aboutsummaryrefslogtreecommitdiff
path: root/llvm/utils/TableGen/DecoderEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/utils/TableGen/DecoderEmitter.cpp')
-rw-r--r--llvm/utils/TableGen/DecoderEmitter.cpp2699
1 files changed, 2699 insertions, 0 deletions
diff --git a/llvm/utils/TableGen/DecoderEmitter.cpp b/llvm/utils/TableGen/DecoderEmitter.cpp
new file mode 100644
index 0000000..22bfc1f
--- /dev/null
+++ b/llvm/utils/TableGen/DecoderEmitter.cpp
@@ -0,0 +1,2699 @@
+//===---------------- DecoderEmitter.cpp - Decoder Generator --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// It contains the tablegen backend that emits the decoder functions for
+// targets with fixed/variable length instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenInstruction.h"
+#include "CodeGenTarget.h"
+#include "InfoByHwMode.h"
+#include "VarLenCodeEmitterGen.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/CachedHashString.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/MC/MCFixedLenDisassembler.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <map>
+#include <memory>
+#include <set>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "decoder-emitter"
+
+namespace {
+
+STATISTIC(NumEncodings, "Number of encodings considered");
+STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info");
+STATISTIC(NumInstructions, "Number of instructions considered");
+STATISTIC(NumEncodingsSupported, "Number of encodings supported");
+STATISTIC(NumEncodingsOmitted, "Number of encodings omitted");
+
+struct EncodingField {
+ unsigned Base, Width, Offset;
+ EncodingField(unsigned B, unsigned W, unsigned O)
+ : Base(B), Width(W), Offset(O) { }
+};
+
+struct OperandInfo {
+ std::vector<EncodingField> Fields;
+ std::string Decoder;
+ bool HasCompleteDecoder;
+ uint64_t InitValue;
+
+ OperandInfo(std::string D, bool HCD)
+ : Decoder(std::move(D)), HasCompleteDecoder(HCD), InitValue(0) {}
+
+ void addField(unsigned Base, unsigned Width, unsigned Offset) {
+ Fields.push_back(EncodingField(Base, Width, Offset));
+ }
+
+ unsigned numFields() const { return Fields.size(); }
+
+ typedef std::vector<EncodingField>::const_iterator const_iterator;
+
+ const_iterator begin() const { return Fields.begin(); }
+ const_iterator end() const { return Fields.end(); }
+};
+
+typedef std::vector<uint8_t> DecoderTable;
+typedef uint32_t DecoderFixup;
+typedef std::vector<DecoderFixup> FixupList;
+typedef std::vector<FixupList> FixupScopeList;
+typedef SmallSetVector<CachedHashString, 16> PredicateSet;
+typedef SmallSetVector<CachedHashString, 16> DecoderSet;
+struct DecoderTableInfo {
+ DecoderTable Table;
+ FixupScopeList FixupStack;
+ PredicateSet Predicates;
+ DecoderSet Decoders;
+};
+
+struct EncodingAndInst {
+ const Record *EncodingDef;
+ const CodeGenInstruction *Inst;
+ StringRef HwModeName;
+
+ EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst,
+ StringRef HwModeName = "")
+ : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {}
+};
+
+struct EncodingIDAndOpcode {
+ unsigned EncodingID;
+ unsigned Opcode;
+
+ EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
+ EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode)
+ : EncodingID(EncodingID), Opcode(Opcode) {}
+};
+
+raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
+ if (Value.EncodingDef != Value.Inst->TheDef)
+ OS << Value.EncodingDef->getName() << ":";
+ OS << Value.Inst->TheDef->getName();
+ return OS;
+}
+
+class DecoderEmitter {
+ RecordKeeper &RK;
+ std::vector<EncodingAndInst> NumberedEncodings;
+
+public:
+ // Defaults preserved here for documentation, even though they aren't
+ // strictly necessary given the way that this is currently being called.
+ DecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
+ std::string GPrefix = "if (",
+ std::string GPostfix = " == MCDisassembler::Fail)",
+ std::string ROK = "MCDisassembler::Success",
+ std::string RFail = "MCDisassembler::Fail", std::string L = "")
+ : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)),
+ GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
+ ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
+ Locals(std::move(L)) {}
+
+ // Emit the decoder state machine table.
+ void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
+ unsigned Indentation, unsigned BitWidth,
+ StringRef Namespace) const;
+ void emitInstrLenTable(formatted_raw_ostream &OS,
+ std::vector<unsigned> &InstrLen) const;
+ void emitPredicateFunction(formatted_raw_ostream &OS,
+ PredicateSet &Predicates,
+ unsigned Indentation) const;
+ void emitDecoderFunction(formatted_raw_ostream &OS,
+ DecoderSet &Decoders,
+ unsigned Indentation) const;
+
+ // run - Output the code emitter
+ void run(raw_ostream &o);
+
+private:
+ CodeGenTarget Target;
+
+public:
+ std::string PredicateNamespace;
+ std::string GuardPrefix, GuardPostfix;
+ std::string ReturnOK, ReturnFail;
+ std::string Locals;
+};
+
+} // end anonymous namespace
+
+// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
+// for a bit value.
+//
+// BIT_UNFILTERED is used as the init value for a filter position. It is used
+// only for filter processings.
+typedef enum {
+ BIT_TRUE, // '1'
+ BIT_FALSE, // '0'
+ BIT_UNSET, // '?'
+ BIT_UNFILTERED // unfiltered
+} bit_value_t;
+
+static bool ValueSet(bit_value_t V) {
+ return (V == BIT_TRUE || V == BIT_FALSE);
+}
+
+static bool ValueNotSet(bit_value_t V) {
+ return (V == BIT_UNSET);
+}
+
+static int Value(bit_value_t V) {
+ return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
+}
+
+static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
+ if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
+ return bit->getValue() ? BIT_TRUE : BIT_FALSE;
+
+ // The bit is uninitialized.
+ return BIT_UNSET;
+}
+
+// Prints the bit value for each position.
+static void dumpBits(raw_ostream &o, const BitsInit &bits) {
+ for (unsigned index = bits.getNumBits(); index > 0; --index) {
+ switch (bitFromBits(bits, index - 1)) {
+ case BIT_TRUE:
+ o << "1";
+ break;
+ case BIT_FALSE:
+ o << "0";
+ break;
+ case BIT_UNSET:
+ o << "_";
+ break;
+ default:
+ llvm_unreachable("unexpected return value from bitFromBits");
+ }
+ }
+}
+
+static BitsInit &getBitsField(const Record &def, StringRef str) {
+ const RecordVal *RV = def.getValue(str);
+ if (BitsInit *Bits = dyn_cast<BitsInit>(RV->getValue()))
+ return *Bits;
+
+ // variable length instruction
+ VarLenInst VLI = VarLenInst(cast<DagInit>(RV->getValue()), RV);
+ SmallVector<Init *, 16> Bits;
+
+ for (auto &SI : VLI) {
+ if (const BitsInit *BI = dyn_cast<BitsInit>(SI.Value)) {
+ for (unsigned Idx = 0U; Idx < BI->getNumBits(); ++Idx) {
+ Bits.push_back(BI->getBit(Idx));
+ }
+ } else if (const BitInit *BI = dyn_cast<BitInit>(SI.Value)) {
+ Bits.push_back(const_cast<BitInit *>(BI));
+ } else {
+ for (unsigned Idx = 0U; Idx < SI.BitWidth; ++Idx)
+ Bits.push_back(UnsetInit::get());
+ }
+ }
+
+ return *BitsInit::get(Bits);
+}
+
+// Representation of the instruction to work on.
+typedef std::vector<bit_value_t> insn_t;
+
+namespace {
+
+static const uint64_t NO_FIXED_SEGMENTS_SENTINEL = -1ULL;
+
+class FilterChooser;
+
+/// Filter - Filter works with FilterChooser to produce the decoding tree for
+/// the ISA.
+///
+/// It is useful to think of a Filter as governing the switch stmts of the
+/// decoding tree in a certain level. Each case stmt delegates to an inferior
+/// FilterChooser to decide what further decoding logic to employ, or in another
+/// words, what other remaining bits to look at. The FilterChooser eventually
+/// chooses a best Filter to do its job.
+///
+/// This recursive scheme ends when the number of Opcodes assigned to the
+/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
+/// the Filter/FilterChooser combo does not know how to distinguish among the
+/// Opcodes assigned.
+///
+/// An example of a conflict is
+///
+/// Conflict:
+/// 111101000.00........00010000....
+/// 111101000.00........0001........
+/// 1111010...00........0001........
+/// 1111010...00....................
+/// 1111010.........................
+/// 1111............................
+/// ................................
+/// VST4q8a 111101000_00________00010000____
+/// VST4q8b 111101000_00________00010000____
+///
+/// The Debug output shows the path that the decoding tree follows to reach the
+/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
+/// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
+///
+/// The encoding info in the .td files does not specify this meta information,
+/// which could have been used by the decoder to resolve the conflict. The
+/// decoder could try to decode the even/odd register numbering and assign to
+/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
+/// version and return the Opcode since the two have the same Asm format string.
+class Filter {
+protected:
+ const FilterChooser *Owner;// points to the FilterChooser who owns this filter
+ unsigned StartBit; // the starting bit position
+ unsigned NumBits; // number of bits to filter
+ bool Mixed; // a mixed region contains both set and unset bits
+
+ // Map of well-known segment value to the set of uid's with that value.
+ std::map<uint64_t, std::vector<EncodingIDAndOpcode>>
+ FilteredInstructions;
+
+ // Set of uid's with non-constant segment values.
+ std::vector<EncodingIDAndOpcode> VariableInstructions;
+
+ // Map of well-known segment value to its delegate.
+ std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap;
+
+ // Number of instructions which fall under FilteredInstructions category.
+ unsigned NumFiltered;
+
+ // Keeps track of the last opcode in the filtered bucket.
+ EncodingIDAndOpcode LastOpcFiltered;
+
+public:
+ Filter(Filter &&f);
+ Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
+
+ ~Filter() = default;
+
+ unsigned getNumFiltered() const { return NumFiltered; }
+
+ EncodingIDAndOpcode getSingletonOpc() const {
+ assert(NumFiltered == 1);
+ return LastOpcFiltered;
+ }
+
+ // Return the filter chooser for the group of instructions without constant
+ // segment values.
+ const FilterChooser &getVariableFC() const {
+ assert(NumFiltered == 1);
+ assert(FilterChooserMap.size() == 1);
+ return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second);
+ }
+
+ // Divides the decoding task into sub tasks and delegates them to the
+ // inferior FilterChooser's.
+ //
+ // A special case arises when there's only one entry in the filtered
+ // instructions. In order to unambiguously decode the singleton, we need to
+ // match the remaining undecoded encoding bits against the singleton.
+ void recurse();
+
+ // Emit table entries to decode instructions given a segment or segments of
+ // bits.
+ void emitTableEntry(DecoderTableInfo &TableInfo) const;
+
+ // Returns the number of fanout produced by the filter. More fanout implies
+ // the filter distinguishes more categories of instructions.
+ unsigned usefulness() const;
+}; // end class Filter
+
+} // end anonymous namespace
+
+// These are states of our finite state machines used in FilterChooser's
+// filterProcessor() which produces the filter candidates to use.
+typedef enum {
+ ATTR_NONE,
+ ATTR_FILTERED,
+ ATTR_ALL_SET,
+ ATTR_ALL_UNSET,
+ ATTR_MIXED
+} bitAttr_t;
+
+/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
+/// in order to perform the decoding of instructions at the current level.
+///
+/// Decoding proceeds from the top down. Based on the well-known encoding bits
+/// of instructions available, FilterChooser builds up the possible Filters that
+/// can further the task of decoding by distinguishing among the remaining
+/// candidate instructions.
