1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
|
/* Software floating-point emulation.
Basic four-word fraction declaration and manipulation.
Copyright (C) 1997-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
In addition to the permissions in the GNU Lesser General Public
License, the Free Software Foundation gives you unlimited
permission to link the compiled version of this file into
combinations with other programs, and to distribute those
combinations without any restriction coming from the use of this
file. (The Lesser General Public License restrictions do apply in
other respects; for example, they cover modification of the file,
and distribution when not linked into a combine executable.)
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef SOFT_FP_OP_4_H
#define SOFT_FP_OP_4_H 1
#define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4]
#define _FP_FRAC_COPY_4(D, S) \
(D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \
D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
#define _FP_FRAC_SET_4(X, I) __FP_FRAC_SET_4 (X, I)
#define _FP_FRAC_HIGH_4(X) (X##_f[3])
#define _FP_FRAC_LOW_4(X) (X##_f[0])
#define _FP_FRAC_WORD_4(X, w) (X##_f[w])
#define _FP_FRAC_SLL_4(X, N) \
do \
{ \
_FP_I_TYPE _FP_FRAC_SLL_4_up, _FP_FRAC_SLL_4_down; \
_FP_I_TYPE _FP_FRAC_SLL_4_skip, _FP_FRAC_SLL_4_i; \
_FP_FRAC_SLL_4_skip = (N) / _FP_W_TYPE_SIZE; \
_FP_FRAC_SLL_4_up = (N) % _FP_W_TYPE_SIZE; \
_FP_FRAC_SLL_4_down = _FP_W_TYPE_SIZE - _FP_FRAC_SLL_4_up; \
if (!_FP_FRAC_SLL_4_up) \
for (_FP_FRAC_SLL_4_i = 3; \
_FP_FRAC_SLL_4_i >= _FP_FRAC_SLL_4_skip; \
--_FP_FRAC_SLL_4_i) \
X##_f[_FP_FRAC_SLL_4_i] \
= X##_f[_FP_FRAC_SLL_4_i-_FP_FRAC_SLL_4_skip]; \
else \
{ \
for (_FP_FRAC_SLL_4_i = 3; \
_FP_FRAC_SLL_4_i > _FP_FRAC_SLL_4_skip; \
--_FP_FRAC_SLL_4_i) \
X##_f[_FP_FRAC_SLL_4_i] \
= ((X##_f[_FP_FRAC_SLL_4_i-_FP_FRAC_SLL_4_skip] \
<< _FP_FRAC_SLL_4_up) \
| (X##_f[_FP_FRAC_SLL_4_i-_FP_FRAC_SLL_4_skip-1] \
>> _FP_FRAC_SLL_4_down)); \
X##_f[_FP_FRAC_SLL_4_i--] = X##_f[0] << _FP_FRAC_SLL_4_up; \
} \
for (; _FP_FRAC_SLL_4_i >= 0; --_FP_FRAC_SLL_4_i) \
X##_f[_FP_FRAC_SLL_4_i] = 0; \
} \
while (0)
/* This one was broken too. */
#define _FP_FRAC_SRL_4(X, N) \
do \
{ \
_FP_I_TYPE _FP_FRAC_SRL_4_up, _FP_FRAC_SRL_4_down; \
_FP_I_TYPE _FP_FRAC_SRL_4_skip, _FP_FRAC_SRL_4_i; \
_FP_FRAC_SRL_4_skip = (N) / _FP_W_TYPE_SIZE; \
_FP_FRAC_SRL_4_down = (N) % _FP_W_TYPE_SIZE; \
_FP_FRAC_SRL_4_up = _FP_W_TYPE_SIZE - _FP_FRAC_SRL_4_down; \
if (!_FP_FRAC_SRL_4_down) \
for (_FP_FRAC_SRL_4_i = 0; \
_FP_FRAC_SRL_4_i <= 3-_FP_FRAC_SRL_4_skip; \
++_FP_FRAC_SRL_4_i) \
X##_f[_FP_FRAC_SRL_4_i] \
= X##_f[_FP_FRAC_SRL_4_i+_FP_FRAC_SRL_4_skip]; \
else \
{ \
for (_FP_FRAC_SRL_4_i = 0; \
_FP_FRAC_SRL_4_i < 3-_FP_FRAC_SRL_4_skip; \
++_FP_FRAC_SRL_4_i) \
X##_f[_FP_FRAC_SRL_4_i] \
= ((X##_f[_FP_FRAC_SRL_4_i+_FP_FRAC_SRL_4_skip] \
>> _FP_FRAC_SRL_4_down) \
| (X##_f[_FP_FRAC_SRL_4_i+_FP_FRAC_SRL_4_skip+1] \
<< _FP_FRAC_SRL_4_up)); \
X##_f[_FP_FRAC_SRL_4_i++] = X##_f[3] >> _FP_FRAC_SRL_4_down; \
} \
for (; _FP_FRAC_SRL_4_i < 4; ++_FP_FRAC_SRL_4_i) \
X##_f[_FP_FRAC_SRL_4_i] = 0; \
} \
while (0)
/* Right shift with sticky-lsb.
