aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/TargetBuiltins/BuiltinPPC.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/TargetBuiltins/BuiltinPPC.cpp')
-rw-r--r--clang/lib/CodeGen/TargetBuiltins/BuiltinPPC.cpp1359
1 files changed, 1359 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/TargetBuiltins/BuiltinPPC.cpp b/clang/lib/CodeGen/TargetBuiltins/BuiltinPPC.cpp
new file mode 100644
index 0000000..c2bef23
--- /dev/null
+++ b/clang/lib/CodeGen/TargetBuiltins/BuiltinPPC.cpp
@@ -0,0 +1,1359 @@
+//===---------- BuiltinPPC.cpp - Emit LLVM Code for builtins --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Builtin calls as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGBuiltin.h"
+#include "clang/Basic/TargetBuiltins.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicsPowerPC.h"
+#include "llvm/Support/ScopedPrinter.h"
+
+using namespace clang;
+using namespace CodeGen;
+using namespace llvm;
+
+static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
+ unsigned BuiltinID,
+ const CallExpr *E) {
+ Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
+
+ SmallString<64> Asm;
+ raw_svector_ostream AsmOS(Asm);
+ llvm::IntegerType *RetType = CGF.Int32Ty;
+
+ switch (BuiltinID) {
+ case clang::PPC::BI__builtin_ppc_ldarx:
+ AsmOS << "ldarx ";
+ RetType = CGF.Int64Ty;
+ break;
+ case clang::PPC::BI__builtin_ppc_lwarx:
+ AsmOS << "lwarx ";
+ RetType = CGF.Int32Ty;
+ break;
+ case clang::PPC::BI__builtin_ppc_lharx:
+ AsmOS << "lharx ";
+ RetType = CGF.Int16Ty;
+ break;
+ case clang::PPC::BI__builtin_ppc_lbarx:
+ AsmOS << "lbarx ";
+ RetType = CGF.Int8Ty;
+ break;
+ default:
+ llvm_unreachable("Expected only PowerPC load reserve intrinsics");
+ }
+
+ AsmOS << "$0, ${1:y}";
+
+ std::string Constraints = "=r,*Z,~{memory}";
+ std::string_view MachineClobbers = CGF.getTarget().getClobbers();
+ if (!MachineClobbers.empty()) {
+ Constraints += ',';
+ Constraints += MachineClobbers;
+ }
+
+ llvm::Type *PtrType = CGF.UnqualPtrTy;
+ llvm::FunctionType *FTy = llvm::FunctionType::get(RetType, {PtrType}, false);
+
+ llvm::InlineAsm *IA =
+ llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
+ llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
+ CI->addParamAttr(
+ 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
+ return CI;
+}
+
+Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ // Do not emit the builtin arguments in the arguments of a function call,
+ // because the evaluation order of function arguments is not specified in C++.
+ // This is important when testing to ensure the arguments are emitted in the
+ // same order every time. Eg:
+ // Instead of:
+ // return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
+ // EmitScalarExpr(E->getArg(1)), "swdiv");
+ // Use:
+ // Value *Op0 = EmitScalarExpr(E->getArg(0));
+ // Value *Op1 = EmitScalarExpr(E->getArg(1));
+ // return Builder.CreateFDiv(Op0, Op1, "swdiv")
+
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+
+#include "llvm/TargetParser/PPCTargetParser.def"
+ auto GenAIXPPCBuiltinCpuExpr = [&](unsigned SupportMethod, unsigned FieldIdx,
+ unsigned Mask, CmpInst::Predicate CompOp,
+ unsigned OpValue) -> Value * {
+ if (SupportMethod == BUILTIN_PPC_FALSE)
+ return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
+
+ if (SupportMethod == BUILTIN_PPC_TRUE)
+ return llvm::ConstantInt::getTrue(ConvertType(E->getType()));
+
+ assert(SupportMethod <= SYS_CALL && "Invalid value for SupportMethod.");
+
+ llvm::Value *FieldValue = nullptr;
+ if (SupportMethod == USE_SYS_CONF) {
+ llvm::Type *STy = llvm::StructType::get(PPC_SYSTEMCONFIG_TYPE);
+ llvm::Constant *SysConf =
+ CGM.CreateRuntimeVariable(STy, "_system_configuration");
+
+ // Grab the appropriate field from _system_configuration.
+ llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
+ ConstantInt::get(Int32Ty, FieldIdx)};
+
+ FieldValue = Builder.CreateInBoundsGEP(STy, SysConf, Idxs);
+ FieldValue = Builder.CreateAlignedLoad(Int32Ty, FieldValue,
+ CharUnits::fromQuantity(4));
+ } else if (SupportMethod == SYS_CALL) {
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(Int64Ty, Int32Ty, false);
+ llvm::FunctionCallee Func =
+ CGM.CreateRuntimeFunction(FTy, "getsystemcfg");
+
+ FieldValue =
+ Builder.CreateCall(Func, {ConstantInt::get(Int32Ty, FieldIdx)});
+ }
+ assert(FieldValue &&
+ "SupportMethod value is not defined in PPCTargetParser.def.");
+
+ if (Mask)
+ FieldValue = Builder.CreateAnd(FieldValue, Mask);
+
+ llvm::Type *ValueType = FieldValue->getType();
+ bool IsValueType64Bit = ValueType->isIntegerTy(64);
+ assert(
+ (IsValueType64Bit || ValueType->isIntegerTy(32)) &&
+ "Only 32/64-bit integers are supported in GenAIXPPCBuiltinCpuExpr().");
+
+ return Builder.CreateICmp(
+ CompOp, FieldValue,
+ ConstantInt::get(IsValueType64Bit ? Int64Ty : Int32Ty, OpValue));
+ };
+
+ switch (BuiltinID) {
+ default: return nullptr;
+
+ case Builtin::BI__builtin_cpu_is: {
+ const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
+ StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
+ llvm::Triple Triple = getTarget().getTriple();
+
+ typedef std::tuple<unsigned, unsigned, unsigned, unsigned> CPUInfo;
+
+ auto [LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue] =
+ static_cast<CPUInfo>(StringSwitch<CPUInfo>(CPUStr)
+#define PPC_CPU(NAME, Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, \
+ AIXID) \
+ .Case(NAME, {Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, AIXID})
+#include "llvm/TargetParser/PPCTargetParser.def"
+ .Default({BUILTIN_PPC_UNSUPPORTED, 0,
+ BUILTIN_PPC_UNSUPPORTED, 0}));
+
+ if (Triple.isOSAIX()) {
+ assert((AIXSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
+ "Invalid CPU name. Missed by SemaChecking?");
+ return GenAIXPPCBuiltinCpuExpr(AIXSupportMethod, AIX_SYSCON_IMPL_IDX, 0,
+ ICmpInst::ICMP_EQ, AIXIDValue);
+ }
+
+ assert(Triple.isOSLinux() &&
+ "__builtin_cpu_is() is only supported for AIX and Linux.");
+
+ assert((LinuxSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
+ "Invalid CPU name. Missed by SemaChecking?");
+
+ if (LinuxSupportMethod == BUILTIN_PPC_FALSE)
+ return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
+
+ Value *Op0 = llvm::ConstantInt::get(Int32Ty, PPC_FAWORD_CPUID);
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
+ Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_is");
+ return Builder.CreateICmpEQ(TheCall,
+ llvm::ConstantInt::get(Int32Ty, LinuxIDValue));
+ }
+ case Builtin::BI__builtin_cpu_supports: {
+ llvm::Triple Triple = getTarget().getTriple();
+ const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
+ StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
+ if (Triple.isOSAIX()) {
+ typedef std::tuple<unsigned, unsigned, unsigned, CmpInst::Predicate,
+ unsigned>
+ CPUSupportType;
+ auto [SupportMethod, FieldIdx, Mask, CompOp, Value] =
+ static_cast<CPUSupportType>(StringSwitch<CPUSupportType>(CPUStr)
+#define PPC_AIX_FEATURE(NAME, DESC, SUPPORT_METHOD, INDEX, MASK, COMP_OP, \
+ VALUE) \
+ .Case(NAME, {SUPPORT_METHOD, INDEX, MASK, COMP_OP, VALUE})
+#include "llvm/TargetParser/PPCTargetParser.def"
+ .Default({BUILTIN_PPC_FALSE, 0, 0,
+ CmpInst::Predicate(), 0}));
+ return GenAIXPPCBuiltinCpuExpr(SupportMethod, FieldIdx, Mask, CompOp,
+ Value);
+ }
+
+ assert(Triple.isOSLinux() &&
+ "__builtin_cpu_supports() is only supported for AIX and Linux.");
+ auto [FeatureWord, BitMask] =
+ StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
+#define PPC_LNX_FEATURE(Name, Description, EnumName, Bitmask, FA_WORD) \
+ .Case(Name, {FA_WORD, Bitmask})
+#include "llvm/TargetParser/PPCTargetParser.def"
+ .Default({0, 0});
+ if (!BitMask)
+ return Builder.getFalse();
+ Value *Op0 = llvm::ConstantInt::get(Int32Ty, FeatureWord);
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
+ Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_supports");
+ Value *Mask =
+ Builder.CreateAnd(TheCall, llvm::ConstantInt::get(Int32Ty, BitMask));
+ return Builder.CreateICmpNE(Mask, llvm::Constant::getNullValue(Int32Ty));
+#undef PPC_FAWORD_HWCAP
+#undef PPC_FAWORD_HWCAP2
+#undef PPC_FAWORD_CPUID
+ }
+
+ // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
+ // call __builtin_readcyclecounter.
+ case PPC::BI__builtin_ppc_get_timebase:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
+
+ // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
+ case PPC::BI__builtin_altivec_lvx:
+ case PPC::BI__builtin_altivec_lvxl:
+ case PPC::BI__builtin_altivec_lvebx:
+ case PPC::BI__builtin_altivec_lvehx:
+ case PPC::BI__builtin_altivec_lvewx:
+ case PPC::BI__builtin_altivec_lvsl:
+ case PPC::BI__builtin_altivec_lvsr:
+ case PPC::BI__builtin_vsx_lxvd2x:
+ case PPC::BI__builtin_vsx_lxvw4x:
+ case PPC::BI__builtin_vsx_lxvd2x_be:
+ case PPC::BI__builtin_vsx_lxvw4x_be:
+ case PPC::BI__builtin_vsx_lxvl:
+ case PPC::BI__builtin_vsx_lxvll:
+ {
+ SmallVector<Value *, 2> Ops;
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ if (!(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
+ BuiltinID == PPC::BI__builtin_vsx_lxvll)) {
+ Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
+ Ops.pop_back();
+ }
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
+ case PPC::BI__builtin_altivec_lvx:
+ ID = Intrinsic::ppc_altivec_lvx;
+ break;
+ case PPC::BI__builtin_altivec_lvxl:
+ ID = Intrinsic::ppc_altivec_lvxl;
+ break;
+ case PPC::BI__builtin_altivec_lvebx:
+ ID = Intrinsic::ppc_altivec_lvebx;
+ break;
+ case PPC::BI__builtin_altivec_lvehx:
+ ID = Intrinsic::ppc_altivec_lvehx;
+ break;
+ case PPC::BI__builtin_altivec_lvewx:
+ ID = Intrinsic::ppc_altivec_lvewx;
+ break;
+ case PPC::BI__builtin_altivec_lvsl:
+ ID = Intrinsic::ppc_altivec_lvsl;
+ break;
+ case PPC::BI__builtin_altivec_lvsr:
+ ID = Intrinsic::ppc_altivec_lvsr;
+ break;
+ case PPC::BI__builtin_vsx_lxvd2x:
+ ID = Intrinsic::ppc_vsx_lxvd2x;
+ break;
+ case PPC::BI__builtin_vsx_lxvw4x:
+ ID = Intrinsic::ppc_vsx_lxvw4x;
+ break;
+ case PPC::BI__builtin_vsx_lxvd2x_be:
+ ID = Intrinsic::ppc_vsx_lxvd2x_be;
+ break;
+ case PPC::BI__builtin_vsx_lxvw4x_be:
+ ID = Intrinsic::ppc_vsx_lxvw4x_be;
+ break;
+ case PPC::BI__builtin_vsx_lxvl:
+ ID = Intrinsic::ppc_vsx_lxvl;
+ break;
+ case PPC::BI__builtin_vsx_lxvll:
+ ID = Intrinsic::ppc_vsx_lxvll;
+ break;
+ }
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, Ops, "");
+ }
+
+ // vec_st, vec_xst_be
+ case PPC::BI__builtin_altivec_stvx:
+ case PPC::BI__builtin_altivec_stvxl:
+ case PPC::BI__builtin_altivec_stvebx:
+ case PPC::BI__builtin_altivec_stvehx:
+ case PPC::BI__builtin_altivec_stvewx:
+ case PPC::BI__builtin_vsx_stxvd2x:
+ case PPC::BI__builtin_vsx_stxvw4x:
+ case PPC::BI__builtin_vsx_stxvd2x_be:
+ case PPC::BI__builtin_vsx_stxvw4x_be:
+ case PPC::BI__builtin_vsx_stxvl:
+ case PPC::BI__builtin_vsx_stxvll:
+ {
+ SmallVector<Value *, 3> Ops;
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ if (!(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
+ BuiltinID == PPC::BI__builtin_vsx_stxvll)) {
+ Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
+ Ops.pop_back();
+ }
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported st intrinsic!");
+ case PPC::BI__builtin_altivec_stvx:
+ ID = Intrinsic::ppc_altivec_stvx;
+ break;
+ case PPC::BI__builtin_altivec_stvxl:
+ ID = Intrinsic::ppc_altivec_stvxl;
+ break;
+ case PPC::BI__builtin_altivec_stvebx:
+ ID = Intrinsic::ppc_altivec_stvebx;
+ break;
+ case PPC::BI__builtin_altivec_stvehx:
+ ID = Intrinsic::ppc_altivec_stvehx;
+ break;
+ case PPC::BI__builtin_altivec_stvewx:
+ ID = Intrinsic::ppc_altivec_stvewx;
+ break;
+ case PPC::BI__builtin_vsx_stxvd2x:
+ ID = Intrinsic::ppc_vsx_stxvd2x;
+ break;
+ case PPC::BI__builtin_vsx_stxvw4x:
+ ID = Intrinsic::ppc_vsx_stxvw4x;
+ break;
+ case PPC::BI__builtin_vsx_stxvd2x_be:
+ ID = Intrinsic::ppc_vsx_stxvd2x_be;
+ break;
+ case PPC::BI__builtin_vsx_stxvw4x_be:
+ ID = Intrinsic::ppc_vsx_stxvw4x_be;
+ break;
+ case PPC::BI__builtin_vsx_stxvl:
+ ID = Intrinsic::ppc_vsx_stxvl;
+ break;
+ case PPC::BI__builtin_vsx_stxvll:
+ ID = Intrinsic::ppc_vsx_stxvll;
+ break;
+ }
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, Ops, "");
+ }
+ case PPC::BI__builtin_vsx_ldrmb: {
+ // Essentially boils down to performing an unaligned VMX load sequence so
+ // as to avoid crossing a page boundary and then shuffling the elements
+ // into the right side of the vector register.
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
+ llvm::Type *ResTy = ConvertType(E->getType());
+ bool IsLE = getTarget().isLittleEndian();
+
+ // If the user wants the entire vector, just load the entire vector.
+ if (NumBytes == 16) {
+ Value *LD =
+ Builder.CreateLoad(Address(Op0, ResTy, CharUnits::fromQuantity(1)));
+ if (!IsLE)
+ return LD;
+
+ // Reverse the bytes on LE.
+ SmallVector<int, 16> RevMask;
+ for (int Idx = 0; Idx < 16; Idx++)
+ RevMask.push_back(15 - Idx);
+ return Builder.CreateShuffleVector(LD, LD, RevMask);
+ }
+
+ llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
+ llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
+ : Intrinsic::ppc_altivec_lvsl);
+ llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
+ Value *HiMem = Builder.CreateGEP(
+ Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
+ Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
+ Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
+ Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
+
+ Op0 = IsLE ? HiLd : LoLd;
+ Op1 = IsLE ? LoLd : HiLd;
+ Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
+ Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
+
+ if (IsLE) {
+ SmallVector<int, 16> Consts;
+ for (int Idx = 0; Idx < 16; Idx++) {
+ int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
+ : 16 - (NumBytes - Idx);
+ Consts.push_back(Val);
+ }
+ return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
+ Zero, Consts);
+ }
+ SmallVector<Constant *, 16> Consts;
+ for (int Idx = 0; Idx < 16; Idx++)
+ Consts.push_back(Builder.getInt8(NumBytes + Idx));
+ Value *Mask2 = ConstantVector::get(Consts);
+ return Builder.CreateBitCast(
+ Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
+ }
+ case PPC::BI__builtin_vsx_strmb: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
+ bool IsLE = getTarget().isLittleEndian();
+ auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
+ // Storing the whole vector, simply store it on BE and reverse bytes and
+ // store on LE.