+///
+/// Once a filter has been chosen, it is called upon to divide the decoding task
+/// into sub-tasks and delegates them to its inferior FilterChoosers for further
+/// processings.
+///
+/// It is useful to think of a Filter as governing the switch stmts of the
+/// decoding tree. And each case is delegated to an inferior FilterChooser to
+/// decide what further remaining bits to look at.
+namespace {
+
+class FilterChooser {
+protected:
+ friend class Filter;
+
+ // Vector of codegen instructions to choose our filter.
+ ArrayRef<EncodingAndInst> AllInstructions;
+
+ // Vector of uid's for this filter chooser to work on.
+ // The first member of the pair is the opcode id being decoded, the second is
+ // the opcode id that should be emitted.
+ const std::vector<EncodingIDAndOpcode> &Opcodes;
+
+ // Lookup table for the operand decoding of instructions.
+ const std::map<unsigned, std::vector<OperandInfo>> &Operands;
+
+ // Vector of candidate filters.
+ std::vector<Filter> Filters;
+
+ // Array of bit values passed down from our parent.
+ // Set to all BIT_UNFILTERED's for Parent == NULL.
+ std::vector<bit_value_t> FilterBitValues;
+
+ // Links to the FilterChooser above us in the decoding tree.
+ const FilterChooser *Parent;
+
+ // Index of the best filter from Filters.
+ int BestIndex;
+
+ // Width of instructions
+ unsigned BitWidth;
+
+ // Parent emitter
+ const DecoderEmitter *Emitter;
+
+public:
+ FilterChooser(ArrayRef<EncodingAndInst> Insts,
+ const std::vector<EncodingIDAndOpcode> &IDs,
+ const std::map<unsigned, std::vector<OperandInfo>> &Ops,
+ unsigned BW, const DecoderEmitter *E)
+ : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
+ FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
+ BitWidth(BW), Emitter(E) {
+ doFilter();
+ }
+
+ FilterChooser(ArrayRef<EncodingAndInst> Insts,
+ const std::vector<EncodingIDAndOpcode> &IDs,
+ const std::map<unsigned, std::vector<OperandInfo>> &Ops,
+ const std::vector<bit_value_t> &ParentFilterBitValues,
+ const FilterChooser &parent)
+ : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
+ FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
+ BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
+ doFilter();
+ }
+
+ FilterChooser(const FilterChooser &) = delete;
+ void operator=(const FilterChooser &) = delete;
+
+ unsigned getBitWidth() const { return BitWidth; }
+
+protected:
+ // Populates the insn given the uid.
+ void insnWithID(insn_t &Insn, unsigned Opcode) const {
+ BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");
+ Insn.resize(BitWidth > Bits.getNumBits() ? BitWidth : Bits.getNumBits(),
+ BIT_UNSET);
+ // We may have a SoftFail bitmask, which specifies a mask where an encoding
+ // may differ from the value in "Inst" and yet still be valid, but the
+ // disassembler should return SoftFail instead of Success.
+ //
+ // This is used for marking UNPREDICTABLE instructions in the ARM world.
+ const RecordVal *RV =
+ AllInstructions[Opcode].EncodingDef->getValue("SoftFail");
+ const BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
+ for (unsigned i = 0; i < Bits.getNumBits(); ++i) {
+ if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
+ Insn[i] = BIT_UNSET;
+ else
+ Insn[i] = bitFromBits(Bits, i);
+ }
+ }
+
+ // Emit the name of the encoding/instruction pair.
+ void emitNameWithID(raw_ostream &OS, unsigned Opcode) const {
+ const Record *EncodingDef = AllInstructions[Opcode].EncodingDef;
+ const Record *InstDef = AllInstructions[Opcode].Inst->TheDef;
+ if (EncodingDef != InstDef)
+ OS << EncodingDef->getName() << ":";
+ OS << InstDef->getName();
+ }
+
+ // Populates the field of the insn given the start position and the number of
+ // consecutive bits to scan for.
+ //
+ // Returns false if there exists any uninitialized bit value in the range.
+ // Returns true, otherwise.
+ bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
+ unsigned NumBits) const;
+
+ /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
+ /// filter array as a series of chars.
+ void dumpFilterArray(raw_ostream &o,
+ const std::vector<bit_value_t> & filter) const;
+
+ /// dumpStack - dumpStack traverses the filter chooser chain and calls
+ /// dumpFilterArray on each filter chooser up to the top level one.
+ void dumpStack(raw_ostream &o, const char *prefix) const;
+
+ Filter &bestFilter() {
+ assert(BestIndex != -1 && "BestIndex not set");
+ return Filters[BestIndex];
+ }
+
+ bool PositionFiltered(unsigned i) const {
+ return ValueSet(FilterBitValues[i]);
+ }
+
+ // Calculates the island(s) needed to decode the instruction.
+ // This returns a lit of undecoded bits of an instructions, for example,
+ // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
+ // decoded bits in order to verify that the instruction matches the Opcode.
+ unsigned getIslands(std::vector<unsigned> &StartBits,
+ std::vector<unsigned> &EndBits,
+ std::vector<uint64_t> &FieldVals,
+ const insn_t &Insn) const;
+
+ // Emits code to check the Predicates member of an instruction are true.
+ // Returns true if predicate matches were emitted, false otherwise.
+ bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
+ unsigned Opc) const;
+
+ bool doesOpcodeNeedPredicate(unsigned Opc) const;
+ unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
+ void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
+ unsigned Opc) const;
+
+ void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
+ unsigned Opc) const;
+
+ // Emits table entries to decode the singleton.
+ void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
+ EncodingIDAndOpcode Opc) const;
+
+ // Emits code to decode the singleton, and then to decode the rest.
+ void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
+ const Filter &Best) const;
+
+ void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
+ const OperandInfo &OpInfo,
+ bool &OpHasCompleteDecoder) const;
+
+ void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
+ bool &HasCompleteDecoder) const;
+ unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
+ bool &HasCompleteDecoder) const;
+
+ // Assign a single filter and run with it.
+ void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
+
+ // reportRegion is a helper function for filterProcessor to mark a region as
+ // eligible for use as a filter region.
+ void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
+ bool AllowMixed);
+
+ // FilterProcessor scans the well-known encoding bits of the instructions and
+ // builds up a list of candidate filters. It chooses the best filter and
+ // recursively descends down the decoding tree.
+ bool filterProcessor(bool AllowMixed, bool Greedy = true);
+
+ // Decides on the best configuration of filter(s) to use in order to decode
+ // the instructions. A conflict of instructions may occur, in which case we
+ // dump the conflict set to the standard error.
+ void doFilter();
+
+public:
+ // emitTableEntries - Emit state machine entries to decode our share of
+ // instructions.
+ void emitTableEntries(DecoderTableInfo &TableInfo) const;
+};
+
+} // end anonymous namespace
+
+///////////////////////////
+// //
+// Filter Implementation //
+// //
+///////////////////////////
+
+Filter::Filter(Filter &&f)
+ : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
+ FilteredInstructions(std::move(f.FilteredInstructions)),
+ VariableInstructions(std::move(f.VariableInstructions)),
+ FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
+ LastOpcFiltered(f.LastOpcFiltered) {
+}
+
+Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
+ bool mixed)
+ : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
+ assert(StartBit + NumBits - 1 < Owner->BitWidth);
+
+ NumFiltered = 0;
+ LastOpcFiltered = {0, 0};
+
+ for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
+ insn_t Insn;
+
+ // Populates the insn given the uid.
+ Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID);
+
+ uint64_t Field;
+ // Scans the segment for possibly well-specified encoding bits.
+ bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
+
+ if (ok) {
+ // The encoding bits are well-known. Lets add the uid of the
+ // instruction into the bucket keyed off the constant field value.
+ LastOpcFiltered = Owner->Opcodes[i];
+ FilteredInstructions[Field].push_back(LastOpcFiltered);
+ ++NumFiltered;
+ } else {
+ // Some of the encoding bit(s) are unspecified. This contributes to
+ // one additional member of "Variable" instructions.
+ VariableInstructions.push_back(Owner->Opcodes[i]);
+ }
+ }
+
+ assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
+ && "Filter returns no instruction categories");
+}
+
+// Divides the decoding task into sub tasks and delegates them to the
+// inferior FilterChooser's.
+//
+// A special case arises when there's only one entry in the filtered
+// instructions. In order to unambiguously decode the singleton, we need to
+// match the remaining undecoded encoding bits against the singleton.
+void Filter::recurse() {
+ // Starts by inheriting our parent filter chooser's filter bit values.
+ std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
+
+ if (!VariableInstructions.empty()) {
+ // Conservatively marks each segment position as BIT_UNSET.
+ for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
+ BitValueArray[StartBit + bitIndex] = BIT_UNSET;
+
+ // Delegates to an inferior filter chooser for further processing on this
+ // group of instructions whose segment values are variable.
+ FilterChooserMap.insert(std::make_pair(NO_FIXED_SEGMENTS_SENTINEL,
+ std::make_unique<FilterChooser>(Owner->AllInstructions,
+ VariableInstructions, Owner->Operands, BitValueArray, *Owner)));
+ }
+
+ // No need to recurse for a singleton filtered instruction.
+ // See also Filter::emit*().
+ if (getNumFiltered() == 1) {
+ assert(FilterChooserMap.size() == 1);
+ return;
+ }
+
+ // Otherwise, create sub choosers.
+ for (const auto &Inst : FilteredInstructions) {
+
+ // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
+ for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
+ if (Inst.first & (1ULL << bitIndex))
+ BitValueArray[StartBit + bitIndex] = BIT_TRUE;
+ else
+ BitValueArray[StartBit + bitIndex] = BIT_FALSE;
+ }
+
+ // Delegates to an inferior filter chooser for further processing on this
+ // category of instructions.
+ FilterChooserMap.insert(std::make_pair(
+ Inst.first, std::make_unique<FilterChooser>(
+ Owner->AllInstructions, Inst.second,
+ Owner->Operands, BitValueArray, *Owner)));
+ }
+}
+
+static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
+ uint32_t DestIdx) {
+ // Any NumToSkip fixups in the current scope can resolve to the
+ // current location.
+ for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
+ E = Fixups.rend();
+ I != E; ++I) {
+ // Calculate the distance from the byte following the fixup entry byte
+ // to the destination. The Target is calculated from after the 16-bit
+ // NumToSkip entry itself, so subtract two from the displacement here
+ // to account for that.
+ uint32_t FixupIdx = *I;
+ uint32_t Delta = DestIdx - FixupIdx - 3;
+ // Our NumToSkip entries are 24-bits. Make sure our table isn't too
+ // big.
+ assert(Delta < (1u << 24));
+ Table[FixupIdx] = (uint8_t)Delta;
+ Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
+ Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
+ }
+}
+
+// Emit table entries to decode instructions given a segment or segments
+// of bits.
+void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
+ TableInfo.Table.push_back(MCD::OPC_ExtractField);
+ TableInfo.Table.push_back(StartBit);
+ TableInfo.Table.push_back(NumBits);
+
+ // A new filter entry begins a new scope for fixup resolution.
+ TableInfo.FixupStack.emplace_back();
+
+ DecoderTable &Table = TableInfo.Table;
+
+ size_t PrevFilter = 0;
+ bool HasFallthrough = false;
+ for (auto &Filter : FilterChooserMap) {
+ // Field value -1 implies a non-empty set of variable instructions.
+ // See also recurse().
+ if (Filter.first == NO_FIXED_SEGMENTS_SENTINEL) {
+ HasFallthrough = true;
+
+ // Each scope should always have at least one filter value to check
+ // for.
+ assert(PrevFilter != 0 && "empty filter set!");
+ FixupList &CurScope = TableInfo.FixupStack.back();
+ // Resolve any NumToSkip fixups in the current scope.