What this actually means is that we do a standard right-shift,
but that if any of the bits that fall off the right hand side
were one then we always set the LSbit. */
#define _FP_FRAC_SRST_4(X, S, N, size) \
do \
{ \
_FP_I_TYPE _FP_FRAC_SRST_4_up, _FP_FRAC_SRST_4_down; \
_FP_I_TYPE _FP_FRAC_SRST_4_skip, _FP_FRAC_SRST_4_i; \
_FP_W_TYPE _FP_FRAC_SRST_4_s; \
_FP_FRAC_SRST_4_skip = (N) / _FP_W_TYPE_SIZE; \
_FP_FRAC_SRST_4_down = (N) % _FP_W_TYPE_SIZE; \
_FP_FRAC_SRST_4_up = _FP_W_TYPE_SIZE - _FP_FRAC_SRST_4_down; \
for (_FP_FRAC_SRST_4_s = _FP_FRAC_SRST_4_i = 0; \
_FP_FRAC_SRST_4_i < _FP_FRAC_SRST_4_skip; \
++_FP_FRAC_SRST_4_i) \
_FP_FRAC_SRST_4_s |= X##_f[_FP_FRAC_SRST_4_i]; \
if (!_FP_FRAC_SRST_4_down) \
for (_FP_FRAC_SRST_4_i = 0; \
_FP_FRAC_SRST_4_i <= 3-_FP_FRAC_SRST_4_skip; \
++_FP_FRAC_SRST_4_i) \
X##_f[_FP_FRAC_SRST_4_i] \
= X##_f[_FP_FRAC_SRST_4_i+_FP_FRAC_SRST_4_skip]; \
else \
{ \
_FP_FRAC_SRST_4_s \
|= X##_f[_FP_FRAC_SRST_4_i] << _FP_FRAC_SRST_4_up; \
for (_FP_FRAC_SRST_4_i = 0; \
_FP_FRAC_SRST_4_i < 3-_FP_FRAC_SRST_4_skip; \
++_FP_FRAC_SRST_4_i) \
X##_f[_FP_FRAC_SRST_4_i] \
= ((X##_f[_FP_FRAC_SRST_4_i+_FP_FRAC_SRST_4_skip] \
>> _FP_FRAC_SRST_4_down) \
| (X##_f[_FP_FRAC_SRST_4_i+_FP_FRAC_SRST_4_skip+1] \
<< _FP_FRAC_SRST_4_up)); \
X##_f[_FP_FRAC_SRST_4_i++] \
= X##_f[3] >> _FP_FRAC_SRST_4_down; \
} \
for (; _FP_FRAC_SRST_4_i < 4; ++_FP_FRAC_SRST_4_i) \
X##_f[_FP_FRAC_SRST_4_i] = 0; \
S = (_FP_FRAC_SRST_4_s != 0); \
} \
while (0)
#define _FP_FRAC_SRS_4(X, N, size) \
do \
{ \
int _FP_FRAC_SRS_4_sticky; \
_FP_FRAC_SRST_4 (X, _FP_FRAC_SRS_4_sticky, (N), (size)); \
X##_f[0] |= _FP_FRAC_SRS_4_sticky; \
} \
while (0)
#define _FP_FRAC_ADD_4(R, X, Y) \
__FP_FRAC_ADD_4 (R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
#define _FP_FRAC_SUB_4(R, X, Y) \
__FP_FRAC_SUB_4 (R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
#define _FP_FRAC_DEC_4(X, Y) \
__FP_FRAC_DEC_4 (X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
#define _FP_FRAC_ADDI_4(X, I) \
__FP_FRAC_ADDI_4 (X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
#define _FP_ZEROFRAC_4 0, 0, 0, 0
#define _FP_MINFRAC_4 0, 0, 0, 1
#define _FP_MAXFRAC_4 (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0), (~(_FP_WS_TYPE) 0)
#define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
#define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE) X##_f[3] < 0)
#define _FP_FRAC_OVERP_4(fs, X) (_FP_FRAC_HIGH_##fs (X) & _FP_OVERFLOW_##fs)
#define _FP_FRAC_HIGHBIT_DW_4(fs, X) \
(_FP_FRAC_HIGH_DW_##fs (X) & _FP_HIGHBIT_DW_##fs)
#define _FP_FRAC_CLEAR_OVERP_4(fs, X) (_FP_FRAC_HIGH_##fs (X) &= ~_FP_OVERFLOW_##fs)
#define _FP_FRAC_EQ_4(X, Y) \
(X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \
&& X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
#define _FP_FRAC_GT_4(X, Y) \
(X##_f[3] > Y##_f[3] \
|| (X##_f[3] == Y##_f[3] \
&& (X##_f[2] > Y##_f[2] \
|| (X##_f[2] == Y##_f[2] \
&& (X##_f[1] > Y##_f[1] \
|| (X##_f[1] == Y##_f[1] \
&& X##_f[0] > Y##_f[0]))))))
#define _FP_FRAC_GE_4(X, Y) \
(X##_f[3] > Y##_f[3] \
|| (X##_f[3] == Y##_f[3] \
&& (X##_f[2] > Y##_f[2] \
|| (X##_f[2] == Y##_f[2] \
&& (X##_f[1] > Y##_f[1] \