+ if (Width == 16) {
+ Value *StVec = Op2;
+ if (IsLE) {
+ SmallVector<int, 16> RevMask;
+ for (int Idx = 0; Idx < 16; Idx++)
+ RevMask.push_back(15 - Idx);
+ StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
+ }
+ return Builder.CreateStore(
+ StVec, Address(Op0, Op2->getType(), CharUnits::fromQuantity(1)));
+ }
+ auto *ConvTy = Int64Ty;
+ unsigned NumElts = 0;
+ switch (Width) {
+ default:
+ llvm_unreachable("width for stores must be a power of 2");
+ case 8:
+ ConvTy = Int64Ty;
+ NumElts = 2;
+ break;
+ case 4:
+ ConvTy = Int32Ty;
+ NumElts = 4;
+ break;
+ case 2:
+ ConvTy = Int16Ty;
+ NumElts = 8;
+ break;
+ case 1:
+ ConvTy = Int8Ty;
+ NumElts = 16;
+ break;
+ }
+ Value *Vec = Builder.CreateBitCast(
+ Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
+ Value *Ptr =
+ Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
+ Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
+ if (IsLE && Width > 1) {
+ Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
+ Elt = Builder.CreateCall(F, Elt);
+ }
+ return Builder.CreateStore(
+ Elt, Address(Ptr, ConvTy, CharUnits::fromQuantity(1)));
+ };
+ unsigned Stored = 0;
+ unsigned RemainingBytes = NumBytes;
+ Value *Result;
+ if (NumBytes == 16)
+ return StoreSubVec(16, 0, 0);
+ if (NumBytes >= 8) {
+ Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
+ RemainingBytes -= 8;
+ Stored += 8;
+ }
+ if (RemainingBytes >= 4) {
+ Result = StoreSubVec(4, NumBytes - Stored - 4,
+ IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
+ RemainingBytes -= 4;
+ Stored += 4;
+ }
+ if (RemainingBytes >= 2) {
+ Result = StoreSubVec(2, NumBytes - Stored - 2,
+ IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
+ RemainingBytes -= 2;
+ Stored += 2;
+ }
+ if (RemainingBytes)
+ Result =
+ StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
+ return Result;
+ }
+ // Square root
+ case PPC::BI__builtin_vsx_xvsqrtsp:
+ case PPC::BI__builtin_vsx_xvsqrtdp: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ if (Builder.getIsFPConstrained()) {
+ llvm::Function *F = CGM.getIntrinsic(
+ Intrinsic::experimental_constrained_sqrt, ResultType);
+ return Builder.CreateConstrainedFPCall(F, X);
+ } else {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+ }
+ // Count leading zeros
+ case PPC::BI__builtin_altivec_vclzb:
+ case PPC::BI__builtin_altivec_vclzh:
+ case PPC::BI__builtin_altivec_vclzw:
+ case PPC::BI__builtin_altivec_vclzd: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
+ return Builder.CreateCall(F, {X, Undef});
+ }
+ case PPC::BI__builtin_altivec_vctzb:
+ case PPC::BI__builtin_altivec_vctzh:
+ case PPC::BI__builtin_altivec_vctzw:
+ case PPC::BI__builtin_altivec_vctzd: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
+ Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
+ return Builder.CreateCall(F, {X, Undef});
+ }
+ case PPC::BI__builtin_altivec_vinsd:
+ case PPC::BI__builtin_altivec_vinsw:
+ case PPC::BI__builtin_altivec_vinsd_elt:
+ case PPC::BI__builtin_altivec_vinsw_elt: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+
+ bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
+ BuiltinID == PPC::BI__builtin_altivec_vinsd);
+
+ bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
+ BuiltinID == PPC::BI__builtin_altivec_vinsw_elt);
+
+ // The third argument must be a compile time constant.
+ ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
+ assert(ArgCI &&
+ "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
+
+ // Valid value for the third argument is dependent on the input type and
+ // builtin called.
+ int ValidMaxValue = 0;
+ if (IsUnaligned)
+ ValidMaxValue = (Is32bit) ? 12 : 8;
+ else
+ ValidMaxValue = (Is32bit) ? 3 : 1;
+
+ // Get value of third argument.
+ int64_t ConstArg = ArgCI->getSExtValue();
+
+ // Compose range checking error message.
+ std::string RangeErrMsg = IsUnaligned ? "byte" : "element";
+ RangeErrMsg += " number " + llvm::to_string(ConstArg);
+ RangeErrMsg += " is outside of the valid range [0, ";
+ RangeErrMsg += llvm::to_string(ValidMaxValue) + "]";
+
+ // Issue error if third argument is not within the valid range.
+ if (ConstArg < 0 || ConstArg > ValidMaxValue)
+ CGM.Error(E->getExprLoc(), RangeErrMsg);
+
+ // Input to vec_replace_elt is an element index, convert to byte index.
+ if (!IsUnaligned) {
+ ConstArg *= Is32bit ? 4 : 8;
+ // Fix the constant according to endianess.
+ if (getTarget().isLittleEndian())
+ ConstArg = (Is32bit ? 12 : 8) - ConstArg;
+ }
+
+ ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd;
+ Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
+ // Casting input to vector int as per intrinsic definition.
+ Op0 =
+ Is32bit
+ ? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4))
+ : Builder.CreateBitCast(Op0,
+ llvm::FixedVectorType::get(Int64Ty, 2));
+ return Builder.CreateBitCast(
+ Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType);
+ }
+ case PPC::BI__builtin_altivec_vadduqm:
+ case PPC::BI__builtin_altivec_vsubuqm: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
+ Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
+ Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
+ if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
+ return Builder.CreateAdd(Op0, Op1, "vadduqm");
+ else
+ return Builder.CreateSub(Op0, Op1, "vsubuqm");
+ }
+ case PPC::BI__builtin_altivec_vaddcuq_c:
+ case PPC::BI__builtin_altivec_vsubcuq_c: {
+ SmallVector<Value *, 2> Ops;
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
+ llvm::IntegerType::get(getLLVMContext(), 128), 1);
+ Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
+ Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
+ ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c)
+ ? Intrinsic::ppc_altivec_vaddcuq
+ : Intrinsic::ppc_altivec_vsubcuq;
+ return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
+ }
+ case PPC::BI__builtin_altivec_vaddeuqm_c:
+ case PPC::BI__builtin_altivec_vaddecuq_c:
+ case PPC::BI__builtin_altivec_vsubeuqm_c:
+ case PPC::BI__builtin_altivec_vsubecuq_c: {
+ SmallVector<Value *, 3> Ops;
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
+ llvm::IntegerType::get(getLLVMContext(), 128), 1);
+ Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
+ Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
+ Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty));
+ switch (BuiltinID) {
+ default:
+ llvm_unreachable("Unsupported intrinsic!");
+ case PPC::BI__builtin_altivec_vaddeuqm_c:
+ ID = Intrinsic::ppc_altivec_vaddeuqm;
+ break;
+ case PPC::BI__builtin_altivec_vaddecuq_c:
+ ID = Intrinsic::ppc_altivec_vaddecuq;
+ break;
+ case PPC::BI__builtin_altivec_vsubeuqm_c:
+ ID = Intrinsic::ppc_altivec_vsubeuqm;
+ break;
+ case PPC::BI__builtin_altivec_vsubecuq_c:
+ ID = Intrinsic::ppc_altivec_vsubecuq;
+ break;
+ }
+ return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
+ }
+ case PPC::BI__builtin_ppc_rldimi:
+ case PPC::BI__builtin_ppc_rlwimi: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ Value *Op3 = EmitScalarExpr(E->getArg(3));
+ // rldimi is 64-bit instruction, expand the intrinsic before isel to
+ // leverage peephole and avoid legalization efforts.