+ resolveTableFixups(Table, CurScope, Table.size());
+ CurScope.clear();
+ PrevFilter = 0; // Don't re-process the filter's fallthrough.
+ } else {
+ Table.push_back(MCD::OPC_FilterValue);
+ // Encode and emit the value to filter against.
+ uint8_t Buffer[16];
+ unsigned Len = encodeULEB128(Filter.first, Buffer);
+ Table.insert(Table.end(), Buffer, Buffer + Len);
+ // Reserve space for the NumToSkip entry. We'll backpatch the value
+ // later.
+ PrevFilter = Table.size();
+ Table.push_back(0);
+ Table.push_back(0);
+ Table.push_back(0);
+ }
+
+ // We arrive at a category of instructions with the same segment value.
+ // Now delegate to the sub filter chooser for further decodings.
+ // The case may fallthrough, which happens if the remaining well-known
+ // encoding bits do not match exactly.
+ Filter.second->emitTableEntries(TableInfo);
+
+ // Now that we've emitted the body of the handler, update the NumToSkip
+ // of the filter itself to be able to skip forward when false. Subtract
+ // two as to account for the width of the NumToSkip field itself.
+ if (PrevFilter) {
+ uint32_t NumToSkip = Table.size() - PrevFilter - 3;
+ assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
+ Table[PrevFilter] = (uint8_t)NumToSkip;
+ Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
+ Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
+ }
+ }
+
+ // Any remaining unresolved fixups bubble up to the parent fixup scope.
+ assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
+ FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
+ FixupScopeList::iterator Dest = Source - 1;
+ llvm::append_range(*Dest, *Source);
+ TableInfo.FixupStack.pop_back();
+
+ // If there is no fallthrough, then the final filter should get fixed
+ // up according to the enclosing scope rather than the current position.
+ if (!HasFallthrough)
+ TableInfo.FixupStack.back().push_back(PrevFilter);
+}
+
+// Returns the number of fanout produced by the filter. More fanout implies
+// the filter distinguishes more categories of instructions.
+unsigned Filter::usefulness() const {
+ if (!VariableInstructions.empty())
+ return FilteredInstructions.size();
+ else
+ return FilteredInstructions.size() + 1;
+}
+
+//////////////////////////////////
+// //
+// Filterchooser Implementation //
+// //
+//////////////////////////////////
+
+// Emit the decoder state machine table.
+void DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table,
+ unsigned Indentation, unsigned BitWidth,
+ StringRef Namespace) const {
+ OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
+ << BitWidth << "[] = {\n";
+
+ Indentation += 2;
+
+ // FIXME: We may be able to use the NumToSkip values to recover
+ // appropriate indentation levels.
+ DecoderTable::const_iterator I = Table.begin();
+ DecoderTable::const_iterator E = Table.end();
+ while (I != E) {
+ assert (I < E && "incomplete decode table entry!");
+
+ uint64_t Pos = I - Table.begin();
+ OS << "/* " << Pos << " */";
+ OS.PadToColumn(12);
+
+ switch (*I) {
+ default:
+ PrintFatalError("invalid decode table opcode");
+ case MCD::OPC_ExtractField: {
+ ++I;
+ unsigned Start = *I++;
+ unsigned Len = *I++;
+ OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
+ << Len << ", // Inst{";
+ if (Len > 1)
+ OS << (Start + Len - 1) << "-";
+ OS << Start << "} ...\n";
+ break;
+ }
+ case MCD::OPC_FilterValue: {
+ ++I;
+ OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
+ // The filter value is ULEB128 encoded.
+ while (*I >= 128)
+ OS << (unsigned)*I++ << ", ";
+ OS << (unsigned)*I++ << ", ";
+
+ // 24-bit numtoskip value.
+ uint8_t Byte = *I++;
+ uint32_t NumToSkip = Byte;
+ OS << (unsigned)Byte << ", ";
+ Byte = *I++;
+ OS << (unsigned)Byte << ", ";
+ NumToSkip |= Byte << 8;
+ Byte = *I++;
+ OS << utostr(Byte) << ", ";
+ NumToSkip |= Byte << 16;
+ OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
+ break;
+ }
+ case MCD::OPC_CheckField: {
+ ++I;
+ unsigned Start = *I++;
+ unsigned Len = *I++;
+ OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
+ << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
+ // ULEB128 encoded field value.
+ for (; *I >= 128; ++I)
+ OS << (unsigned)*I << ", ";
+ OS << (unsigned)*I++ << ", ";
+ // 24-bit numtoskip value.
+ uint8_t Byte = *I++;
+ uint32_t NumToSkip = Byte;
+ OS << (unsigned)Byte << ", ";
+ Byte = *I++;
+ OS << (unsigned)Byte << ", ";
+ NumToSkip |= Byte << 8;
+ Byte = *I++;
+ OS << utostr(Byte) << ", ";
+ NumToSkip |= Byte << 16;
+ OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
+ break;
+ }
+ case MCD::OPC_CheckPredicate: {
+ ++I;
+ OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
+ for (; *I >= 128; ++I)
+ OS << (unsigned)*I << ", ";
+ OS << (unsigned)*I++ << ", ";
+
+ // 24-bit numtoskip value.
+ uint8_t Byte = *I++;
+ uint32_t NumToSkip = Byte;
+ OS << (unsigned)Byte << ", ";
+ Byte = *I++;
+ OS << (unsigned)Byte << ", ";
+ NumToSkip |= Byte << 8;
+ Byte = *I++;
+ OS << utostr(Byte) << ", ";
+ NumToSkip |= Byte << 16;
+ OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
+ break;
+ }
+ case MCD::OPC_Decode:
+ case MCD::OPC_TryDecode: {
+ bool IsTry = *I == MCD::OPC_TryDecode;
+ ++I;
+ // Extract the ULEB128 encoded Opcode to a buffer.
+ uint8_t Buffer[16], *p = Buffer;
+ while ((*p++ = *I++) >= 128)
+ assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
+ && "ULEB128 value too large!");
+ // Decode the Opcode value.
+ unsigned Opc = decodeULEB128(Buffer);
+ OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
+ << "Decode, ";
+ for (p = Buffer; *p >= 128; ++p)
+ OS << (unsigned)*p << ", ";
+ OS << (unsigned)*p << ", ";
+
+ // Decoder index.
+ for (; *I >= 128; ++I)
+ OS << (unsigned)*I << ", ";
+ OS << (unsigned)*I++ << ", ";
+
+ if (!IsTry) {
+ OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
+ break;
+ }
+
+ // Fallthrough for OPC_TryDecode.
+
+ // 24-bit numtoskip value.
+ uint8_t Byte = *I++;
+ uint32_t NumToSkip = Byte;
+ OS << (unsigned)Byte << ", ";
+ Byte = *I++;
+ OS << (unsigned)Byte << ", ";
+ NumToSkip |= Byte << 8;
+ Byte = *I++;
+ OS << utostr(Byte) << ", ";
+ NumToSkip |= Byte << 16;
+
+ OS << "// Opcode: " << NumberedEncodings[Opc]
+ << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
+ break;
+ }
+ case MCD::OPC_SoftFail: {
+ ++I;
+ OS.indent(Indentation) << "MCD::OPC_SoftFail";
+ // Positive mask
+ uint64_t Value = 0;
+ unsigned Shift = 0;
+ do {
+ OS << ", " << (unsigned)*I;
+ Value += (*I & 0x7f) << Shift;
+ Shift += 7;
+ } while (*I++ >= 128);
+ if (Value > 127) {
+ OS << " /* 0x";
+ OS.write_hex(Value);
+ OS << " */";
+ }
+ // Negative mask
+ Value = 0;
+ Shift = 0;
+ do {
+ OS << ", " << (unsigned)*I;
+ Value += (*I & 0x7f) << Shift;
+ Shift += 7;
+ } while (*I++ >= 128);
+ if (Value > 127) {
+ OS << " /* 0x";
+ OS.write_hex(Value);
+ OS << " */";
+ }
+ OS << ",\n";
+ break;
+ }
+ case MCD::OPC_Fail: {
+ ++I;
+ OS.indent(Indentation) << "MCD::OPC_Fail,\n";
+ break;
+ }
+ }
+ }
+ OS.indent(Indentation) << "0\n";
+
+ Indentation -= 2;
+
+ OS.indent(Indentation) << "};\n\n";
+}
+
+void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS,
+ std::vector<unsigned> &InstrLen) const {
+ OS << "static const uint8_t InstrLenTable[] = {\n";
+ for (unsigned &Len : InstrLen) {
+ OS << Len << ",\n";
+ }
+ OS << "};\n\n";
+}
+
+void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS,
+ PredicateSet &Predicates,
+ unsigned Indentation) const {
+ // The predicate function is just a big switch statement based on the
+ // input predicate index.
+ OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
+ << "const FeatureBitset &Bits) {\n";
+ Indentation += 2;
+ if (!Predicates.empty()) {
+ OS.indent(Indentation) << "switch (Idx) {\n";
+ OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
+ unsigned Index = 0;
+ for (const auto &Predicate : Predicates) {
+ OS.indent(Indentation) << "case " << Index++ << ":\n";
+ OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
+ }
+ OS.indent(Indentation) << "}\n";
+ } else {
+ // No case statement to emit
+ OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
+ }
+ Indentation -= 2;
+ OS.indent(Indentation) << "}\n\n";
+}
+
+void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS,
+ DecoderSet &Decoders,
+ unsigned Indentation) const {
+ // The decoder function is just a big switch statement based on the
+ // input decoder index.
+ OS.indent(Indentation) << "template <typename InsnType>\n";
+ OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
+ << " unsigned Idx, InsnType insn, MCInst &MI,\n";
+ OS.indent(Indentation)
+ << " uint64_t "
+ << "Address, const MCDisassembler *Decoder, bool &DecodeComplete) {\n";
+ Indentation += 2;
+ OS.indent(Indentation) << "DecodeComplete = true;\n";
+ // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits
+ // It would be better for emitBinaryParser to use a 64-bit tmp whenever
+ // possible but fall back to an InsnType-sized tmp for truly large fields.
+ OS.indent(Indentation) << "using TmpType = "
+ "std::conditional_t<std::is_integral<InsnType>::"
+ "value, InsnType, uint64_t>;\n";
+ OS.indent(Indentation) << "TmpType tmp;\n";
+ OS.indent(Indentation) << "switch (Idx) {\n";
+ OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
+ unsigned Index = 0;
+ for (const auto &Decoder : Decoders) {
+ OS.indent(Indentation) << "case " << Index++ << ":\n";
+ OS << Decoder;
+ OS.indent(Indentation+2) << "return S;\n";
+ }
+ OS.indent(Indentation) << "}\n";
+ Indentation -= 2;
+ OS.indent(Indentation) << "}\n\n";
+}
+
+// Populates the field of the insn given the start position and the number of
+// consecutive bits to scan for.
+//
+// Returns false if and on the first uninitialized bit value encountered.
+// Returns true, otherwise.
+bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
+ unsigned StartBit, unsigned NumBits) const {
+ Field = 0;
+
+ for (unsigned i = 0; i < NumBits; ++i) {
+ if (Insn[StartBit + i] == BIT_UNSET)
+ return false;
+
+ if (Insn[StartBit + i] == BIT_TRUE)
+ Field = Field | (1ULL << i);
+ }
+
+ return true;
+}
+
+/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
+/// filter array as a series of chars.
+void FilterChooser::dumpFilterArray(raw_ostream &o,
+ const std::vector<bit_value_t> &filter) const {
+ for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
+ switch (filter[bitIndex - 1]) {
+ case BIT_UNFILTERED:
+ o << ".";
+ break;
+ case BIT_UNSET:
+ o << "_";
+ break;
+ case BIT_TRUE:
+ o << "1";
+ break;
+ case BIT_FALSE:
+ o << "0";
+ break;
+ }
+ }
+}
+
+/// dumpStack - dumpStack traverses the filter chooser chain and calls
+/// dumpFilterArray on each filter chooser up to the top level one.