|| (X##_f[1] == Y##_f[1] \
&& X##_f[0] >= Y##_f[0]))))))
#define _FP_FRAC_CLZ_4(R, X) \
do \
{ \
if (X##_f[3]) \
__FP_CLZ ((R), X##_f[3]); \
else if (X##_f[2]) \
{ \
__FP_CLZ ((R), X##_f[2]); \
(R) += _FP_W_TYPE_SIZE; \
} \
else if (X##_f[1]) \
{ \
__FP_CLZ ((R), X##_f[1]); \
(R) += _FP_W_TYPE_SIZE*2; \
} \
else \
{ \
__FP_CLZ ((R), X##_f[0]); \
(R) += _FP_W_TYPE_SIZE*3; \
} \
} \
while (0)
#define _FP_UNPACK_RAW_4(fs, X, val) \
do \
{ \
union _FP_UNION_##fs _FP_UNPACK_RAW_4_flo; \
_FP_UNPACK_RAW_4_flo.flt = (val); \
X##_f[0] = _FP_UNPACK_RAW_4_flo.bits.frac0; \
X##_f[1] = _FP_UNPACK_RAW_4_flo.bits.frac1; \
X##_f[2] = _FP_UNPACK_RAW_4_flo.bits.frac2; \
X##_f[3] = _FP_UNPACK_RAW_4_flo.bits.frac3; \
X##_e = _FP_UNPACK_RAW_4_flo.bits.exp; \
X##_s = _FP_UNPACK_RAW_4_flo.bits.sign; \
} \
while (0)
#define _FP_UNPACK_RAW_4_P(fs, X, val) \
do \
{ \
union _FP_UNION_##fs *_FP_UNPACK_RAW_4_P_flo \
= (union _FP_UNION_##fs *) (val); \
\
X##_f[0] = _FP_UNPACK_RAW_4_P_flo->bits.frac0; \
X##_f[1] = _FP_UNPACK_RAW_4_P_flo->bits.frac1; \
X##_f[2] = _FP_UNPACK_RAW_4_P_flo->bits.frac2; \
X##_f[3] = _FP_UNPACK_RAW_4_P_flo->bits.frac3; \
X##_e = _FP_UNPACK_RAW_4_P_flo->bits.exp; \
X##_s = _FP_UNPACK_RAW_4_P_flo->bits.sign; \
} \
while (0)
#define _FP_PACK_RAW_4(fs, val, X) \
do \
{ \
union _FP_UNION_##fs _FP_PACK_RAW_4_flo; \
_FP_PACK_RAW_4_flo.bits.frac0 = X##_f[0]; \
_FP_PACK_RAW_4_flo.bits.frac1 = X##_f[1]; \
_FP_PACK_RAW_4_flo.bits.frac2 = X##_f[2]; \
_FP_PACK_RAW_4_flo.bits.frac3 = X##_f[3]; \
_FP_PACK_RAW_4_flo.bits.exp = X##_e; \
_FP_PACK_RAW_4_flo.bits.sign = X##_s; \
(val) = _FP_PACK_RAW_4_flo.flt; \
} \
while (0)
#define _FP_PACK_RAW_4_P(fs, val, X) \
do \
{ \
union _FP_UNION_##fs *_FP_PACK_RAW_4_P_flo \
= (union _FP_UNION_##fs *) (val); \
\
_FP_PACK_RAW_4_P_flo->bits.frac0 = X##_f[0]; \
_FP_PACK_RAW_4_P_flo->bits.frac1 = X##_f[1]; \
_FP_PACK_RAW_4_P_flo->bits.frac2 = X##_f[2]; \
_FP_PACK_RAW_4_P_flo->bits.frac3 = X##_f[3]; \
_FP_PACK_RAW_4_P_flo->bits.exp = X##_e; \
_FP_PACK_RAW_4_P_flo->bits.sign = X##_s; \
} \
while (0)
/* Multiplication algorithms: */
/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
#define _FP_MUL_MEAT_DW_4_wide(wfracbits, R, X, Y, doit) \
do \
{ \
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_b); \
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_c); \
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_d); \
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_e); \
_FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_4_wide_f); \
\
doit (_FP_FRAC_WORD_8 (R, 1), _FP_FRAC_WORD_8 (R, 0), \
X##_f[0], Y##_f[0]); \
doit (_FP_MUL_MEAT_DW_4_wide_b_f1, _FP_MUL_MEAT_DW_4_wide_b_f0, \
X##_f[0], Y##_f[1]); \
doit (_FP_MUL_MEAT_DW_4_wide_c_f1, _FP_MUL_MEAT_DW_4_wide_c_f0, \
X##_f[1], Y##_f[0]); \
doit (_FP_MUL_MEAT_DW_4_wide_d_f1, _FP_MUL_MEAT_DW_4_wide_d_f0, \
X##_f[1], Y##_f[1]); \
doit (_FP_MUL_MEAT_DW_4_wide_e_f1, _FP_MUL_MEAT_DW_4_wide_e_f0, \
X##_f[0], Y##_f[2]); \
doit (_FP_MUL_MEAT_DW_4_wide_f_f1, _FP_MUL_MEAT_DW_4_wide_f_f0, \
X##_f[2], Y##_f[0]); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2), \
_FP_FRAC_WORD_8 (R, 1), 0, \