+ if (BuiltinID == PPC::BI__builtin_ppc_rldimi &&
+ !getTarget().getTriple().isPPC64()) {
+ Function *F = CGM.getIntrinsic(Intrinsic::fshl, Op0->getType());
+ Op2 = Builder.CreateZExt(Op2, Int64Ty);
+ Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
+ return Builder.CreateOr(Builder.CreateAnd(Shift, Op3),
+ Builder.CreateAnd(Op1, Builder.CreateNot(Op3)));
+ }
+ return Builder.CreateCall(
+ CGM.getIntrinsic(BuiltinID == PPC::BI__builtin_ppc_rldimi
+ ? Intrinsic::ppc_rldimi
+ : Intrinsic::ppc_rlwimi),
+ {Op0, Op1, Op2, Op3});
+ }
+ case PPC::BI__builtin_ppc_rlwnm: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_rlwnm),
+ {Op0, Op1, Op2});
+ }
+ case PPC::BI__builtin_ppc_poppar4:
+ case PPC::BI__builtin_ppc_poppar8: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ llvm::Type *ArgType = Op0->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
+ Value *Tmp = Builder.CreateCall(F, Op0);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return Result;
+ }
+ case PPC::BI__builtin_ppc_cmpb: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ if (getTarget().getTriple().isPPC64()) {
+ Function *F =
+ CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
+ return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
+ }
+ // For 32 bit, emit the code as below:
+ // %conv = trunc i64 %a to i32
+ // %conv1 = trunc i64 %b to i32
+ // %shr = lshr i64 %a, 32
+ // %conv2 = trunc i64 %shr to i32
+ // %shr3 = lshr i64 %b, 32
+ // %conv4 = trunc i64 %shr3 to i32
+ // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
+ // %conv5 = zext i32 %0 to i64
+ // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
+ // %conv614 = zext i32 %1 to i64
+ // %shl = shl nuw i64 %conv614, 32
+ // %or = or i64 %shl, %conv5
+ // ret i64 %or
+ Function *F =
+ CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
+ Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
+ Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
+ Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
+ Value *ArgOneHi =
+ Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
+ Value *ArgTwoHi =
+ Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
+ Value *ResLo = Builder.CreateZExt(
+ Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
+ Value *ResHiShift = Builder.CreateZExt(
+ Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
+ Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
+ return Builder.CreateOr(ResLo, ResHi);
+ }
+ // Copy sign
+ case PPC::BI__builtin_vsx_xvcpsgnsp:
+ case PPC::BI__builtin_vsx_xvcpsgndp: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ ID = Intrinsic::copysign;
+ llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
+ return Builder.CreateCall(F, {X, Y});
+ }
+ // Rounding/truncation
+ case PPC::BI__builtin_vsx_xvrspip:
+ case PPC::BI__builtin_vsx_xvrdpip:
+ case PPC::BI__builtin_vsx_xvrdpim:
+ case PPC::BI__builtin_vsx_xvrspim:
+ case PPC::BI__builtin_vsx_xvrdpi:
+ case PPC::BI__builtin_vsx_xvrspi:
+ case PPC::BI__builtin_vsx_xvrdpic:
+ case PPC::BI__builtin_vsx_xvrspic:
+ case PPC::BI__builtin_vsx_xvrdpiz:
+ case PPC::BI__builtin_vsx_xvrspiz: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspim)
+ ID = Builder.getIsFPConstrained()
+ ? Intrinsic::experimental_constrained_floor
+ : Intrinsic::floor;
+ else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspi)
+ ID = Builder.getIsFPConstrained()
+ ? Intrinsic::experimental_constrained_round
+ : Intrinsic::round;
+ else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspic)
+ ID = Builder.getIsFPConstrained()
+ ? Intrinsic::experimental_constrained_rint
+ : Intrinsic::rint;
+ else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspip)
+ ID = Builder.getIsFPConstrained()
+ ? Intrinsic::experimental_constrained_ceil
+ : Intrinsic::ceil;
+ else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
+ ID = Builder.getIsFPConstrained()
+ ? Intrinsic::experimental_constrained_trunc
+ : Intrinsic::trunc;
+ llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
+ return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
+ : Builder.CreateCall(F, X);
+ }
+
+ // Absolute value
+ case PPC::BI__builtin_vsx_xvabsdp:
+ case PPC::BI__builtin_vsx_xvabssp: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+
+ // Fastmath by default
+ case PPC::BI__builtin_ppc_recipdivf:
+ case PPC::BI__builtin_ppc_recipdivd:
+ case PPC::BI__builtin_ppc_rsqrtf:
+ case PPC::BI__builtin_ppc_rsqrtd: {
+ FastMathFlags FMF = Builder.getFastMathFlags();
+ Builder.getFastMathFlags().setFast();
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+
+ if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
+ BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
+ Builder.getFastMathFlags() &= (FMF);
+ return FDiv;
+ }
+ auto *One = ConstantFP::get(ResultType, 1.0);
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
+ Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
+ Builder.getFastMathFlags() &= (FMF);
+ return FDiv;
+ }
+ case PPC::BI__builtin_ppc_alignx: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
+ if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
+ AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
+ llvm::Value::MaximumAlignment);
+
+ emitAlignmentAssumption(Op1, E->getArg(1),
+ /*The expr loc is sufficient.*/ SourceLocation(),
+ AlignmentCI, nullptr);
+ return Op1;
+ }
+ case PPC::BI__builtin_ppc_rdlam: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ llvm::Type *Ty = Op0->getType();
+ Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
+ Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
+ Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
+ return Builder.CreateAnd(Rotate, Op2);
+ }
+ case PPC::BI__builtin_ppc_load2r: {
+ Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
+ return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
+ }
+ // FMA variations
+ case PPC::BI__builtin_ppc_fnmsub:
+ case PPC::BI__builtin_ppc_fnmsubs:
+ case PPC::BI__builtin_vsx_xvmaddadp:
+ case PPC::BI__builtin_vsx_xvmaddasp:
+ case PPC::BI__builtin_vsx_xvnmaddadp:
+ case PPC::BI__builtin_vsx_xvnmaddasp:
+ case PPC::BI__builtin_vsx_xvmsubadp:
+ case PPC::BI__builtin_vsx_xvmsubasp:
+ case PPC::BI__builtin_vsx_xvnmsubadp:
+ case PPC::BI__builtin_vsx_xvnmsubasp: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ Value *Z = EmitScalarExpr(E->getArg(2));
+ llvm::Function *F;
+ if (Builder.getIsFPConstrained())
+ F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
+ else
+ F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
+ switch (BuiltinID) {
+ case PPC::BI__builtin_vsx_xvmaddadp:
+ case PPC::BI__builtin_vsx_xvmaddasp:
+ if (Builder.getIsFPConstrained())
+ return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
+ else
+ return Builder.CreateCall(F, {X, Y, Z});
+ case PPC::BI__builtin_vsx_xvnmaddadp:
+ case PPC::BI__builtin_vsx_xvnmaddasp:
+ if (Builder.getIsFPConstrained())
+ return Builder.CreateFNeg(
+ Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
+ else
+ return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
+ case PPC::BI__builtin_vsx_xvmsubadp:
+ case PPC::BI__builtin_vsx_xvmsubasp:
+ if (Builder.getIsFPConstrained())
+ return Builder.CreateConstrainedFPCall(
+ F, {X, Y, Builder.CreateFNeg(Z, "neg")});
+ else
+ return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
+ case PPC::BI__builtin_ppc_fnmsub:
+ case PPC::BI__builtin_ppc_fnmsubs:
+ case PPC::BI__builtin_vsx_xvnmsubadp:
+ case PPC::BI__builtin_vsx_xvnmsubasp:
+ if (Builder.getIsFPConstrained())
+ return Builder.CreateFNeg(
+ Builder.CreateConstrainedFPCall(
+ F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
+ "neg");
+ else
+ return Builder.CreateCall(
+ CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
+ }
+ llvm_unreachable("Unknown FMA operation");
+ return nullptr; // Suppress no-return warning
+ }
+
+ case PPC::BI__builtin_vsx_insertword: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
+
+ // Third argument is a compile time constant int. It must be clamped to
+ // to the range [0, 12].
+ ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
+ assert(ArgCI &&
+ "Third arg to xxinsertw intrinsic must be constant integer");
+ const int64_t MaxIndex = 12;
+ int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
+
+ // The builtin semantics don't exactly match the xxinsertw instructions
+ // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
+ // word from the first argument, and inserts it in the second argument. The
+ // instruction extracts the word from its second input register and inserts
+ // it into its first input register, so swap the first and second arguments.
+ std::swap(Op0, Op1);
+
+ // Need to cast the second argument from a vector of unsigned int to a
+ // vector of long long.
+ Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
+
+ if (getTarget().isLittleEndian()) {
+ // Reverse the double words in the vector we will extract from.
+ Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
+ Op0 = Builder.CreateShuffleVector(Op0, Op0, {1, 0});
+
+ // Reverse the index.
+ Index = MaxIndex - Index;
+ }
+
+ // Intrinsic expects the first arg to be a vector of int.
+ Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
+ Op2 = ConstantInt::getSigned(Int32Ty, Index);
+ return Builder.CreateCall(F, {Op0, Op1, Op2});
+ }
+
+ case PPC::BI__builtin_vsx_extractuword: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
+
+ // Intrinsic expects the first argument to be a vector of doublewords.
+ Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
+
+ // The second argument is a compile time constant int that needs to
+ // be clamped to the range [0, 12].
+ ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
+ assert(ArgCI &&
+ "Second Arg to xxextractuw intrinsic must be a constant integer!");
+ const int64_t MaxIndex = 12;
+ int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
+
+ if (getTarget().isLittleEndian()) {
+ // Reverse the index.
+ Index = MaxIndex - Index;
+ Op1 = ConstantInt::getSigned(Int32Ty, Index);
+
+ // Emit the call, then reverse the double words of the results vector.
+ Value *Call = Builder.CreateCall(F, {Op0, Op1});
+
+ Value *ShuffleCall =
+ Builder.CreateShuffleVector(Call, Call, {1, 0});
+ return ShuffleCall;
+ } else {
+ Op1 = ConstantInt::getSigned(Int32Ty, Index);
+ return Builder.CreateCall(F, {Op0, Op1});
+ }
+ }
+
+ case PPC::BI__builtin_vsx_xxpermdi: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
+ assert(ArgCI && "Third arg must be constant integer!");
+
+ unsigned Index = ArgCI->getZExtValue();
+ Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
+ Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
+
+ // Account for endianness by treating this as just a shuffle. So we use the
+ // same indices for both LE and BE in order to produce expected results in
+ // both cases.
+ int ElemIdx0 = (Index & 2) >> 1;
+ int ElemIdx1 = 2 + (Index & 1);
+
+ int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
+ Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
+ QualType BIRetType = E->getType();
+ auto RetTy = ConvertType(BIRetType);
+ return Builder.CreateBitCast(ShuffleCall, RetTy);
+ }
+
+ case PPC::BI__builtin_vsx_xxsldwi: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
+ assert(ArgCI && "Third argument must be a compile time constant");
+ unsigned Index = ArgCI->getZExtValue() & 0x3;
+ Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
+ Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
+
+ // Create a shuffle mask
+ int ElemIdx0;
+ int ElemIdx1;
+ int ElemIdx2;
+ int ElemIdx3;
+ if (getTarget().isLittleEndian()) {
+ // Little endian element N comes from element 8+N-Index of the
+ // concatenated wide vector (of course, using modulo arithmetic on
+ // the total number of elements).
