diff options
Diffstat (limited to 'llvm/lib/Analysis')
-rw-r--r-- | llvm/lib/Analysis/ConstantFolding.cpp | 30 | ||||
-rw-r--r-- | llvm/lib/Analysis/IVDescriptors.cpp | 150 | ||||
-rw-r--r-- | llvm/lib/Analysis/LoopAccessAnalysis.cpp | 5 | ||||
-rw-r--r-- | llvm/lib/Analysis/LoopCacheAnalysis.cpp | 81 | ||||
-rw-r--r-- | llvm/lib/Analysis/ValueTracking.cpp | 14 | ||||
-rw-r--r-- | llvm/lib/Analysis/VectorUtils.cpp | 17 |
6 files changed, 224 insertions, 73 deletions
diff --git a/llvm/lib/Analysis/ConstantFolding.cpp b/llvm/lib/Analysis/ConstantFolding.cpp index 299ea33..b3f5b12 100644 --- a/llvm/lib/Analysis/ConstantFolding.cpp +++ b/llvm/lib/Analysis/ConstantFolding.cpp @@ -866,21 +866,6 @@ Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, Type *IntIdxTy = DL.getIndexType(Ptr->getType()); - // If this is "gep i8* Ptr, (sub 0, V)", fold this as: - // "inttoptr (sub (ptrtoint Ptr), V)" - if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { - auto *CE = dyn_cast<ConstantExpr>(Ops[1]); - assert((!CE || CE->getType() == IntIdxTy) && - "CastGEPIndices didn't canonicalize index types!"); - if (CE && CE->getOpcode() == Instruction::Sub && - CE->getOperand(0)->isNullValue()) { - Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); - Res = ConstantExpr::getSub(Res, CE->getOperand(1)); - Res = ConstantExpr::getIntToPtr(Res, ResTy); - return ConstantFoldConstant(Res, DL, TLI); - } - } - for (unsigned i = 1, e = Ops.size(); i != e; ++i) if (!isa<ConstantInt>(Ops[i])) return nullptr; @@ -1336,6 +1321,19 @@ Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, DL, BaseOffset, /*AllowNonInbounds=*/true)); if (Base->isNullValue()) { FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); + } else { + // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V + if (GEP->getNumIndices() == 1 && + GEP->getSourceElementType()->isIntegerTy(8)) { + auto *Ptr = cast<Constant>(GEP->getPointerOperand()); + auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1)); + Type *IntIdxTy = DL.getIndexType(Ptr->getType()); + if (Sub && Sub->getType() == IntIdxTy && + Sub->getOpcode() == Instruction::Sub && + Sub->getOperand(0)->isNullValue()) + FoldedValue = ConstantExpr::getSub( + ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1)); + } } } if (FoldedValue) { @@ -3038,7 +3036,7 @@ static Constant *ConstantFoldFixedVectorCall( // Gather a column of constants. for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { // Some intrinsics use a scalar type for certain arguments. - if (hasVectorIntrinsicScalarOpd(IntrinsicID, J)) { + if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) { Lane[J] = Operands[J]; continue; } diff --git a/llvm/lib/Analysis/IVDescriptors.cpp b/llvm/lib/Analysis/IVDescriptors.cpp index e03cf6c..e4d706a 100644 --- a/llvm/lib/Analysis/IVDescriptors.cpp +++ b/llvm/lib/Analysis/IVDescriptors.cpp @@ -227,12 +227,10 @@ static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, return true; } -bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, - Loop *TheLoop, FastMathFlags FuncFMF, - RecurrenceDescriptor &RedDes, - DemandedBits *DB, - AssumptionCache *AC, - DominatorTree *DT) { +bool RecurrenceDescriptor::AddReductionVar( + PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF, + RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, + DominatorTree *DT, ScalarEvolution *SE) { if (Phi->getNumIncomingValues() != 2) return false; @@ -249,6 +247,12 @@ bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, // This includes users of the reduction, variables (which form a cycle // which ends in the phi node). Instruction *ExitInstruction = nullptr; + + // Variable to keep last visited store instruction. By the end of the + // algorithm this variable will be either empty or having intermediate + // reduction value stored in invariant address. + StoreInst *IntermediateStore = nullptr; + // Indicates that we found a reduction operation in our scan. bool FoundReduxOp = false; @@ -314,6 +318,10 @@ bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, // - By instructions outside of the loop (safe). // * One value may have several outside users, but all outside // uses must be of the same value. + // - By store instructions with a loop invariant address (safe with + // the following restrictions): + // * If there are several stores, all must have the same address. + // * Final value