+void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
+ const FilterChooser *current = this;
+
+ while (current) {
+ o << prefix;
+ dumpFilterArray(o, current->FilterBitValues);
+ o << '\n';
+ current = current->Parent;
+ }
+}
+
+// Calculates the island(s) needed to decode the instruction.
+// This returns a list of undecoded bits of an instructions, for example,
+// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
+// decoded bits in order to verify that the instruction matches the Opcode.
+unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
+ std::vector<unsigned> &EndBits,
+ std::vector<uint64_t> &FieldVals,
+ const insn_t &Insn) const {
+ unsigned Num, BitNo;
+ Num = BitNo = 0;
+
+ uint64_t FieldVal = 0;
+
+ // 0: Init
+ // 1: Water (the bit value does not affect decoding)
+ // 2: Island (well-known bit value needed for decoding)
+ int State = 0;
+
+ for (unsigned i = 0; i < BitWidth; ++i) {
+ int64_t Val = Value(Insn[i]);
+ bool Filtered = PositionFiltered(i);
+ switch (State) {
+ default: llvm_unreachable("Unreachable code!");
+ case 0:
+ case 1:
+ if (Filtered || Val == -1)
+ State = 1; // Still in Water
+ else {
+ State = 2; // Into the Island
+ BitNo = 0;
+ StartBits.push_back(i);
+ FieldVal = Val;
+ }
+ break;
+ case 2:
+ if (Filtered || Val == -1) {
+ State = 1; // Into the Water
+ EndBits.push_back(i - 1);
+ FieldVals.push_back(FieldVal);
+ ++Num;
+ } else {
+ State = 2; // Still in Island
+ ++BitNo;
+ FieldVal = FieldVal | Val << BitNo;
+ }
+ break;
+ }
+ }
+ // If we are still in Island after the loop, do some housekeeping.
+ if (State == 2) {
+ EndBits.push_back(BitWidth - 1);
+ FieldVals.push_back(FieldVal);
+ ++Num;
+ }
+
+ assert(StartBits.size() == Num && EndBits.size() == Num &&
+ FieldVals.size() == Num);
+ return Num;
+}
+
+void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
+ const OperandInfo &OpInfo,
+ bool &OpHasCompleteDecoder) const {
+ const std::string &Decoder = OpInfo.Decoder;
+
+ bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0;
+
+ if (UseInsertBits) {
+ o.indent(Indentation) << "tmp = 0x";
+ o.write_hex(OpInfo.InitValue);
+ o << ";\n";
+ }
+
+ for (const EncodingField &EF : OpInfo) {
+ o.indent(Indentation);
+ if (UseInsertBits)
+ o << "insertBits(tmp, ";
+ else
+ o << "tmp = ";
+ o << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')';
+ if (UseInsertBits)
+ o << ", " << EF.Offset << ", " << EF.Width << ')';
+ else if (EF.Offset != 0)
+ o << " << " << EF.Offset;
+ o << ";\n";
+ }
+
+ if (Decoder != "") {
+ OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
+ o.indent(Indentation) << Emitter->GuardPrefix << Decoder
+ << "(MI, tmp, Address, Decoder)"
+ << Emitter->GuardPostfix
+ << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
+ << "return MCDisassembler::Fail; }\n";
+ } else {
+ OpHasCompleteDecoder = true;
+ o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
+ }
+}
+
+void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
+ unsigned Opc, bool &HasCompleteDecoder) const {
+ HasCompleteDecoder = true;
+
+ for (const auto &Op : Operands.find(Opc)->second) {
+ // If a custom instruction decoder was specified, use that.
+ if (Op.numFields() == 0 && !Op.Decoder.empty()) {
+ HasCompleteDecoder = Op.HasCompleteDecoder;
+ OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
+ << "(MI, insn, Address, Decoder)"
+ << Emitter->GuardPostfix
+ << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
+ << "return MCDisassembler::Fail; }\n";
+ break;
+ }
+
+ bool OpHasCompleteDecoder;
+ emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
+ if (!OpHasCompleteDecoder)
+ HasCompleteDecoder = false;
+ }
+}
+
+unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
+ unsigned Opc,
+ bool &HasCompleteDecoder) const {
+ // Build up the predicate string.
+ SmallString<256> Decoder;
+ // FIXME: emitDecoder() function can take a buffer directly rather than
+ // a stream.
+ raw_svector_ostream S(Decoder);
+ unsigned I = 4;
+ emitDecoder(S, I, Opc, HasCompleteDecoder);
+
+ // Using the full decoder string as the key value here is a bit
+ // heavyweight, but is effective. If the string comparisons become a
+ // performance concern, we can implement a mangling of the predicate
+ // data easily enough with a map back to the actual string. That's
+ // overkill for now, though.
+
+ // Make sure the predicate is in the table.
+ Decoders.insert(CachedHashString(Decoder));
+ // Now figure out the index for when we write out the table.
+ DecoderSet::const_iterator P = find(Decoders, Decoder.str());
+ return (unsigned)(P - Decoders.begin());
+}
+
+bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
+ unsigned Opc) const {
+ ListInit *Predicates =
+ AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
+ bool IsFirstEmission = true;
+ for (unsigned i = 0; i < Predicates->size(); ++i) {
+ Record *Pred = Predicates->getElementAsRecord(i);
+ if (!Pred->getValue("AssemblerMatcherPredicate"))
+ continue;
+
+ if (!isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
+ continue;
+
+ const DagInit *D = Pred->getValueAsDag("AssemblerCondDag");
+ std::string CombineType = D->getOperator()->getAsString();
+ if (CombineType != "any_of" && CombineType != "all_of")
+ PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
+ if (D->getNumArgs() == 0)
+ PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
+ bool IsOr = CombineType == "any_of";
+
+ if (!IsFirstEmission)
+ o << " && ";
+
+ if (IsOr)
+ o << "(";
+
+ ListSeparator LS(IsOr ? " || " : " && ");
+ for (auto *Arg : D->getArgs()) {
+ o << LS;
+ if (auto *NotArg = dyn_cast<DagInit>(Arg)) {
+ if (NotArg->getOperator()->getAsString() != "not" ||
+ NotArg->getNumArgs() != 1)
+ PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
+ Arg = NotArg->getArg(0);
+ o << "!";
+ }
+ if (!isa<DefInit>(Arg) ||
+ !cast<DefInit>(Arg)->getDef()->isSubClassOf("SubtargetFeature"))
+ PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
+ o << "Bits[" << Emitter->PredicateNamespace << "::" << Arg->getAsString()
+ << "]";
+ }
+
+ if (IsOr)
+ o << ")";
+
+ IsFirstEmission = false;
+ }
+ return !Predicates->empty();
+}
+
+bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
+ ListInit *Predicates =
+ AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
+ for (unsigned i = 0; i < Predicates->size(); ++i) {
+ Record *Pred = Predicates->getElementAsRecord(i);
+ if (!Pred->getValue("AssemblerMatcherPredicate"))
+ continue;
+
+ if (isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
+ return true;
+ }
+ return false;
+}
+
+unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
+ StringRef Predicate) const {
+ // Using the full predicate string as the key value here is a bit
+ // heavyweight, but is effective. If the string comparisons become a
+ // performance concern, we can implement a mangling of the predicate
+ // data easily enough with a map back to the actual string. That's
+ // overkill for now, though.
+
+ // Make sure the predicate is in the table.
+ TableInfo.Predicates.insert(CachedHashString(Predicate));
+ // Now figure out the index for when we write out the table.
+ PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
+ return (unsigned)(P - TableInfo.Predicates.begin());
+}
+
+void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
+ unsigned Opc) const {
+ if (!doesOpcodeNeedPredicate(Opc))
+ return;
+
+ // Build up the predicate string.
+ SmallString<256> Predicate;
+ // FIXME: emitPredicateMatch() functions can take a buffer directly rather
+ // than a stream.
+ raw_svector_ostream PS(Predicate);
+ unsigned I = 0;
+ emitPredicateMatch(PS, I, Opc);
+
+ // Figure out the index into the predicate table for the predicate just
+ // computed.
+ unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
+ SmallString<16> PBytes;
+ raw_svector_ostream S(PBytes);
+ encodeULEB128(PIdx, S);
+
+ TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
+ // Predicate index
+ for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
+ TableInfo.Table.push_back(PBytes[i]);
+ // Push location for NumToSkip backpatching.
+ TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
+ TableInfo.Table.push_back(0);
+ TableInfo.Table.push_back(0);
+ TableInfo.Table.push_back(0);
+}
+
+void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
+ unsigned Opc) const {
+ const RecordVal *RV = AllInstructions[Opc].EncodingDef->getValue("SoftFail");
+ BitsInit *SFBits = RV ? dyn_cast<BitsInit>(RV->getValue()) : nullptr;
+
+ if (!SFBits) return;
+ BitsInit *InstBits =
+ AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");
+
+ APInt PositiveMask(BitWidth, 0ULL);
+ APInt NegativeMask(BitWidth, 0ULL);
+ for (unsigned i = 0; i < BitWidth; ++i) {
+ bit_value_t B = bitFromBits(*SFBits, i);
+ bit_value_t IB = bitFromBits(*InstBits, i);
+
+ if (B != BIT_TRUE) continue;
+
+ switch (IB) {
+ case BIT_FALSE:
+ // The bit is meant to be false, so emit a check to see if it is true.
+ PositiveMask.setBit(i);
+ break;
+ case BIT_TRUE:
+ // The bit is meant to be true, so emit a check to see if it is false.
+ NegativeMask.setBit(i);
+ break;
+ default:
+ // The bit is not set; this must be an error!
+ errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
+ << AllInstructions[Opc] << " is set but Inst{" << i
+ << "} is unset!\n"
+ << " - You can only mark a bit as SoftFail if it is fully defined"
+ << " (1/0 - not '?') in Inst\n";
+ return;
+ }
+ }
+
+ bool NeedPositiveMask = PositiveMask.getBoolValue();
+ bool NeedNegativeMask = NegativeMask.getBoolValue();
+
+ if (!NeedPositiveMask && !NeedNegativeMask)
+ return;
+
+ TableInfo.Table.push_back(MCD::OPC_SoftFail);
+
+ SmallString<16> MaskBytes;
+ raw_svector_ostream S(MaskBytes);
+ if (NeedPositiveMask) {
+ encodeULEB128(PositiveMask.getZExtValue(), S);
+ for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
+ TableInfo.Table.push_back(MaskBytes[i]);
+ } else
+ TableInfo.Table.push_back(0);
+ if (NeedNegativeMask) {
+ MaskBytes.clear();
+ encodeULEB128(NegativeMask.getZExtValue(), S);
+ for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
+ TableInfo.Table.push_back(MaskBytes[i]);
+ } else
+ TableInfo.Table.push_back(0);
+}
+
+// Emits table entries to decode the singleton.
+void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
+ EncodingIDAndOpcode Opc) const {
+ std::vector<unsigned> StartBits;
+ std::vector<unsigned> EndBits;
+ std::vector<uint64_t> FieldVals;
+ insn_t Insn;
+ insnWithID(Insn, Opc.EncodingID);
+
+ // Look for islands of undecoded bits of the singleton.
+ getIslands(StartBits, EndBits, FieldVals, Insn);
+
+ unsigned Size = StartBits.size();
+
+ // Emit the predicate table entry if one is needed.
+ emitPredicateTableEntry(TableInfo, Opc.EncodingID);
+
+ // Check any additional encoding fields needed.