+ ElemIdx0 = (8 - Index) % 8;
+ ElemIdx1 = (9 - Index) % 8;
+ ElemIdx2 = (10 - Index) % 8;
+ ElemIdx3 = (11 - Index) % 8;
+ } else {
+ // Big endian ElemIdx<N> = Index + N
+ ElemIdx0 = Index;
+ ElemIdx1 = Index + 1;
+ ElemIdx2 = Index + 2;
+ ElemIdx3 = Index + 3;
+ }
+
+ int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
+ Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
+ QualType BIRetType = E->getType();
+ auto RetTy = ConvertType(BIRetType);
+ return Builder.CreateBitCast(ShuffleCall, RetTy);
+ }
+
+ case PPC::BI__builtin_pack_vector_int128: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ bool isLittleEndian = getTarget().isLittleEndian();
+ Value *PoisonValue =
+ llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
+ Value *Res = Builder.CreateInsertElement(
+ PoisonValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
+ Res = Builder.CreateInsertElement(Res, Op1,
+ (uint64_t)(isLittleEndian ? 0 : 1));
+ return Builder.CreateBitCast(Res, ConvertType(E->getType()));
+ }
+
+ case PPC::BI__builtin_unpack_vector_int128: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ ConstantInt *Index = cast<ConstantInt>(Op1);
+ Value *Unpacked = Builder.CreateBitCast(
+ Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
+
+ if (getTarget().isLittleEndian())
+ Index =
+ ConstantInt::get(Index->getIntegerType(), 1 - Index->getZExtValue());
+
+ return Builder.CreateExtractElement(Unpacked, Index);
+ }
+
+ case PPC::BI__builtin_ppc_sthcx: {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
+ return Builder.CreateCall(F, {Op0, Op1});
+ }
+
+ // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
+ // Some of the MMA instructions accumulate their result into an existing
+ // accumulator whereas the others generate a new accumulator. So we need to
+ // use custom code generation to expand a builtin call with a pointer to a
+ // load (if the corresponding instruction accumulates its result) followed by
+ // the call to the intrinsic and a store of the result.
+#define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \
+ case PPC::BI__builtin_##Name:
+#include "clang/Basic/BuiltinsPPC.def"
+ {
+ SmallVector<Value *, 4> Ops;
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
+ if (E->getArg(i)->getType()->isArrayType())
+ Ops.push_back(
+ EmitArrayToPointerDecay(E->getArg(i)).emitRawPointer(*this));
+ else
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+ // The first argument of these two builtins is a pointer used to store their
+ // result. However, the llvm intrinsics return their result in multiple
+ // return values. So, here we emit code extracting these values from the
+ // intrinsic results and storing them using that pointer.
+ if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
+ BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
+ BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
+ unsigned NumVecs = 2;
+ auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
+ if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
+ NumVecs = 4;
+ Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
+ }
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic);
+ Address Addr = EmitPointerWithAlignment(E->getArg(1));
+ Value *Vec = Builder.CreateLoad(Addr);
+ Value *Call = Builder.CreateCall(F, {Vec});
+ llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
+ Value *Ptr = Ops[0];
+ for (unsigned i=0; i<NumVecs; i++) {
+ Value *Vec = Builder.CreateExtractValue(Call, i);
+ llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
+ Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
+ Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
+ }
+ return Call;
+ }
+ if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
+ BuiltinID == PPC::BI__builtin_mma_build_acc) {
+ // Reverse the order of the operands for LE, so the
+ // same builtin call can be used on both LE and BE
+ // without the need for the programmer to swap operands.
+ // The operands are reversed starting from the second argument,
+ // the first operand is the pointer to the pair/accumulator
+ // that is being built.
+ if (getTarget().isLittleEndian())
+ std::reverse(Ops.begin() + 1, Ops.end());
+ }
+ bool Accumulate;
+ switch (BuiltinID) {
+ #define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \
+ case PPC::BI__builtin_##Name: \
+ ID = Intrinsic::ppc_##Intr; \
+ Accumulate = Acc; \
+ break;
+ #include "clang/Basic/BuiltinsPPC.def"
+ }
+ if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
+ BuiltinID == PPC::BI__builtin_vsx_stxvp ||
+ BuiltinID == PPC::BI__builtin_mma_lxvp ||
+ BuiltinID == PPC::BI__builtin_mma_stxvp) {
+ if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
+ BuiltinID == PPC::BI__builtin_mma_lxvp) {
+ Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
+ } else {
+ Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
+ }
+ Ops.pop_back();
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, Ops, "");
+ }
+ SmallVector<Value*, 4> CallOps;
+ if (Accumulate) {
+ Address Addr = EmitPointerWithAlignment(E->getArg(0));
+ Value *Acc = Builder.CreateLoad(Addr);
+ CallOps.push_back(Acc);
+ }
+ if (BuiltinID == PPC::BI__builtin_mma_dmmr ||
+ BuiltinID == PPC::BI__builtin_mma_dmxor) {
+ Address Addr = EmitPointerWithAlignment(E->getArg(1));
+ Ops[1] = Builder.CreateLoad(Addr);
+ }
+ for (unsigned i=1; i<Ops.size(); i++)
+ CallOps.push_back(Ops[i]);
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ Value *Call = Builder.CreateCall(F, CallOps);
+ return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign());
+ }
+
+ case PPC::BI__builtin_ppc_compare_and_swap:
+ case PPC::BI__builtin_ppc_compare_and_swaplp: {
+ Address Addr = EmitPointerWithAlignment(E->getArg(0));
+ Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
+ Value *OldVal = Builder.CreateLoad(OldValAddr);
+ QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
+ LValue LV = MakeAddrLValue(Addr, AtomicTy);
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ auto Pair = EmitAtomicCompareExchange(
+ LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
+ llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
+ // Unlike c11's atomic_compare_exchange, according to
+ // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
+ // > In either case, the contents of the memory location specified by addr
+ // > are copied into the memory location specified by old_val_addr.