should be stored in that loop invariant address. // - By an instruction that is not part of the reduction (not safe). // This is either: // * An instruction type other than PHI or the reduction operation. @@ -321,6 +329,43 @@ bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, while (!Worklist.empty()) { Instruction *Cur = Worklist.pop_back_val(); + // Store instructions are allowed iff it is the store of the reduction + // value to the same loop invariant memory location. + if (auto *SI = dyn_cast<StoreInst>(Cur)) { + if (!SE) { + LLVM_DEBUG(dbgs() << "Store instructions are not processed without " + << "Scalar Evolution Analysis\n"); + return false; + } + + const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand()); + // Check it is the same address as previous stores + if (IntermediateStore) { + const SCEV *OtherScev = + SE->getSCEV(IntermediateStore->getPointerOperand()); + + if (OtherScev != PtrScev) { + LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses " + << "inside the loop: " << *SI->getPointerOperand() + << " and " + << *IntermediateStore->getPointerOperand() << '\n'); + return false; + } + } + + // Check the pointer is loop invariant + if (!SE->isLoopInvariant(PtrScev, TheLoop)) { + LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address " + << "inside the loop: " << *SI->getPointerOperand() + << '\n'); + return false; + } + + // IntermediateStore is always the last store in the loop. + IntermediateStore = SI; + continue; + } + // No Users. // If the instruction has no users then this is a broken chain and can't be // a reduction variable. @@ -443,10 +488,17 @@ bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, // reductions which are represented as a cmp followed by a select. InstDesc IgnoredVal(false, nullptr); if (VisitedInsts.insert(UI).second) { - if (isa<PHINode>(UI)) + if (isa<PHINode>(UI)) { PHIs.push_back(UI); - else + } else { + StoreInst *SI = dyn_cast<StoreInst>(UI); + if (SI && SI->getPointerOperand() == Cur) { + // Reduction variable chain can only be stored somewhere but it + // can't be used as an address. + return false; + } NonPHIs.push_back(UI); + } } else if (!isa<PHINode>(UI) && ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && !isa<SelectInst>(UI)) || @@ -474,6 +526,32 @@ bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, if (isSelectCmpRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1) return false; + if (IntermediateStore) { + // Check that stored value goes to the phi node again. This way we make sure + // that the value stored in IntermediateStore is indeed the final reduction + // value. + if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) { + LLVM_DEBUG(dbgs() << "Not a final reduction value stored: " + << *IntermediateStore << '\n'); + return false; + } + + // If there is an exit instruction it's value should be stored in + // IntermediateStore + if (ExitInstruction && + IntermediateStore->getValueOperand() != ExitInstruction) { + LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not " + "store last calculated value of the reduction: " + << *IntermediateStore << '\n'); + return false; + } + + // If all uses are inside the loop (intermediate stores), then the + // reduction value after the loop will be the one used in the last store. + if (!ExitInstruction) + ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand()); + } + if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) return false; @@ -535,9 +613,9 @@ bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, // is saved as part of the RecurrenceDescriptor. // Save the description of this reduction variable. - RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, ExactFPMathInst, - RecurrenceType, IsSigned, IsOrdered, CastInsts, - MinWidthCastToRecurrenceType); + RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind, + FMF, ExactFPMathInst, RecurrenceType, IsSigned, + IsOrdered, CastInsts, MinWidthCastToRecurrenceType); RedDes = RD; return true; @@ -761,7 +839,8 @@ bool RecurrenceDescriptor::hasMultipleUsesOf( bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, - DominatorTree *DT) { + DominatorTree *DT, + ScalarEvolution *SE) { BasicBlock *Header = TheLoop->getHeader(); Function &F = *Header->getParent(); FastMathFlags FMF; @@ -770,72 +849,85 @@ bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, FMF.setNoSignedZeros( F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool()); - if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RecurKind::SelectICmp, TheLoop, FMF, RedDes, DB, AC, - DT)) { + DT, SE)) { LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) { + if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RecurKind::SelectFCmp, TheLoop, FMF, RedDes, DB, AC, - DT)) { + DT, SE)) { LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI." << " PHI." << *Phi << "\n"); return true; } - if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, - DT)) { + if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT, + SE)) { LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n"); return true; } diff --git a/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/llvm/lib/Analysis/LoopAccessAnalysis.cpp index b1773db..d0276df 100644 --- a/llvm/lib/Analysis/LoopAccessAnalysis.cpp +++ b/llvm/lib/Analysis/LoopAccessAnalysis.cpp @@ -1993,9 +1993,12 @@ void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, for (StoreInst *ST : Stores) { Value *Ptr = ST->getPointerOperand(); - if (isUniform(Ptr)) + if (isUniform(Ptr)) { + // Record store instructions to loop invariant addresses + StoresToInvariantAddresses.push_back(ST); HasDependenceInvolvingLoopInvariantAddress |= !UniformStores.insert(Ptr).second; + } // If we did *not* see this pointer before, insert it to the read-write // list. At this phase it is only a 'write' list. diff --git a/llvm/lib/Analysis/LoopCacheAnalysis.cpp b/llvm/lib/Analysis/LoopCacheAnalysis.cpp index b7806b3..eacd2621 100644 --- a/llvm/lib/Analysis/LoopCacheAnalysis.cpp +++ b/llvm/lib/Analysis/LoopCacheAnalysis.cpp @@ -103,14 +103,24 @@ static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, return StepRec == &ElemSize; } -/// Compute the trip count for the given loop \p L. Return the SCEV expression -/// for the trip count or nullptr if it cannot be computed. -static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) { +/// Compute the trip count for the given loop \p L or assume a default value if +/// it is not a compile time constant. Return the SCEV expression for the trip +/// count. +static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize, + ScalarEvolution &SE) { const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); - if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || - !isa<SCEVConstant>(BackedgeTakenCount)) - return nullptr; - return SE.getTripCountFromExitCount(BackedgeTakenCount); + const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && + isa<SCEVConstant>(BackedgeTakenCount)) + ? SE.getTripCountFromExitCount(BackedgeTakenCount) + : nullptr; + + if (!TripCount) { + LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() + << " could not be computed, using DefaultTripCount\n"); + TripCount = SE.getConstant(ElemSize.getType(), DefaultTripCount); + } + + return TripCount; } //===----------------------------------------------------------------------===// @@ -274,22 +284,18 @@ CacheCostTy IndexedReference::computeRefCost(const Loop &L, return 1; } - const SCEV *TripCount = computeTripCount(L, SE); - if (!TripCount) { - LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() - << " could not be computed, using DefaultTripCount\n"); - const SCEV *ElemSize = Sizes.back(); - TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount); - } + const SCEV *TripCount = computeTripCount(L, *Sizes.back(), SE); + assert(TripCount && "Expecting valid TripCount"); LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); - // If the indexed reference is 'consecutive' the cost is - // (TripCount*Stride)/CLS, otherwise the cost is TripCount. - const SCEV *RefCost = TripCount; - + const SCEV *RefCost = nullptr; if (isConsecutive(L, CLS)) { + // If the indexed reference is 'consecutive' the cost is + // (TripCount*Stride)/CLS. const SCEV *Coeff = getLastCoefficient(); const SCEV *ElemSize = Sizes.back(); + assert(Coeff->getType() == ElemSize->getType() && + "Expecting the same type"); const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS); @@ -303,10 +309,33 @@ CacheCostTy IndexedReference::computeRefCost(const Loop &L, LLVM_DEBUG(dbgs().indent(4) << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" << *RefCost << "\n"); - } else + } else { + // If the indexed reference is not 'consecutive' the cost is proportional to + // the trip count and the