_FP_MUL_MEAT_DW_4_wide_b_f1, \
_FP_MUL_MEAT_DW_4_wide_b_f0, \
0, 0, _FP_FRAC_WORD_8 (R, 1)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2), \
_FP_FRAC_WORD_8 (R, 1), 0, \
_FP_MUL_MEAT_DW_4_wide_c_f1, \
_FP_MUL_MEAT_DW_4_wide_c_f0, \
_FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2), \
_FP_FRAC_WORD_8 (R, 1)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
_FP_FRAC_WORD_8 (R, 2), 0, \
_FP_MUL_MEAT_DW_4_wide_d_f1, \
_FP_MUL_MEAT_DW_4_wide_d_f0, \
0, _FP_FRAC_WORD_8 (R, 3), _FP_FRAC_WORD_8 (R, 2)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
_FP_FRAC_WORD_8 (R, 2), 0, \
_FP_MUL_MEAT_DW_4_wide_e_f1, \
_FP_MUL_MEAT_DW_4_wide_e_f0, \
_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
_FP_FRAC_WORD_8 (R, 2)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
_FP_FRAC_WORD_8 (R, 2), 0, \
_FP_MUL_MEAT_DW_4_wide_f_f1, \
_FP_MUL_MEAT_DW_4_wide_f_f0, \
_FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3), \
_FP_FRAC_WORD_8 (R, 2)); \
doit (_FP_MUL_MEAT_DW_4_wide_b_f1, \
_FP_MUL_MEAT_DW_4_wide_b_f0, X##_f[0], Y##_f[3]); \
doit (_FP_MUL_MEAT_DW_4_wide_c_f1, \
_FP_MUL_MEAT_DW_4_wide_c_f0, X##_f[3], Y##_f[0]); \
doit (_FP_MUL_MEAT_DW_4_wide_d_f1, _FP_MUL_MEAT_DW_4_wide_d_f0, \
X##_f[1], Y##_f[2]); \
doit (_FP_MUL_MEAT_DW_4_wide_e_f1, _FP_MUL_MEAT_DW_4_wide_e_f0, \
X##_f[2], Y##_f[1]); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
_FP_FRAC_WORD_8 (R, 3), 0, \
_FP_MUL_MEAT_DW_4_wide_b_f1, \
_FP_MUL_MEAT_DW_4_wide_b_f0, \
0, _FP_FRAC_WORD_8 (R, 4), _FP_FRAC_WORD_8 (R, 3)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
_FP_FRAC_WORD_8 (R, 3), 0, \
_FP_MUL_MEAT_DW_4_wide_c_f1, \
_FP_MUL_MEAT_DW_4_wide_c_f0, \
_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
_FP_FRAC_WORD_8 (R, 3)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
_FP_FRAC_WORD_8 (R, 3), 0, \
_FP_MUL_MEAT_DW_4_wide_d_f1, \
_FP_MUL_MEAT_DW_4_wide_d_f0, \
_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
_FP_FRAC_WORD_8 (R, 3)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
_FP_FRAC_WORD_8 (R, 3), 0, \
_FP_MUL_MEAT_DW_4_wide_e_f1, \
_FP_MUL_MEAT_DW_4_wide_e_f0, \
_FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4), \
_FP_FRAC_WORD_8 (R, 3)); \
doit (_FP_MUL_MEAT_DW_4_wide_b_f1, _FP_MUL_MEAT_DW_4_wide_b_f0, \
X##_f[2], Y##_f[2]); \
doit (_FP_MUL_MEAT_DW_4_wide_c_f1, _FP_MUL_MEAT_DW_4_wide_c_f0, \
X##_f[1], Y##_f[3]); \
doit (_FP_MUL_MEAT_DW_4_wide_d_f1, _FP_MUL_MEAT_DW_4_wide_d_f0, \
X##_f[3], Y##_f[1]); \
doit (_FP_MUL_MEAT_DW_4_wide_e_f1, _FP_MUL_MEAT_DW_4_wide_e_f0, \
X##_f[2], Y##_f[3]); \
doit (_FP_MUL_MEAT_DW_4_wide_f_f1, _FP_MUL_MEAT_DW_4_wide_f_f0, \
X##_f[3], Y##_f[2]); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
_FP_FRAC_WORD_8 (R, 4), 0, \
_FP_MUL_MEAT_DW_4_wide_b_f1, \
_FP_MUL_MEAT_DW_4_wide_b_f0, \
0, _FP_FRAC_WORD_8 (R, 5), _FP_FRAC_WORD_8 (R, 4)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
_FP_FRAC_WORD_8 (R, 4), 0, \
_FP_MUL_MEAT_DW_4_wide_c_f1, \
_FP_MUL_MEAT_DW_4_wide_c_f0, \
_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
_FP_FRAC_WORD_8 (R, 4)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
_FP_FRAC_WORD_8 (R, 4), 0, \