+ // But it hasn't specified storing to OldValAddr is atomic or not and
+ // which order to use. Now following XL's codegen, treat it as a normal
+ // store.
+ Value *LoadedVal = Pair.first.getScalarVal();
+ Builder.CreateStore(LoadedVal, OldValAddr);
+ return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
+ }
+ case PPC::BI__builtin_ppc_fetch_and_add:
+ case PPC::BI__builtin_ppc_fetch_and_addlp: {
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
+ llvm::AtomicOrdering::Monotonic);
+ }
+ case PPC::BI__builtin_ppc_fetch_and_and:
+ case PPC::BI__builtin_ppc_fetch_and_andlp: {
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
+ llvm::AtomicOrdering::Monotonic);
+ }
+
+ case PPC::BI__builtin_ppc_fetch_and_or:
+ case PPC::BI__builtin_ppc_fetch_and_orlp: {
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
+ llvm::AtomicOrdering::Monotonic);
+ }
+ case PPC::BI__builtin_ppc_fetch_and_swap:
+ case PPC::BI__builtin_ppc_fetch_and_swaplp: {
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
+ llvm::AtomicOrdering::Monotonic);
+ }
+ case PPC::BI__builtin_ppc_ldarx:
+ case PPC::BI__builtin_ppc_lwarx:
+ case PPC::BI__builtin_ppc_lharx:
+ case PPC::BI__builtin_ppc_lbarx:
+ return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
+ case PPC::BI__builtin_ppc_mfspr: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
+ ? Int32Ty
+ : Int64Ty;
+ Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
+ return Builder.CreateCall(F, {Op0});
+ }
+ case PPC::BI__builtin_ppc_mtspr: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
+ ? Int32Ty
+ : Int64Ty;
+ Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
+ return Builder.CreateCall(F, {Op0, Op1});
+ }
+ case PPC::BI__builtin_ppc_popcntb: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+ llvm::Type *ArgType = ArgValue->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
+ return Builder.CreateCall(F, {ArgValue}, "popcntb");
+ }
+ case PPC::BI__builtin_ppc_mtfsf: {
+ // The builtin takes a uint32 that needs to be cast to an
+ // f64 to be passed to the intrinsic.
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
+ return Builder.CreateCall(F, {Op0, Cast}, "");
+ }
+
+ case PPC::BI__builtin_ppc_swdiv_nochk:
+ case PPC::BI__builtin_ppc_swdivs_nochk: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ FastMathFlags FMF = Builder.getFastMathFlags();
+ Builder.getFastMathFlags().setFast();
+ Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
+ Builder.getFastMathFlags() &= (FMF);
+ return FDiv;
+ }
+ case PPC::BI__builtin_ppc_fric:
+ return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
+ *this, E, Intrinsic::rint,
+ Intrinsic::experimental_constrained_rint))
+ .getScalarVal();
+ case PPC::BI__builtin_ppc_frim:
+ case PPC::BI__builtin_ppc_frims:
+ return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
+ *this, E, Intrinsic::floor,
+ Intrinsic::experimental_constrained_floor))
+ .getScalarVal();
+ case PPC::BI__builtin_ppc_frin:
+ case PPC::BI__builtin_ppc_frins:
+ return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
+ *this, E, Intrinsic::round,
+ Intrinsic::experimental_constrained_round))
+ .getScalarVal();
+ case PPC::BI__builtin_ppc_frip:
+ case PPC::BI__builtin_ppc_frips:
+ return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
+ *this, E, Intrinsic::ceil,
+ Intrinsic::experimental_constrained_ceil))
+ .getScalarVal();
+ case PPC::BI__builtin_ppc_friz:
+ case PPC::BI__builtin_ppc_frizs:
+ return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
+ *this, E, Intrinsic::trunc,
+ Intrinsic::experimental_constrained_trunc))
+ .getScalarVal();
+ case PPC::BI__builtin_ppc_fsqrt:
+ case PPC::BI__builtin_ppc_fsqrts:
+ return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
+ *this, E, Intrinsic::sqrt,
+ Intrinsic::experimental_constrained_sqrt))
+ .getScalarVal();
+ case PPC::BI__builtin_ppc_test_data_class: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(Intrinsic::ppc_test_data_class, Op0->getType()),
+ {Op0, Op1}, "test_data_class");
+ }
+ case PPC::BI__builtin_ppc_maxfe: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ Value *Op3 = EmitScalarExpr(E->getArg(3));
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
+ {Op0, Op1, Op2, Op3});
+ }
+ case PPC::BI__builtin_ppc_maxfl: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ Value *Op3 = EmitScalarExpr(E->getArg(3));
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
+ {Op0, Op1, Op2, Op3});
+ }
+ case PPC::BI__builtin_ppc_maxfs: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ Value *Op3 = EmitScalarExpr(E->getArg(3));
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
+ {Op0, Op1, Op2, Op3});
+ }
+ case PPC::BI__builtin_ppc_minfe: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ Value *Op3 = EmitScalarExpr(E->getArg(3));
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
+ {Op0, Op1, Op2, Op3});
+ }
+ case PPC::BI__builtin_ppc_minfl: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ Value *Op3 = EmitScalarExpr(E->getArg(3));
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
+ {Op0, Op1, Op2, Op3});
+ }
+ case PPC::BI__builtin_ppc_minfs: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ Value *Op2 = EmitScalarExpr(E->getArg(2));
+ Value *Op3 = EmitScalarExpr(E->getArg(3));
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
+ {Op0, Op1, Op2, Op3});
+ }
+ case PPC::BI__builtin_ppc_swdiv:
+ case PPC::BI__builtin_ppc_swdivs: {
+ Value *Op0 = EmitScalarExpr(E->getArg(0));
+ Value *Op1 = EmitScalarExpr(E->getArg(1));
+ return Builder.CreateFDiv(Op0, Op1, "swdiv");
+ }
+ case PPC::BI__builtin_ppc_set_fpscr_rn:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_setrnd),
+ {EmitScalarExpr(E->getArg(0))});
+ case PPC::BI__builtin_ppc_mffs:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_readflm));
+ }
+}