+ for (unsigned I = Size; I != 0; --I) {
+ unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
+ TableInfo.Table.push_back(MCD::OPC_CheckField);
+ TableInfo.Table.push_back(StartBits[I-1]);
+ TableInfo.Table.push_back(NumBits);
+ uint8_t Buffer[16], *p;
+ encodeULEB128(FieldVals[I-1], Buffer);
+ for (p = Buffer; *p >= 128 ; ++p)
+ TableInfo.Table.push_back(*p);
+ TableInfo.Table.push_back(*p);
+ // Push location for NumToSkip backpatching.
+ TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
+ // The fixup is always 24-bits, so go ahead and allocate the space
+ // in the table so all our relative position calculations work OK even
+ // before we fully resolve the real value here.
+ TableInfo.Table.push_back(0);
+ TableInfo.Table.push_back(0);
+ TableInfo.Table.push_back(0);
+ }
+
+ // Check for soft failure of the match.
+ emitSoftFailTableEntry(TableInfo, Opc.EncodingID);
+
+ bool HasCompleteDecoder;
+ unsigned DIdx =
+ getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder);
+
+ // Produce OPC_Decode or OPC_TryDecode opcode based on the information
+ // whether the instruction decoder is complete or not. If it is complete
+ // then it handles all possible values of remaining variable/unfiltered bits
+ // and for any value can determine if the bitpattern is a valid instruction
+ // or not. This means OPC_Decode will be the final step in the decoding
+ // process. If it is not complete, then the Fail return code from the
+ // decoder method indicates that additional processing should be done to see
+ // if there is any other instruction that also matches the bitpattern and
+ // can decode it.
+ TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
+ MCD::OPC_TryDecode);
+ NumEncodingsSupported++;
+ uint8_t Buffer[16], *p;
+ encodeULEB128(Opc.Opcode, Buffer);
+ for (p = Buffer; *p >= 128 ; ++p)
+ TableInfo.Table.push_back(*p);
+ TableInfo.Table.push_back(*p);
+
+ SmallString<16> Bytes;
+ raw_svector_ostream S(Bytes);
+ encodeULEB128(DIdx, S);
+
+ // Decoder index
+ for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
+ TableInfo.Table.push_back(Bytes[i]);
+
+ if (!HasCompleteDecoder) {
+ // Push location for NumToSkip backpatching.
+ TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
+ // Allocate the space for the fixup.
+ TableInfo.Table.push_back(0);
+ TableInfo.Table.push_back(0);
+ TableInfo.Table.push_back(0);
+ }
+}
+
+// Emits table entries to decode the singleton, and then to decode the rest.
+void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
+ const Filter &Best) const {
+ EncodingIDAndOpcode Opc = Best.getSingletonOpc();
+
+ // complex singletons need predicate checks from the first singleton
+ // to refer forward to the variable filterchooser that follows.
+ TableInfo.FixupStack.emplace_back();
+
+ emitSingletonTableEntry(TableInfo, Opc);
+
+ resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
+ TableInfo.Table.size());
+ TableInfo.FixupStack.pop_back();
+
+ Best.getVariableFC().emitTableEntries(TableInfo);
+}
+
+// Assign a single filter and run with it. Top level API client can initialize
+// with a single filter to start the filtering process.
+void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
+ bool mixed) {
+ Filters.clear();
+ Filters.emplace_back(*this, startBit, numBit, true);
+ BestIndex = 0; // Sole Filter instance to choose from.
+ bestFilter().recurse();
+}
+
+// reportRegion is a helper function for filterProcessor to mark a region as
+// eligible for use as a filter region.
+void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
+ unsigned BitIndex, bool AllowMixed) {
+ if (RA == ATTR_MIXED && AllowMixed)
+ Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
+ else if (RA == ATTR_ALL_SET && !AllowMixed)
+ Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
+}
+
+// FilterProcessor scans the well-known encoding bits of the instructions and
+// builds up a list of candidate filters. It chooses the best filter and
+// recursively descends down the decoding tree.
+bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
+ Filters.clear();
+ BestIndex = -1;
+ unsigned numInstructions = Opcodes.size();
+
+ assert(numInstructions && "Filter created with no instructions");
+
+ // No further filtering is necessary.
+ if (numInstructions == 1)
+ return true;
+
+ // Heuristics. See also doFilter()'s "Heuristics" comment when num of
+ // instructions is 3.
+ if (AllowMixed && !Greedy) {
+ assert(numInstructions == 3);
+
+ for (auto Opcode : Opcodes) {
+ std::vector<unsigned> StartBits;
+ std::vector<unsigned> EndBits;
+ std::vector<uint64_t> FieldVals;
+ insn_t Insn;
+
+ insnWithID(Insn, Opcode.EncodingID);
+
+ // Look for islands of undecoded bits of any instruction.
+ if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
+ // Found an instruction with island(s). Now just assign a filter.
+ runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
+ return true;
+ }
+ }
+ }
+
+ unsigned BitIndex;
+
+ // We maintain BIT_WIDTH copies of the bitAttrs automaton.
+ // The automaton consumes the corresponding bit from each
+ // instruction.
+ //
+ // Input symbols: 0, 1, and _ (unset).
+ // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
+ // Initial state: NONE.
+ //
+ // (NONE) ------- [01] -> (ALL_SET)
+ // (NONE) ------- _ ----> (ALL_UNSET)
+ // (ALL_SET) ---- [01] -> (ALL_SET)
+ // (ALL_SET) ---- _ ----> (MIXED)
+ // (ALL_UNSET) -- [01] -> (MIXED)
+ // (ALL_UNSET) -- _ ----> (ALL_UNSET)
+ // (MIXED) ------ . ----> (MIXED)
+ // (FILTERED)---- . ----> (FILTERED)
+
+ std::vector<bitAttr_t> bitAttrs;
+
+ // FILTERED bit positions provide no entropy and are not worthy of pursuing.
+ // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
+ for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
+ if (FilterBitValues[BitIndex] == BIT_TRUE ||
+ FilterBitValues[BitIndex] == BIT_FALSE)
+ bitAttrs.push_back(ATTR_FILTERED);
+ else
+ bitAttrs.push_back(ATTR_NONE);
+
+ for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
+ insn_t insn;
+
+ insnWithID(insn, Opcodes[InsnIndex].EncodingID);
+
+ for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
+ switch (bitAttrs[BitIndex]) {
+ case ATTR_NONE:
+ if (insn[BitIndex] == BIT_UNSET)
+ bitAttrs[BitIndex] = ATTR_ALL_UNSET;
+ else
+ bitAttrs[BitIndex] = ATTR_ALL_SET;
+ break;
+ case ATTR_ALL_SET:
+ if (insn[BitIndex] == BIT_UNSET)
+ bitAttrs[BitIndex] = ATTR_MIXED;
+ break;
+ case ATTR_ALL_UNSET:
+ if (insn[BitIndex] != BIT_UNSET)
+ bitAttrs[BitIndex] = ATTR_MIXED;
+ break;
+ case ATTR_MIXED:
+ case ATTR_FILTERED:
+ break;
+ }
+ }
+ }
+
+ // The regionAttr automaton consumes the bitAttrs automatons' state,
+ // lowest-to-highest.
+ //
+ // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
+ // States: NONE, ALL_SET, MIXED
+ // Initial state: NONE
+ //
+ // (NONE) ----- F --> (NONE)
+ // (NONE) ----- S --> (ALL_SET) ; and set region start
+ // (NONE) ----- U --> (NONE)
+ // (NONE) ----- M --> (MIXED) ; and set region start
+ // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
+ // (ALL_SET) -- S --> (ALL_SET)
+ // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
+ // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
+ // (MIXED) ---- F --> (NONE) ; and report a MIXED region
+ // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
+ // (MIXED) ---- U --> (NONE) ; and report a MIXED region
+ // (MIXED) ---- M --> (MIXED)
+
+ bitAttr_t RA = ATTR_NONE;
+ unsigned StartBit = 0;
+
+ for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
+ bitAttr_t bitAttr = bitAttrs[BitIndex];
+
+ assert(bitAttr != ATTR_NONE && "Bit without attributes");
+
+ switch (RA) {
+ case ATTR_NONE:
+ switch (bitAttr) {
+ case ATTR_FILTERED:
+ break;
+ case ATTR_ALL_SET:
+ StartBit = BitIndex;
+ RA = ATTR_ALL_SET;
+ break;
+ case ATTR_ALL_UNSET:
+ break;
+ case ATTR_MIXED:
+ StartBit = BitIndex;
+ RA = ATTR_MIXED;
+ break;
+ default:
+ llvm_unreachable("Unexpected bitAttr!");
+ }
+ break;
+ case ATTR_ALL_SET:
+ switch (bitAttr) {
+ case ATTR_FILTERED:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ RA = ATTR_NONE;
+ break;
+ case ATTR_ALL_SET:
+ break;
+ case ATTR_ALL_UNSET:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ RA = ATTR_NONE;
+ break;
+ case ATTR_MIXED:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ StartBit = BitIndex;
+ RA = ATTR_MIXED;
+ break;
+ default:
+ llvm_unreachable("Unexpected bitAttr!");
+ }
+ break;
+ case ATTR_MIXED:
+ switch (bitAttr) {
+ case ATTR_FILTERED:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ StartBit = BitIndex;
+ RA = ATTR_NONE;
+ break;
+ case ATTR_ALL_SET:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ StartBit = BitIndex;
+ RA = ATTR_ALL_SET;
+ break;
+ case ATTR_ALL_UNSET:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ RA = ATTR_NONE;
+ break;
+ case ATTR_MIXED:
+ break;
+ default:
+ llvm_unreachable("Unexpected bitAttr!");
+ }
+ break;
+ case ATTR_ALL_UNSET:
+ llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
+ case ATTR_FILTERED:
+ llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
+ }
+ }
+
+ // At the end, if we're still in ALL_SET or MIXED states, report a region
+ switch (RA) {
+ case ATTR_NONE:
+ break;
+ case ATTR_FILTERED:
+ break;
+ case ATTR_ALL_SET:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ break;
+ case ATTR_ALL_UNSET:
+ break;
+ case ATTR_MIXED:
+ reportRegion(RA, StartBit, BitIndex, AllowMixed);
+ break;
+ }
+
+ // We have finished with the filter processings. Now it's time to choose
+ // the best performing filter.
+ BestIndex = 0;
+ bool AllUseless = true;
+ unsigned BestScore = 0;
+
+ for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
+ unsigned Usefulness = Filters[i].usefulness();
+
+ if (Usefulness)
+ AllUseless = false;
+
+ if (Usefulness > BestScore) {
+ BestIndex = i;
+ BestScore = Usefulness;
+ }
+ }
+
+ if (!AllUseless)
+ bestFilter().recurse();
+
+ return !AllUseless;
+} // end of FilterChooser::filterProcessor(bool)
+
+// Decides on the best configuration of filter(s) to use in order to decode
+// the instructions. A conflict of instructions may occur, in which case we
+// dump the conflict set to the standard error.
+void FilterChooser::doFilter() {
+ unsigned Num = Opcodes.size();
+ assert(Num && "FilterChooser created with no instructions");
+
+ // Try regions of consecutive known bit values first.
+ if (filterProcessor(false))
+ return;
+
+ // Then regions of mixed bits (both known and unitialized bit values allowed).
+ if (filterProcessor(true))
+ return;
+
+ // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
+ // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
+ // well-known encoding pattern. In such case, we backtrack and scan for the
+ // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
+ if (Num == 3 && filterProcessor(true, false))
+ return;
+
+ // If we come to here, the instruction decoding has failed.
+ // Set the BestIndex to -1 to indicate so.
+ BestIndex = -1;
+}
+
+// emitTableEntries - Emit state machine entries to decode our share of
+// instructions.
+void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
+ if (Opcodes.size() == 1) {
+ // There is only one instruction in the set, which is great!
+ // Call emitSingletonDecoder() to see whether there are any remaining
+ // encodings bits.
+ emitSingletonTableEntry(TableInfo, Opcodes[0]);
+ return;
+ }
+
+ // Choose the best filter to do the decodings!