_FP_MUL_MEAT_DW_4_wide_d_f1, \
_FP_MUL_MEAT_DW_4_wide_d_f0, \
_FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5), \
_FP_FRAC_WORD_8 (R, 4)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
_FP_FRAC_WORD_8 (R, 5), 0, \
_FP_MUL_MEAT_DW_4_wide_e_f1, \
_FP_MUL_MEAT_DW_4_wide_e_f0, \
0, _FP_FRAC_WORD_8 (R, 6), _FP_FRAC_WORD_8 (R, 5)); \
__FP_FRAC_ADD_3 (_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
_FP_FRAC_WORD_8 (R, 5), 0, \
_FP_MUL_MEAT_DW_4_wide_f_f1, \
_FP_MUL_MEAT_DW_4_wide_f_f0, \
_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
_FP_FRAC_WORD_8 (R, 5)); \
doit (_FP_MUL_MEAT_DW_4_wide_b_f1, _FP_MUL_MEAT_DW_4_wide_b_f0, \
X##_f[3], Y##_f[3]); \
__FP_FRAC_ADD_2 (_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6), \
_FP_MUL_MEAT_DW_4_wide_b_f1, \
_FP_MUL_MEAT_DW_4_wide_b_f0, \
_FP_FRAC_WORD_8 (R, 7), _FP_FRAC_WORD_8 (R, 6)); \
} \
while (0)
#define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit) \
do \
{ \
_FP_FRAC_DECL_8 (_FP_MUL_MEAT_4_wide_z); \
\
_FP_MUL_MEAT_DW_4_wide ((wfracbits), _FP_MUL_MEAT_4_wide_z, \
X, Y, doit); \
\
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
_FP_FRAC_SRS_8 (_FP_MUL_MEAT_4_wide_z, (wfracbits)-1, \
2*(wfracbits)); \
__FP_FRAC_SET_4 (R, _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 3), \
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 2), \
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 1), \
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_wide_z, 0)); \
} \
while (0)
#define _FP_MUL_MEAT_DW_4_gmp(wfracbits, R, X, Y) \
do \
{ \
mpn_mul_n (R##_f, _x_f, _y_f, 4); \
} \
while (0)
#define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y) \
do \
{ \
_FP_FRAC_DECL_8 (_FP_MUL_MEAT_4_gmp_z); \
\
_FP_MUL_MEAT_DW_4_gmp ((wfracbits), _FP_MUL_MEAT_4_gmp_z, X, Y); \
\
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
_FP_FRAC_SRS_8 (_FP_MUL_MEAT_4_gmp_z, (wfracbits)-1, \
2*(wfracbits)); \
__FP_FRAC_SET_4 (R, _FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 3), \
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 2), \
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 1), \
_FP_FRAC_WORD_8 (_FP_MUL_MEAT_4_gmp_z, 0)); \
} \
while (0)
/* Helper utility for _FP_DIV_MEAT_4_udiv:
* pppp = m * nnn. */
#define umul_ppppmnnn(p3, p2, p1, p0, m, n2, n1, n0) \
do \
{ \
UWtype umul_ppppmnnn_t; \
umul_ppmm (p1, p0, m, n0); \
umul_ppmm (p2, umul_ppppmnnn_t, m, n1); \
__FP_FRAC_ADDI_2 (p2, p1, umul_ppppmnnn_t); \
umul_ppmm (p3, umul_ppppmnnn_t, m, n2); \
__FP_FRAC_ADDI_2 (p3, p2, umul_ppppmnnn_t); \
} \
while (0)
/* Division algorithms: */
#define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \
do \
{ \
int _FP_DIV_MEAT_4_udiv_i; \
_FP_FRAC_DECL_4 (_FP_DIV_MEAT_4_udiv_n); \
_FP_FRAC_DECL_4 (_FP_DIV_MEAT_4_udiv_m); \
_FP_FRAC_SET_4 (_FP_DIV_MEAT_4_udiv_n, _FP_ZEROFRAC_4); \
if (_FP_FRAC_GE_4 (X, Y)) \
{ \
_FP_DIV_MEAT_4_udiv_n_f[3] \
= X##_f[0] << (_FP_W_TYPE_SIZE - 1); \
_FP_FRAC_SRL_4 (X, 1); \
} \
else \
R##_e--; \
\
/* Normalize, i.e. make the most significant bit of the \
denominator set. */ \
_FP_FRAC_SLL_4 (Y, _FP_WFRACXBITS_##fs); \
\
