DEFS-NEXT: return hash_value(::llvm::ArrayRef<int64_t>{propStorage}) // DEFS: hash_value(prop.optional) -// DEFS: hash_intArray(prop.intArray) +// DEFS: hash_value_(prop.value) // ----- |