+ if (BestIndex != -1) {
+ const Filter &Best = Filters[BestIndex];
+ if (Best.getNumFiltered() == 1)
+ emitSingletonTableEntry(TableInfo, Best);
+ else
+ Best.emitTableEntry(TableInfo);
+ return;
+ }
+
+ // We don't know how to decode these instructions! Dump the
+ // conflict set and bail.
+
+ // Print out useful conflict information for postmortem analysis.
+ errs() << "Decoding Conflict:\n";
+
+ dumpStack(errs(), "\t\t");
+
+ for (auto Opcode : Opcodes) {
+ errs() << '\t';
+ emitNameWithID(errs(), Opcode.EncodingID);
+ errs() << " ";
+ dumpBits(
+ errs(),
+ getBitsField(*AllInstructions[Opcode.EncodingID].EncodingDef, "Inst"));
+ errs() << '\n';
+ }
+}
+
+static std::string findOperandDecoderMethod(Record *Record) {
+ std::string Decoder;
+
+ RecordVal *DecoderString = Record->getValue("DecoderMethod");
+ StringInit *String = DecoderString ?
+ dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
+ if (String) {
+ Decoder = std::string(String->getValue());
+ if (!Decoder.empty())
+ return Decoder;
+ }
+
+ if (Record->isSubClassOf("RegisterOperand"))
+ Record = Record->getValueAsDef("RegClass");
+
+ if (Record->isSubClassOf("RegisterClass")) {
+ Decoder = "Decode" + Record->getName().str() + "RegisterClass";
+ } else if (Record->isSubClassOf("PointerLikeRegClass")) {
+ Decoder = "DecodePointerLikeRegClass" +
+ utostr(Record->getValueAsInt("RegClassKind"));
+ }
+
+ return Decoder;
+}
+
+OperandInfo getOpInfo(Record *TypeRecord) {
+ std::string Decoder = findOperandDecoderMethod(TypeRecord);
+
+ RecordVal *HasCompleteDecoderVal = TypeRecord->getValue("hasCompleteDecoder");
+ BitInit *HasCompleteDecoderBit =
+ HasCompleteDecoderVal
+ ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
+ : nullptr;
+ bool HasCompleteDecoder =
+ HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
+
+ return OperandInfo(Decoder, HasCompleteDecoder);
+}
+
+void parseVarLenInstOperand(const Record &Def,
+ std::vector<OperandInfo> &Operands,
+ const CodeGenInstruction &CGI) {
+
+ const RecordVal *RV = Def.getValue("Inst");
+ VarLenInst VLI(cast<DagInit>(RV->getValue()), RV);
+ SmallVector<int> TiedTo;
+
+ for (unsigned Idx = 0; Idx < CGI.Operands.size(); ++Idx) {
+ auto &Op = CGI.Operands[Idx];
+ if (Op.MIOperandInfo && Op.MIOperandInfo->getNumArgs() > 0)
+ for (auto *Arg : Op.MIOperandInfo->getArgs())
+ Operands.push_back(getOpInfo(cast<DefInit>(Arg)->getDef()));
+ else
+ Operands.push_back(getOpInfo(Op.Rec));
+
+ int TiedReg = Op.getTiedRegister();
+ TiedTo.push_back(-1);
+ if (TiedReg != -1) {
+ TiedTo[Idx] = TiedReg;
+ TiedTo[TiedReg] = Idx;
+ }
+ }
+
+ unsigned CurrBitPos = 0;
+ for (auto &EncodingSegment : VLI) {
+ unsigned Offset = 0;
+ StringRef OpName;
+
+ if (const StringInit *SI = dyn_cast<StringInit>(EncodingSegment.Value)) {
+ OpName = SI->getValue();
+ } else if (const DagInit *DI = dyn_cast<DagInit>(EncodingSegment.Value)) {
+ OpName = cast<StringInit>(DI->getArg(0))->getValue();
+ Offset = cast<IntInit>(DI->getArg(2))->getValue();
+ }
+
+ if (!OpName.empty()) {
+ auto OpSubOpPair =
+ const_cast<CodeGenInstruction &>(CGI).Operands.ParseOperandName(
+ OpName);
+ unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(OpSubOpPair);
+ Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
+
+ int TiedReg = TiedTo[OpSubOpPair.first];
+ if (TiedReg != -1) {
+ unsigned OpIdx = CGI.Operands.getFlattenedOperandNumber(
+ std::make_pair(TiedReg, OpSubOpPair.second));
+ Operands[OpIdx].addField(CurrBitPos, EncodingSegment.BitWidth, Offset);
+ }
+ }
+
+ CurrBitPos += EncodingSegment.BitWidth;
+ }
+}
+
+static unsigned
+populateInstruction(CodeGenTarget &Target, const Record &EncodingDef,
+ const CodeGenInstruction &CGI, unsigned Opc,
+ std::map<unsigned, std::vector<OperandInfo>> &Operands,
+ bool IsVarLenInst) {
+ const Record &Def = *CGI.TheDef;
+ // If all the bit positions are not specified; do not decode this instruction.
+ // We are bound to fail! For proper disassembly, the well-known encoding bits
+ // of the instruction must be fully specified.
+
+ BitsInit &Bits = getBitsField(EncodingDef, "Inst");
+ if (Bits.allInComplete())
+ return 0;
+
+ std::vector<OperandInfo> InsnOperands;
+
+ // If the instruction has specified a custom decoding hook, use that instead
+ // of trying to auto-generate the decoder.
+ StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod");
+ if (InstDecoder != "") {
+ bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder");
+ InsnOperands.push_back(
+ OperandInfo(std::string(InstDecoder), HasCompleteInstDecoder));
+ Operands[Opc] = InsnOperands;
+ return Bits.getNumBits();
+ }
+
+ // Generate a description of the operand of the instruction that we know
+ // how to decode automatically.
+ // FIXME: We'll need to have a way to manually override this as needed.
+
+ // Gather the outputs/inputs of the instruction, so we can find their
+ // positions in the encoding. This assumes for now that they appear in the
+ // MCInst in the order that they're listed.
+ std::vector<std::pair<Init*, StringRef>> InOutOperands;
+ DagInit *Out = Def.getValueAsDag("OutOperandList");
+ DagInit *In = Def.getValueAsDag("InOperandList");
+ for (unsigned i = 0; i < Out->getNumArgs(); ++i)
+ InOutOperands.push_back(
+ std::make_pair(Out->getArg(i), Out->getArgNameStr(i)));
+ for (unsigned i = 0; i < In->getNumArgs(); ++i)
+ InOutOperands.push_back(
+ std::make_pair(In->getArg(i), In->getArgNameStr(i)));
+
+ // Search for tied operands, so that we can correctly instantiate
+ // operands that are not explicitly represented in the encoding.
+ std::map<std::string, std::string> TiedNames;
+ for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
+ int tiedTo = CGI.Operands[i].getTiedRegister();
+ if (tiedTo != -1) {
+ std::pair<unsigned, unsigned> SO =
+ CGI.Operands.getSubOperandNumber(tiedTo);
+ TiedNames[std::string(InOutOperands[i].second)] =
+ std::string(InOutOperands[SO.first].second);
+ TiedNames[std::string(InOutOperands[SO.first].second)] =
+ std::string(InOutOperands[i].second);
+ }
+ }
+
+ if (IsVarLenInst) {
+ parseVarLenInstOperand(EncodingDef, InsnOperands, CGI);
+ } else {
+ std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
+ std::set<std::string> NumberedInsnOperandsNoTie;
+ if (Target.getInstructionSet()->getValueAsBit(
+ "decodePositionallyEncodedOperands")) {
+ const std::vector<RecordVal> &Vals = Def.getValues();
+ unsigned NumberedOp = 0;
+
+ std::set<unsigned> NamedOpIndices;
+ if (Target.getInstructionSet()->getValueAsBit(
+ "noNamedPositionallyEncodedOperands"))
+ // Collect the set of operand indices that might correspond to named
+ // operand, and skip these when assigning operands based on position.
+ for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+ unsigned OpIdx;
+ if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
+ continue;
+
+ NamedOpIndices.insert(OpIdx);
+ }
+
+ for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+ // Ignore fixed fields in the record, we're looking for values like:
+ // bits<5> RST = { ?, ?, ?, ?, ? };
+ if (Vals[i].isNonconcreteOK() || Vals[i].getValue()->isComplete())
+ continue;
+
+ // Determine if Vals[i] actually contributes to the Inst encoding.
+ unsigned bi = 0;
+ for (; bi < Bits.getNumBits(); ++bi) {
+ VarInit *Var = nullptr;
+ VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
+ if (BI)
+ Var = dyn_cast<VarInit>(BI->getBitVar());
+ else
+ Var = dyn_cast<VarInit>(Bits.getBit(bi));
+
+ if (Var && Var->getName() == Vals[i].getName())
+ break;
+ }
+
+ if (bi == Bits.getNumBits())
+ continue;
+
+ // Skip variables that correspond to explicitly-named operands.
+ unsigned OpIdx;
+ if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
+ continue;
+
+ // Get the bit range for this operand:
+ unsigned bitStart = bi++, bitWidth = 1;
+ for (; bi < Bits.getNumBits(); ++bi) {
+ VarInit *Var = nullptr;
+ VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
+ if (BI)
+ Var = dyn_cast<VarInit>(BI->getBitVar());
+ else
+ Var = dyn_cast<VarInit>(Bits.getBit(bi));
+
+ if (!Var)
+ break;
+
+ if (Var->getName() != Vals[i].getName())
+ break;
+
+ ++bitWidth;
+ }
+
+ unsigned NumberOps = CGI.Operands.size();
+ while (NumberedOp < NumberOps &&
+ (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
+ (!NamedOpIndices.empty() &&
+ NamedOpIndices.count(
+ CGI.Operands.getSubOperandNumber(NumberedOp).first))))
+ ++NumberedOp;
+
+ OpIdx = NumberedOp++;
+
+ // OpIdx now holds the ordered operand number of Vals[i].
+ std::pair<unsigned, unsigned> SO =
+ CGI.Operands.getSubOperandNumber(OpIdx);
+ const std::string &Name = CGI.Operands[SO.first].Name;
+
+ LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
+ << ": " << Name << "(" << SO.first << ", "
+ << SO.second << ") => " << Vals[i].getName() << "\n");
+
+ std::string Decoder;
+ Record *TypeRecord = CGI.Operands[SO.first].Rec;
+
+ RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
+ StringInit *String =
+ DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
+ : nullptr;
+ if (String && String->getValue() != "")
+ Decoder = std::string(String->getValue());
+
+ if (Decoder == "" && CGI.Operands[SO.first].MIOperandInfo &&
+ CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
+ Init *Arg = CGI.Operands[SO.first].MIOperandInfo->getArg(SO.second);
+ if (DefInit *DI = cast<DefInit>(Arg))
+ TypeRecord = DI->getDef();
+ }
+
+ bool isReg = false;
+ if (TypeRecord->isSubClassOf("RegisterOperand"))
+ TypeRecord = TypeRecord->getValueAsDef("RegClass");
+ if (TypeRecord->isSubClassOf("RegisterClass")) {
+ Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
+ isReg = true;
+ } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
+ Decoder = "DecodePointerLikeRegClass" +
+ utostr(TypeRecord->getValueAsInt("RegClassKind"));
+ isReg = true;
+ }
+
+ DecoderString = TypeRecord->getValue("DecoderMethod");
+ String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue())
+ : nullptr;
+ if (!isReg && String && String->getValue() != "")
+ Decoder = std::string(String->getValue());
+
+ RecordVal *HasCompleteDecoderVal =
+ TypeRecord->getValue("hasCompleteDecoder");
+ BitInit *HasCompleteDecoderBit =
+ HasCompleteDecoderVal
+ ? dyn_cast<BitInit>(HasCompleteDecoderVal->getValue())
+ : nullptr;
+ bool HasCompleteDecoder =
+ HasCompleteDecoderBit ? HasCompleteDecoderBit->getValue() : true;
+
+ OperandInfo OpInfo(Decoder, HasCompleteDecoder);
+ OpInfo.addField(bitStart, bitWidth, 0);
+
+ NumberedInsnOperands[Name].push_back(OpInfo);
+
+ // FIXME: For complex operands with custom decoders we can't handle tied
+ // sub-operands automatically. Skip those here and assume that this is
+ // fixed up elsewhere.