for (_FP_DIV_MEAT_4_udiv_i = 3; ; _FP_DIV_MEAT_4_udiv_i--) \
{ \
if (X##_f[3] == Y##_f[3]) \
{ \
/* This is a special case, not an optimization \
(X##_f[3]/Y##_f[3] would not fit into UWtype). \
As X## is guaranteed to be < Y, \
R##_f[_FP_DIV_MEAT_4_udiv_i] can be either \
(UWtype)-1 or (UWtype)-2. */ \
R##_f[_FP_DIV_MEAT_4_udiv_i] = -1; \
if (!_FP_DIV_MEAT_4_udiv_i) \
break; \
__FP_FRAC_SUB_4 (X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
Y##_f[2], Y##_f[1], Y##_f[0], 0, \
X##_f[2], X##_f[1], X##_f[0], \
_FP_DIV_MEAT_4_udiv_n_f[_FP_DIV_MEAT_4_udiv_i]); \
_FP_FRAC_SUB_4 (X, Y, X); \
if (X##_f[3] > Y##_f[3]) \
{ \
R##_f[_FP_DIV_MEAT_4_udiv_i] = -2; \
_FP_FRAC_ADD_4 (X, Y, X); \
} \
} \
else \
{ \
udiv_qrnnd (R##_f[_FP_DIV_MEAT_4_udiv_i], \
X##_f[3], X##_f[3], X##_f[2], Y##_f[3]); \
umul_ppppmnnn (_FP_DIV_MEAT_4_udiv_m_f[3], \
_FP_DIV_MEAT_4_udiv_m_f[2], \
_FP_DIV_MEAT_4_udiv_m_f[1], \
_FP_DIV_MEAT_4_udiv_m_f[0], \
R##_f[_FP_DIV_MEAT_4_udiv_i], \
Y##_f[2], Y##_f[1], Y##_f[0]); \
X##_f[2] = X##_f[1]; \
X##_f[1] = X##_f[0]; \
X##_f[0] \
= _FP_DIV_MEAT_4_udiv_n_f[_FP_DIV_MEAT_4_udiv_i]; \
if (_FP_FRAC_GT_4 (_FP_DIV_MEAT_4_udiv_m, X)) \
{ \
R##_f[_FP_DIV_MEAT_4_udiv_i]--; \
_FP_FRAC_ADD_4 (X, Y, X); \
if (_FP_FRAC_GE_4 (X, Y) \
&& _FP_FRAC_GT_4 (_FP_DIV_MEAT_4_udiv_m, X)) \
{ \
R##_f[_FP_DIV_MEAT_4_udiv_i]--; \
_FP_FRAC_ADD_4 (X, Y, X); \
} \
} \
_FP_FRAC_DEC_4 (X, _FP_DIV_MEAT_4_udiv_m); \
if (!_FP_DIV_MEAT_4_udiv_i) \
{ \
if (!_FP_FRAC_EQ_4 (X, _FP_DIV_MEAT_4_udiv_m)) \
R##_f[0] |= _FP_WORK_STICKY; \
break; \
} \
} \
} \
} \
while (0)
/* Square root algorithms:
We have just one right now, maybe Newton approximation
should be added for those machines where division is fast. */
#define _FP_SQRT_MEAT_4(R, S, T, X, q) \
do \
{ \
while (q) \
{ \
T##_f[3] = S##_f[3] + (q); \
if (T##_f[3] <= X##_f[3]) \
{ \
S##_f[3] = T##_f[3] + (q); \
X##_f[3] -= T##_f[3]; \
R##_f[3] += (q); \
} \
_FP_FRAC_SLL_4 (X, 1); \
(q) >>= 1; \
} \
(q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
while (q) \
{ \
T##_f[2] = S##_f[2] + (q); \
T##_f[3] = S##_f[3]; \
if (T##_f[3] < X##_f[3] \
|| (T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2])) \
{ \
S##_f[2] = T##_f[2] + (q); \
S##_f[3] += (T##_f[2] > S##_f[2]); \
__FP_FRAC_DEC_2 (X##_f[3], X##_f[2], \
T##_f[3], T##_f[2]); \
R##_f[2] += (q); \
} \
_FP_FRAC_SLL_4 (X, 1); \
(q) >>= 1; \
} \
(q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
while (q) \
{ \
T##_f[1] = S##_f[1] + (q); \
T##_f[2] = S##_f[2]; \
T##_f[3] = S##_f[3]; \
if (T##_f[3] < X##_f[3] \
|| (T##_f[3] == X##_f[3] \
&& (T##_f[2] < X##_f[2] \
|| (T##_f[2] == X##_f[2] \
&& T##_f[1] <= X##_f[1])))) \
{ \
S##_f[1] = T##_f[1] + (q); \
S##_f[2] += (T##_f[1] > S##_f[1]); \
S##_f[3] += (T##_f[2] > S##_f[2]); \
__FP_FRAC_DEC_3 (X##_f[3], X##_f[2], X##_f[1], \
T##_f[3], T##_f[2], T##_f[1]); \
R##_f[1] += (q); \
} \
_FP_FRAC_SLL_4 (X, 1); \
(q) >>= 1; \
} \
(q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
while ((q) != _FP_WORK_ROUND) \
{ \
T##_f[0] = S##_f[0] + (q); \
T##_f[1] = S##_f[1]; \
T##_f[2] = S##_f[2]; \
T##_f[3] = S##_f[3]; \
if (_FP_FRAC_GE_4 (X, T)) \
{ \
S##_f[0] = T##_f[0] + (q); \