depth of the dimension which the subject loop + // subscript is accessing. We try to estimate this by multiplying the cost + // by the trip counts of loops corresponding to the inner dimensions. For + // example, given the indexed reference 'A[i][j][k]', and assuming the + // i-loop is in the innermost position, the cost would be equal to the + // iterations of the i-loop multiplied by iterations of the j-loop. + RefCost = TripCount; + + int Index = getSubscriptIndex(L); + assert(Index >= 0 && "Cound not locate a valid Index"); + + for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) { + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(I)); + assert(AR && AR->getLoop() && "Expecting valid loop"); + const SCEV *TripCount = + computeTripCount(*AR->getLoop(), *Sizes.back(), SE); + Type *WiderType = SE.getWiderType(RefCost->getType(), TripCount->getType()); + RefCost = SE.getMulExpr(SE.getNoopOrAnyExtend(RefCost, WiderType), + SE.getNoopOrAnyExtend(TripCount, WiderType)); + } + LLVM_DEBUG(dbgs().indent(4) - << "Access is not consecutive: RefCost=TripCount=" << *RefCost - << "\n"); + << "Access is not consecutive: RefCost=" << *RefCost << "\n"); + } + assert(RefCost && "Expecting a valid RefCost"); // Attempt to fold RefCost into a constant. if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) @@ -481,6 +510,16 @@ bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); } +int IndexedReference::getSubscriptIndex(const Loop &L) const { + for (auto Idx : seq<int>(0, getNumSubscripts())) { + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(Idx)); + if (AR && AR->getLoop() == &L) { + return Idx; + } + } + return -1; +} + const SCEV *IndexedReference::getLastCoefficient() const { const SCEV *LastSubscript = getLastSubscript(); auto *AR = cast<SCEVAddRecExpr>(LastSubscript); diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp index 75381f5..0144ce4 100644 --- a/llvm/lib/Analysis/ValueTracking.cpp +++ b/llvm/lib/Analysis/ValueTracking.cpp @@ -282,6 +282,20 @@ bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, match(LHS, m_c_And(m_Specific(M), m_Value()))) return true; } + + // X op (Y & ~X) + if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) || + match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value()))) + return true; + + // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern + // for constant Y. + Value *Y; + if (match(RHS, + m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) || + match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y)))) + return true; + // Look for: (A & B) op ~(A | B) { Value *A, *B; diff --git a/llvm/lib/Analysis/VectorUtils.cpp b/llvm/lib/Analysis/VectorUtils.cpp index 5f8fa13..a53b216 100644 --- a/llvm/lib/Analysis/VectorUtils.cpp +++ b/llvm/lib/Analysis/VectorUtils.cpp @@ -40,7 +40,7 @@ static cl::opt<unsigned> MaxInterleaveGroupFactor( /// Return true if all of the intrinsic's arguments and return type are scalars /// for the scalar form of the intrinsic, and vectors for the vector form of the /// intrinsic (except operands that are marked as always being scalar by -/// hasVectorIntrinsicScalarOpd). +/// isVectorIntrinsicWithScalarOpAtArg). bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { switch (ID) { case Intrinsic::abs: // Begin integer bit-manipulation. @@ -89,6 +89,8 @@ bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { case Intrinsic::fmuladd: case Intrinsic::powi: case Intrinsic::canonicalize: + case Intrinsic::fptosi_sat: + case Intrinsic::fptoui_sat: return true; default: return false; @@ -96,8 +98,8 @@ bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { } /// Identifies if the vector form of the intrinsic has a scalar operand. -bool llvm::hasVectorIntrinsicScalarOpd(Intrinsic::ID ID, - unsigned ScalarOpdIdx) { +bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, + unsigned ScalarOpdIdx) { switch (ID) { case Intrinsic::abs: case Intrinsic::ctlz: @@ -114,11 +116,14 @@ bool llvm::hasVectorIntrinsicScalarOpd(Intrinsic::ID ID, } } -bool llvm::hasVectorIntrinsicOverloadedScalarOpd(Intrinsic::ID ID, - unsigned ScalarOpdIdx) { +bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, + unsigned OpdIdx) { switch (ID) { + case Intrinsic::fptosi_sat: + case Intrinsic::fptoui_sat: + return OpdIdx == 0; case Intrinsic::powi: - return (ScalarOpdIdx == 1); + return OpdIdx == 1; default: return false; } |