+ if (CGI.Operands[SO.first].MIOperandInfo &&
+ CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && String &&
+ String->getValue() != "")
+ NumberedInsnOperandsNoTie.insert(Name);
+ }
+ }
+
+ // For each operand, see if we can figure out where it is encoded.
+ for (const auto &Op : InOutOperands) {
+ if (!NumberedInsnOperands[std::string(Op.second)].empty()) {
+ llvm::append_range(InsnOperands,
+ NumberedInsnOperands[std::string(Op.second)]);
+ continue;
+ }
+ if (!NumberedInsnOperands[TiedNames[std::string(Op.second)]].empty()) {
+ if (!NumberedInsnOperandsNoTie.count(
+ TiedNames[std::string(Op.second)])) {
+ // Figure out to which (sub)operand we're tied.
+ unsigned i =
+ CGI.Operands.getOperandNamed(TiedNames[std::string(Op.second)]);
+ int tiedTo = CGI.Operands[i].getTiedRegister();
+ if (tiedTo == -1) {
+ i = CGI.Operands.getOperandNamed(Op.second);
+ tiedTo = CGI.Operands[i].getTiedRegister();
+ }
+
+ if (tiedTo != -1) {
+ std::pair<unsigned, unsigned> SO =
+ CGI.Operands.getSubOperandNumber(tiedTo);
+
+ InsnOperands.push_back(
+ NumberedInsnOperands[TiedNames[std::string(Op.second)]]
+ [SO.second]);
+ }
+ }
+ continue;
+ }
+
+ // At this point, we can locate the decoder field, but we need to know how
+ // to interpret it. As a first step, require the target to provide
+ // callbacks for decoding register classes.
+
+ OperandInfo OpInfo = getOpInfo(cast<DefInit>(Op.first)->getDef());
+
+ // Some bits of the operand may be required to be 1 depending on the
+ // instruction's encoding. Collect those bits.
+ if (const RecordVal *EncodedValue = EncodingDef.getValue(Op.second))
+ if (const BitsInit *OpBits =
+ dyn_cast<BitsInit>(EncodedValue->getValue()))
+ for (unsigned I = 0; I < OpBits->getNumBits(); ++I)
+ if (const BitInit *OpBit = dyn_cast<BitInit>(OpBits->getBit(I)))
+ if (OpBit->getValue())
+ OpInfo.InitValue |= 1ULL << I;
+
+ unsigned Base = ~0U;
+ unsigned Width = 0;
+ unsigned Offset = 0;
+
+ for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
+ VarInit *Var = nullptr;
+ VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
+ if (BI)
+ Var = dyn_cast<VarInit>(BI->getBitVar());
+ else
+ Var = dyn_cast<VarInit>(Bits.getBit(bi));
+
+ if (!Var) {
+ if (Base != ~0U) {
+ OpInfo.addField(Base, Width, Offset);
+ Base = ~0U;
+ Width = 0;
+ Offset = 0;
+ }
+ continue;
+ }
+
+ if ((Var->getName() != Op.second &&
+ Var->getName() != TiedNames[std::string(Op.second)])) {
+ if (Base != ~0U) {
+ OpInfo.addField(Base, Width, Offset);
+ Base = ~0U;
+ Width = 0;
+ Offset = 0;
+ }
+ continue;
+ }
+
+ if (Base == ~0U) {
+ Base = bi;
+ Width = 1;
+ Offset = BI ? BI->getBitNum() : 0;
+ } else if (BI && BI->getBitNum() != Offset + Width) {
+ OpInfo.addField(Base, Width, Offset);
+ Base = bi;
+ Width = 1;
+ Offset = BI->getBitNum();
+ } else {
+ ++Width;
+ }
+ }
+
+ if (Base != ~0U)
+ OpInfo.addField(Base, Width, Offset);
+
+ if (OpInfo.numFields() > 0)
+ InsnOperands.push_back(OpInfo);
+ }
+ }
+
+ Operands[Opc] = InsnOperands;
+
+#if 0
+ LLVM_DEBUG({
+ // Dumps the instruction encoding bits.
+ dumpBits(errs(), Bits);
+
+ errs() << '\n';
+
+ // Dumps the list of operand info.
+ for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
+ const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
+ const std::string &OperandName = Info.Name;
+ const Record &OperandDef = *Info.Rec;
+
+ errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
+ }
+ });
+#endif
+
+ return Bits.getNumBits();
+}
+
+// emitFieldFromInstruction - Emit the templated helper function
+// fieldFromInstruction().
+// On Windows we make sure that this function is not inlined when
+// using the VS compiler. It has a bug which causes the function
+// to be optimized out in some circustances. See llvm.org/pr38292
+static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
+ OS << "// Helper functions for extracting fields from encoded instructions.\n"
+ << "// InsnType must either be integral or an APInt-like object that "
+ "must:\n"
+ << "// * be default-constructible and copy-constructible\n"
+ << "// * be constructible from a uint64_t\n"
+ << "// * be constructible from an APInt (this can be private)\n"
+ << "// * Support insertBits(bits, startBit, numBits)\n"
+ << "// * Support extractBitsAsZExtValue(numBits, startBit)\n"
+ << "// * be convertible to bool\n"
+ << "// * Support the ~, &, ==, and != operators with other objects of "
+ "the same type\n"
+ << "// * Support put (<<) to raw_ostream&\n"
+ << "template <typename InsnType>\n"
+ << "#if defined(_MSC_VER) && !defined(__clang__)\n"
+ << "__declspec(noinline)\n"
+ << "#endif\n"
+ << "static std::enable_if_t<std::is_integral<InsnType>::value, InsnType>\n"
+ << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
+ << " unsigned numBits) {\n"
+ << " assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
+ "extractions!\");\n"
+ << " assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
+ << " \"Instruction field out of bounds!\");\n"
+ << " InsnType fieldMask;\n"
+ << " if (numBits == sizeof(InsnType) * 8)\n"
+ << " fieldMask = (InsnType)(-1LL);\n"
+ << " else\n"
+ << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
+ << " return (insn & fieldMask) >> startBit;\n"
+ << "}\n"
+ << "\n"
+ << "template <typename InsnType>\n"
+ << "static std::enable_if_t<!std::is_integral<InsnType>::value, "
+ "uint64_t>\n"
+ << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
+ << " unsigned numBits) {\n"
+ << " return insn.extractBitsAsZExtValue(numBits, startBit);\n"
+ << "}\n\n";
+}
+
+// emitInsertBits - Emit the templated helper function insertBits().
+static void emitInsertBits(formatted_raw_ostream &OS) {
+ OS << "// Helper function for inserting bits extracted from an encoded "
+ "instruction into\n"
+ << "// a field.\n"
+ << "template <typename InsnType>\n"
+ << "static std::enable_if_t<std::is_integral<InsnType>::value>\n"
+ << "insertBits(InsnType &field, InsnType bits, unsigned startBit, "
+ "unsigned numBits) {\n"
+ << " assert(startBit + numBits <= sizeof field * 8);\n"
+ << " field |= (InsnType)bits << startBit;\n"
+ << "}\n"
+ << "\n"
+ << "template <typename InsnType>\n"
+ << "static std::enable_if_t<!std::is_integral<InsnType>::value>\n"
+ << "insertBits(InsnType &field, uint64_t bits, unsigned startBit, "
+ "unsigned numBits) {\n"
+ << " field.insertBits(bits, startBit, numBits);\n"
+ << "}\n\n";
+}
+
+// emitDecodeInstruction - Emit the templated helper function
+// decodeInstruction().
+static void emitDecodeInstruction(formatted_raw_ostream &OS,
+ bool IsVarLenInst) {
+ OS << "template <typename InsnType>\n"
+ << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
+ "MCInst &MI,\n"
+ << " InsnType insn, uint64_t "
+ "Address,\n"
+ << " const MCDisassembler *DisAsm,\n"
+ << " const MCSubtargetInfo &STI";
+ if (IsVarLenInst) {
+ OS << ",\n"
+ << " llvm::function_ref<void(APInt "
+ "&,"
+ << " uint64_t)> makeUp";
+ }
+ OS << ") {\n"
+ << " const FeatureBitset &Bits = STI.getFeatureBits();\n"
+ << "\n"
+ << " const uint8_t *Ptr = DecodeTable;\n"
+ << " uint64_t CurFieldValue = 0;\n"
+ << " DecodeStatus S = MCDisassembler::Success;\n"
+ << " while (true) {\n"
+ << " ptrdiff_t Loc = Ptr - DecodeTable;\n"
+ << " switch (*Ptr) {\n"
+ << " default:\n"
+ << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
+ << " return MCDisassembler::Fail;\n"
+ << " case MCD::OPC_ExtractField: {\n"
+ << " unsigned Start = *++Ptr;\n"
+ << " unsigned Len = *++Ptr;\n"
+ << " ++Ptr;\n";
+ if (IsVarLenInst)
+ OS << " makeUp(insn, Start + Len);\n";
+ OS << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
+ << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
+ "\", \"\n"
+ << " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
+ << " break;\n"
+ << " }\n"
+ << " case MCD::OPC_FilterValue: {\n"
+ << " // Decode the field value.\n"
+ << " unsigned Len;\n"
+ << " uint64_t Val = decodeULEB128(++Ptr, &Len);\n"
+ << " Ptr += Len;\n"
+ << " // NumToSkip is a plain 24-bit integer.\n"
+ << " unsigned NumToSkip = *Ptr++;\n"
+ << " NumToSkip |= (*Ptr++) << 8;\n"
+ << " NumToSkip |= (*Ptr++) << 16;\n"
+ << "\n"
+ << " // Perform the filter operation.\n"
+ << " if (Val != CurFieldValue)\n"
+ << " Ptr += NumToSkip;\n"
+ << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
+ "\", \" << NumToSkip\n"
+ << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
+ ": \"PASS:\")\n"
+ << " << \" continuing at \" << (Ptr - DecodeTable) << "
+ "\"\\n\");\n"
+ << "\n"
+ << " break;\n"
+ << " }\n"
+ << " case MCD::OPC_CheckField: {\n"
+ << " unsigned Start = *++Ptr;\n"
+ << " unsigned Len = *++Ptr;\n";
+ if (IsVarLenInst)
+ OS << " makeUp(insn, Start + Len);\n";
+ OS << " uint64_t FieldValue = fieldFromInstruction(insn, Start, Len);\n"
+ << " // Decode the field value.\n"
+ << " unsigned PtrLen = 0;\n"
+ << " uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen);\n"
+ << " Ptr += PtrLen;\n"
+ << " // NumToSkip is a plain 24-bit integer.\n"
+ << " unsigned NumToSkip = *Ptr++;\n"
+ << " NumToSkip |= (*Ptr++) << 8;\n"
+ << " NumToSkip |= (*Ptr++) << 16;\n"
+ << "\n"
+ << " // If the actual and expected values don't match, skip.\n"
+ << " if (ExpectedValue != FieldValue)\n"
+ << " Ptr += NumToSkip;\n"
+ << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
+ "\", \"\n"
+ << " << Len << \", \" << ExpectedValue << \", \" << "
+ "NumToSkip\n"
+ << " << \"): FieldValue = \" << FieldValue << \", "
+ "ExpectedValue = \"\n"
+ << " << ExpectedValue << \": \"\n"
+ << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
+ "\"FAIL\\n\"));\n"
+ << " break;\n"
+ << " }\n"
+ << " case MCD::OPC_CheckPredicate: {\n"
+ << " unsigned Len;\n"
+ << " // Decode the Predicate Index value.\n"
+ << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
+ << " Ptr += Len;\n"
+ << " // NumToSkip is a plain 24-bit integer.\n"
+ << " unsigned NumToSkip = *Ptr++;\n"