S##_f[1] += (T##_f[0] > S##_f[0]); \
S##_f[2] += (T##_f[1] > S##_f[1]); \
S##_f[3] += (T##_f[2] > S##_f[2]); \
_FP_FRAC_DEC_4 (X, T); \
R##_f[0] += (q); \
} \
_FP_FRAC_SLL_4 (X, 1); \
(q) >>= 1; \
} \
if (!_FP_FRAC_ZEROP_4 (X)) \
{ \
if (_FP_FRAC_GT_4 (X, S)) \
R##_f[0] |= _FP_WORK_ROUND; \
R##_f[0] |= _FP_WORK_STICKY; \
} \
} \
while (0)
/* Internals. */
#define __FP_FRAC_SET_4(X, I3, I2, I1, I0) \
(X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
#ifndef __FP_FRAC_ADD_3
# define __FP_FRAC_ADD_3(r2, r1, r0, x2, x1, x0, y2, y1, y0) \
do \
{ \
_FP_W_TYPE __FP_FRAC_ADD_3_c1, __FP_FRAC_ADD_3_c2; \
r0 = x0 + y0; \
__FP_FRAC_ADD_3_c1 = r0 < x0; \
r1 = x1 + y1; \
__FP_FRAC_ADD_3_c2 = r1 < x1; \
r1 += __FP_FRAC_ADD_3_c1; \
__FP_FRAC_ADD_3_c2 |= r1 < __FP_FRAC_ADD_3_c1; \
r2 = x2 + y2 + __FP_FRAC_ADD_3_c2; \
} \
while (0)
#endif
#ifndef __FP_FRAC_ADD_4
# define __FP_FRAC_ADD_4(r3, r2, r1, r0, x3, x2, x1, x0, y3, y2, y1, y0) \
do \
{ \
_FP_W_TYPE __FP_FRAC_ADD_4_c1, __FP_FRAC_ADD_4_c2; \
_FP_W_TYPE __FP_FRAC_ADD_4_c3; \
r0 = x0 + y0; \
__FP_FRAC_ADD_4_c1 = r0 < x0; \
r1 = x1 + y1; \
__FP_FRAC_ADD_4_c2 = r1 < x1; \
r1 += __FP_FRAC_ADD_4_c1; \
__FP_FRAC_ADD_4_c2 |= r1 < __FP_FRAC_ADD_4_c1; \
r2 = x2 + y2; \
__FP_FRAC_ADD_4_c3 = r2 < x2; \
r2 += __FP_FRAC_ADD_4_c2; \
__FP_FRAC_ADD_4_c3 |= r2 < __FP_FRAC_ADD_4_c2; \
r3 = x3 + y3 + __FP_FRAC_ADD_4_c3; \
} \
while (0)
#endif
#ifndef __FP_FRAC_SUB_3
# define __FP_FRAC_SUB_3(r2, r1, r0, x2, x1, x0, y2, y1, y0) \
do \
{ \
_FP_W_TYPE __FP_FRAC_SUB_3_tmp[2]; \
_FP_W_TYPE __FP_FRAC_SUB_3_c1, __FP_FRAC_SUB_3_c2; \
__FP_FRAC_SUB_3_tmp[0] = x0 - y0; \
__FP_FRAC_SUB_3_c1 = __FP_FRAC_SUB_3_tmp[0] > x0; \
__FP_FRAC_SUB_3_tmp[1] = x1 - y1; \
__FP_FRAC_SUB_3_c2 = __FP_FRAC_SUB_3_tmp[1] > x1; \
__FP_FRAC_SUB_3_tmp[1] -= __FP_FRAC_SUB_3_c1; \
__FP_FRAC_SUB_3_c2 |= __FP_FRAC_SUB_3_c1 && (y1 == x1); \
r2 = x2 - y2 - __FP_FRAC_SUB_3_c2; \
r1 = __FP_FRAC_SUB_3_tmp[1]; \
r0 = __FP_FRAC_SUB_3_tmp[0]; \
} \
while (0)
#endif
#ifndef __FP_FRAC_SUB_4
# define __FP_FRAC_SUB_4(r3, r2, r1, r0, x3, x2, x1, x0, y3, y2, y1, y0) \
do \
{ \
_FP_W_TYPE __FP_FRAC_SUB_4_tmp[3]; \
_FP_W_TYPE __FP_FRAC_SUB_4_c1, __FP_FRAC_SUB_4_c2; \
_FP_W_TYPE __FP_FRAC_SUB_4_c3; \
__FP_FRAC_SUB_4_tmp[0] = x0 - y0; \
__FP_FRAC_SUB_4_c1 = __FP_FRAC_SUB_4_tmp[0] > x0; \
__FP_FRAC_SUB_4_tmp[1] = x1 - y1; \
__FP_FRAC_SUB_4_c2 = __FP_FRAC_SUB_4_tmp[1] > x1; \
__FP_FRAC_SUB_4_tmp[1] -= __FP_FRAC_SUB_4_c1; \
__FP_FRAC_SUB_4_c2 |= __FP_FRAC_SUB_4_c1 && (y1 == x1); \
__FP_FRAC_SUB_4_tmp[2] = x2 - y2; \
__FP_FRAC_SUB_4_c3 = __FP_FRAC_SUB_4_tmp[2] > x2; \
__FP_FRAC_SUB_4_tmp[2] -= __FP_FRAC_SUB_4_c2; \
__FP_FRAC_SUB_4_c3 |= __FP_FRAC_SUB_4_c2 && (y2 == x2); \
r3 = x3 - y3 - __FP_FRAC_SUB_4_c3; \
r2 = __FP_FRAC_SUB_4_tmp[2]; \
r1 = __FP_FRAC_SUB_4_tmp[1]; \
r0 = __FP_FRAC_SUB_4_tmp[0]; \
} \
while (0)
#endif
#ifndef __FP_FRAC_DEC_3
# define __FP_FRAC_DEC_3(x2, x1, x0, y2, y1, y0) \
do \
{ \
UWtype __FP_FRAC_DEC_3_t0, __FP_FRAC_DEC_3_t1; \
UWtype __FP_FRAC_DEC_3_t2; \
__FP_FRAC_DEC_3_t0 = x0; \
__FP_FRAC_DEC_3_t1 = x1; \
__FP_FRAC_DEC_3_t2 = x2; \
__FP_FRAC_SUB_3 (x2, x1, x0, __FP_FRAC_DEC_3_t2, \
__FP_FRAC_DEC_3_t1, __FP_FRAC_DEC_3_t0, \
y2, y1, y0); \