+ << " NumToSkip |= (*Ptr++) << 8;\n"
+ << " NumToSkip |= (*Ptr++) << 16;\n"
+ << " // Check the predicate.\n"
+ << " bool Pred;\n"
+ << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
+ << " Ptr += NumToSkip;\n"
+ << " (void)Pred;\n"
+ << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
+ "<< \"): \"\n"
+ << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
+ << "\n"
+ << " break;\n"
+ << " }\n"
+ << " case MCD::OPC_Decode: {\n"
+ << " unsigned Len;\n"
+ << " // Decode the Opcode value.\n"
+ << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
+ << " Ptr += Len;\n"
+ << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
+ << " Ptr += Len;\n"
+ << "\n"
+ << " MI.clear();\n"
+ << " MI.setOpcode(Opc);\n"
+ << " bool DecodeComplete;\n";
+ if (IsVarLenInst) {
+ OS << " Len = InstrLenTable[Opc];\n"
+ << " makeUp(insn, Len);\n";
+ }
+ OS << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
+ "DecodeComplete);\n"
+ << " assert(DecodeComplete);\n"
+ << "\n"
+ << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
+ << " << \", using decoder \" << DecodeIdx << \": \"\n"
+ << " << (S != MCDisassembler::Fail ? \"PASS\" : "
+ "\"FAIL\") << \"\\n\");\n"
+ << " return S;\n"
+ << " }\n"
+ << " case MCD::OPC_TryDecode: {\n"
+ << " unsigned Len;\n"
+ << " // Decode the Opcode value.\n"
+ << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
+ << " Ptr += Len;\n"
+ << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
+ << " Ptr += Len;\n"
+ << " // NumToSkip is a plain 24-bit integer.\n"
+ << " unsigned NumToSkip = *Ptr++;\n"
+ << " NumToSkip |= (*Ptr++) << 8;\n"
+ << " NumToSkip |= (*Ptr++) << 16;\n"
+ << "\n"
+ << " // Perform the decode operation.\n"
+ << " MCInst TmpMI;\n"
+ << " TmpMI.setOpcode(Opc);\n"
+ << " bool DecodeComplete;\n"
+ << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
+ "DecodeComplete);\n"
+ << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
+ "Opc\n"
+ << " << \", using decoder \" << DecodeIdx << \": \");\n"
+ << "\n"
+ << " if (DecodeComplete) {\n"
+ << " // Decoding complete.\n"
+ << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
+ "\"FAIL\") << \"\\n\");\n"
+ << " MI = TmpMI;\n"
+ << " return S;\n"
+ << " } else {\n"
+ << " assert(S == MCDisassembler::Fail);\n"
+ << " // If the decoding was incomplete, skip.\n"
+ << " Ptr += NumToSkip;\n"
+ << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
+ "DecodeTable) << \"\\n\");\n"
+ << " // Reset decode status. This also drops a SoftFail status "
+ "that could be\n"
+ << " // set before the decode attempt.\n"
+ << " S = MCDisassembler::Success;\n"
+ << " }\n"
+ << " break;\n"
+ << " }\n"
+ << " case MCD::OPC_SoftFail: {\n"
+ << " // Decode the mask values.\n"
+ << " unsigned Len;\n"
+ << " uint64_t PositiveMask = decodeULEB128(++Ptr, &Len);\n"
+ << " Ptr += Len;\n"
+ << " uint64_t NegativeMask = decodeULEB128(Ptr, &Len);\n"
+ << " Ptr += Len;\n"
+ << " bool Fail = (insn & PositiveMask) != 0 || (~insn & "
+ "NegativeMask) != 0;\n"
+ << " if (Fail)\n"
+ << " S = MCDisassembler::SoftFail;\n"
+ << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
+ "\"FAIL\\n\" : \"PASS\\n\"));\n"
+ << " break;\n"
+ << " }\n"
+ << " case MCD::OPC_Fail: {\n"
+ << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
+ << " return MCDisassembler::Fail;\n"
+ << " }\n"
+ << " }\n"
+ << " }\n"
+ << " llvm_unreachable(\"bogosity detected in disassembler state "
+ "machine!\");\n"
+ << "}\n\n";
+}
+
+// Emits disassembler code for instruction decoding.
+void DecoderEmitter::run(raw_ostream &o) {
+ formatted_raw_ostream OS(o);
+ OS << "#include \"llvm/MC/MCInst.h\"\n";
+ OS << "#include \"llvm/MC/MCSubtargetInfo.h\"\n";
+ OS << "#include \"llvm/MC/SubtargetFeature.h\"\n";
+ OS << "#include \"llvm/Support/DataTypes.h\"\n";
+ OS << "#include \"llvm/Support/Debug.h\"\n";
+ OS << "#include \"llvm/Support/LEB128.h\"\n";
+ OS << "#include \"llvm/Support/raw_ostream.h\"\n";
+ OS << "#include <assert.h>\n";
+ OS << '\n';
+ OS << "namespace llvm {\n\n";
+
+ emitFieldFromInstruction(OS);
+ emitInsertBits(OS);
+
+ Target.reverseBitsForLittleEndianEncoding();
+
+ // Parameterize the decoders based on namespace and instruction width.
+ std::set<StringRef> HwModeNames;
+ const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
+ NumberedEncodings.reserve(NumberedInstructions.size());
+ DenseMap<Record *, unsigned> IndexOfInstruction;
+ // First, collect all HwModes referenced by the target.
+ for (const auto &NumberedInstruction : NumberedInstructions) {
+ IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
+
+ if (const RecordVal *RV =
+ NumberedInstruction->TheDef->getValue("EncodingInfos")) {
+ if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
+ const CodeGenHwModes &HWM = Target.getHwModes();
+ EncodingInfoByHwMode EBM(DI->getDef(), HWM);
+ for (auto &KV : EBM)
+ HwModeNames.insert(HWM.getMode(KV.first).Name);
+ }
+ }
+ }
+
+ // If HwModeNames is empty, add the empty string so we always have one HwMode.
+ if (HwModeNames.empty())
+ HwModeNames.insert("");
+
+ for (const auto &NumberedInstruction : NumberedInstructions) {
+ IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
+
+ if (const RecordVal *RV =
+ NumberedInstruction->TheDef->getValue("EncodingInfos")) {
+ if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
+ const CodeGenHwModes &HWM = Target.getHwModes();
+ EncodingInfoByHwMode EBM(DI->getDef(), HWM);
+ for (auto &KV : EBM) {
+ NumberedEncodings.emplace_back(KV.second, NumberedInstruction,
+ HWM.getMode(KV.first).Name);
+ HwModeNames.insert(HWM.getMode(KV.first).Name);
+ }
+ continue;
+ }
+ }
+ // This instruction is encoded the same on all HwModes. Emit it for all
+ // HwModes.
+ for (StringRef HwModeName : HwModeNames)
+ NumberedEncodings.emplace_back(NumberedInstruction->TheDef,
+ NumberedInstruction, HwModeName);
+ }
+ for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding"))
+ NumberedEncodings.emplace_back(
+ NumberedAlias,
+ &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf")));
+
+ std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>>
+ OpcMap;
+ std::map<unsigned, std::vector<OperandInfo>> Operands;
+ std::vector<unsigned> InstrLen;
+
+ bool IsVarLenInst =
+ any_of(NumberedInstructions, [](const CodeGenInstruction *CGI) {
+ RecordVal *RV = CGI->TheDef->getValue("Inst");
+ return RV && isa<DagInit>(RV->getValue());
+ });
+ unsigned MaxInstLen = 0;
+
+ for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
+ const Record *EncodingDef = NumberedEncodings[i].EncodingDef;
+ const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
+ const Record *Def = Inst->TheDef;
+ unsigned Size = EncodingDef->getValueAsInt("Size");
+ if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
+ Def->getValueAsBit("isPseudo") ||
+ Def->getValueAsBit("isAsmParserOnly") ||
+ Def->getValueAsBit("isCodeGenOnly")) {
+ NumEncodingsLackingDisasm++;
+ continue;
+ }
+
+ if (i < NumberedInstructions.size())
+ NumInstructions++;
+ NumEncodings++;
+
+ if (!Size && !IsVarLenInst)
+ continue;
+
+ if (IsVarLenInst)
+ InstrLen.resize(NumberedInstructions.size(), 0);
+
+ if (unsigned Len = populateInstruction(Target, *EncodingDef, *Inst, i,
+ Operands, IsVarLenInst)) {
+ if (IsVarLenInst) {
+ MaxInstLen = std::max(MaxInstLen, Len);
+ InstrLen[i] = Len;
+ }
+ std::string DecoderNamespace =
+ std::string(EncodingDef->getValueAsString("DecoderNamespace"));
+ if (!NumberedEncodings[i].HwModeName.empty())
+ DecoderNamespace +=
+ std::string("_") + NumberedEncodings[i].HwModeName.str();
+ OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back(
+ i, IndexOfInstruction.find(Def)->second);
+ } else {
+ NumEncodingsOmitted++;
+ }
+ }
+
+ DecoderTableInfo TableInfo;
+ for (const auto &Opc : OpcMap) {
+ // Emit the decoder for this namespace+width combination.
+ ArrayRef<EncodingAndInst> NumberedEncodingsRef(
+ NumberedEncodings.data(), NumberedEncodings.size());
+ FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
+ IsVarLenInst ? MaxInstLen : 8 * Opc.first.second, this);
+
+ // The decode table is cleared for each top level decoder function. The
+ // predicates and decoders themselves, however, are shared across all
+ // decoders to give more opportunities for uniqueing.
+ TableInfo.Table.clear();
+ TableInfo.FixupStack.clear();
+ TableInfo.Table.reserve(16384);
+ TableInfo.FixupStack.emplace_back();
+ FC.emitTableEntries(TableInfo);
+ // Any NumToSkip fixups in the top level scope can resolve to the
+ // OPC_Fail at the end of the table.
+ assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
+ // Resolve any NumToSkip fixups in the current scope.
+ resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
+ TableInfo.Table.size());
+ TableInfo.FixupStack.clear();
+
+ TableInfo.Table.push_back(MCD::OPC_Fail);
+
+ // Print the table to the output stream.
+ emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
+ OS.flush();
+ }
+
+ // For variable instruction, we emit a instruction length table
+ // to let the decoder know how long the instructions are.
+ // You can see example usage in M68k's disassembler.
+ if (IsVarLenInst)
+ emitInstrLenTable(OS, InstrLen);
+ // Emit the predicate function.
+ emitPredicateFunction(OS, TableInfo.Predicates, 0);
+
+ // Emit the decoder function.
+ emitDecoderFunction(OS, TableInfo.Decoders, 0);
+
+ // Emit the main entry point for the decoder, decodeInstruction().
+ emitDecodeInstruction(OS, IsVarLenInst);
+
+ OS << "\n} // end namespace llvm\n";
+}
+
+namespace llvm {
+
+void EmitDecoder(RecordKeeper &RK, raw_ostream &OS,
+ const std::string &PredicateNamespace,
+ const std::string &GPrefix, const std::string &GPostfix,
+ const std::string &ROK, const std::string &RFail,
+ const std::string &L) {
+ DecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, ROK, RFail, L)
+ .run(OS);
+}
+
+} // end namespace llvm