} \
while (0)
#endif
#ifndef __FP_FRAC_DEC_4
# define __FP_FRAC_DEC_4(x3, x2, x1, x0, y3, y2, y1, y0) \
do \
{ \
UWtype __FP_FRAC_DEC_4_t0, __FP_FRAC_DEC_4_t1; \
UWtype __FP_FRAC_DEC_4_t2, __FP_FRAC_DEC_4_t3; \
__FP_FRAC_DEC_4_t0 = x0; \
__FP_FRAC_DEC_4_t1 = x1; \
__FP_FRAC_DEC_4_t2 = x2; \
__FP_FRAC_DEC_4_t3 = x3; \
__FP_FRAC_SUB_4 (x3, x2, x1, x0, __FP_FRAC_DEC_4_t3, \
__FP_FRAC_DEC_4_t2, __FP_FRAC_DEC_4_t1, \
__FP_FRAC_DEC_4_t0, y3, y2, y1, y0); \
} \
while (0)
#endif
#ifndef __FP_FRAC_ADDI_4
# define __FP_FRAC_ADDI_4(x3, x2, x1, x0, i) \
do \
{ \
UWtype __FP_FRAC_ADDI_4_t; \
__FP_FRAC_ADDI_4_t = ((x0 += i) < i); \
x1 += __FP_FRAC_ADDI_4_t; \
__FP_FRAC_ADDI_4_t = (x1 < __FP_FRAC_ADDI_4_t); \
x2 += __FP_FRAC_ADDI_4_t; \
__FP_FRAC_ADDI_4_t = (x2 < __FP_FRAC_ADDI_4_t); \
x3 += __FP_FRAC_ADDI_4_t; \
} \
while (0)
#endif
/* Convert FP values between word sizes. This appears to be more
complicated than I'd have expected it to be, so these might be
wrong... These macros are in any case somewhat bogus because they
use information about what various FRAC_n variables look like
internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
the ones in op-2.h and op-1.h. */
#define _FP_FRAC_COPY_1_4(D, S) (D##_f = S##_f[0])
#define _FP_FRAC_COPY_2_4(D, S) \
do \
{ \
D##_f0 = S##_f[0]; \
D##_f1 = S##_f[1]; \
} \
while (0)
/* Assembly/disassembly for converting to/from integral types.
No shifting or overflow handled here. */
/* Put the FP value X into r, which is an integer of size rsize. */
#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \
do \
{ \
if ((rsize) <= _FP_W_TYPE_SIZE) \
(r) = X##_f[0]; \
else if ((rsize) <= 2*_FP_W_TYPE_SIZE) \
{ \
(r) = X##_f[1]; \
(r) = ((rsize) <= _FP_W_TYPE_SIZE \
? 0 \
: (r) << _FP_W_TYPE_SIZE); \
(r) += X##_f[0]; \
} \
else \
{ \
/* I'm feeling lazy so we deal with int == 3words \
(implausible) and int == 4words as a single case. */ \
(r) = X##_f[3]; \
(r) = ((rsize) <= _FP_W_TYPE_SIZE \
? 0 \
: (r) << _FP_W_TYPE_SIZE); \
(r) += X##_f[2]; \
(r) = ((rsize) <= _FP_W_TYPE_SIZE \
? 0 \
: (r) << _FP_W_TYPE_SIZE); \
(r) += X##_f[1]; \
(r) = ((rsize) <= _FP_W_TYPE_SIZE \
? 0 \
: (r) << _FP_W_TYPE_SIZE); \
(r) += X##_f[0]; \
} \
} \
while (0)
/* "No disassemble Number Five!" */
/* Move an integer of size rsize into X's fractional part. We rely on
the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
having to mask the values we store into it. */
#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \
do \
{ \
X##_f[0] = (r); \
X##_f[1] = ((rsize) <= _FP_W_TYPE_SIZE \
? 0 \
: (r) >> _FP_W_TYPE_SIZE); \
X##_f[2] = ((rsize) <= 2*_FP_W_TYPE_SIZE \
? 0 \
: (r) >> 2*_FP_W_TYPE_SIZE); \
X##_f[3] = ((rsize) <= 3*_FP_W_TYPE_SIZE \
? 0 \
: (r) >> 3*_FP_W_TYPE_SIZE); \
} \
while (0)
#define _FP_FRAC_COPY_4_1(D, S) \
do \
{ \
D##_f[0] = S##_f; \
D##_f[1] = D##_f[2] = D##_f[3] = 0; \
} \
while (0)
#define _FP_FRAC_COPY_4_2(D, S) \
do \
{ \
D##_f[0] = S##_f0; \
D##_f[1] = S##_f1; \
D##_f[2] = D##_f[3] = 0; \
} \
while (0)
#define _FP_FRAC_COPY_4_4(D, S) _FP_FRAC_COPY_4 (D, S)
#endif /* !SOFT_FP_OP_4_H */
|