1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
|
/* Declarations for math functions.
Copyright (C) 1991-2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/*
* ISO C99 Standard: 7.12 Mathematics <math.h>
*/
#ifndef _MATH_H
#define _MATH_H 1
#define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
#include <bits/libc-header-start.h>
#if defined log && defined __GNUC__
# warning A macro called log was already defined when <math.h> was included.
# warning This will cause compilation problems.
#endif
__BEGIN_DECLS
/* Get definitions of __intmax_t and __uintmax_t. */
#include <bits/types.h>
/* Get machine-dependent vector math functions declarations. */
#include <bits/math-vector.h>
/* Gather machine dependent type support. */
#include <bits/floatn.h>
/* Value returned on overflow. With IEEE 754 floating point, this is
+Infinity, otherwise the largest representable positive value. */
#if __GNUC_PREREQ (3, 3)
# define HUGE_VAL (__builtin_huge_val ())
#else
/* This may provoke compiler warnings, and may not be rounded to
+Infinity in all IEEE 754 rounding modes, but is the best that can
be done in ISO C while remaining a constant expression. 10,000 is
greater than the maximum (decimal) exponent for all supported
floating-point formats and widths. */
# define HUGE_VAL 1e10000
#endif
#ifdef __USE_ISOC99
# if __GNUC_PREREQ (3, 3)
# define HUGE_VALF (__builtin_huge_valf ())
# define HUGE_VALL (__builtin_huge_vall ())
# else
# define HUGE_VALF 1e10000f
# define HUGE_VALL 1e10000L
# endif
#endif
#if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F16 (__builtin_huge_valf16 ())
#endif
#if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F32 (__builtin_huge_valf32 ())
#endif
#if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F64 (__builtin_huge_valf64 ())
#endif
#if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F128 (__builtin_huge_valf128 ())
#endif
#if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F32X (__builtin_huge_valf32x ())
#endif
#if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F64X (__builtin_huge_valf64x ())
#endif
#if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F128X (__builtin_huge_valf128x ())
#endif
#ifdef __USE_ISOC99
/* IEEE positive infinity. */
# if __GNUC_PREREQ (3, 3)
# define INFINITY (__builtin_inff ())
# else
# define INFINITY HUGE_VALF
# endif
/* IEEE Not A Number. */
# if __GNUC_PREREQ (3, 3)
# define NAN (__builtin_nanf (""))
# else
/* This will raise an "invalid" exception outside static initializers,
but is the best that can be done in ISO C while remaining a
constant expression. */
# define NAN (0.0f / 0.0f)
# endif
#endif /* __USE_ISOC99 */
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Signaling NaN macros, if supported. */
# if __GNUC_PREREQ (3, 3)
# define SNANF (__builtin_nansf (""))
# define SNAN (__builtin_nans (""))
# define SNANL (__builtin_nansl (""))
# endif
#endif
#if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF16 (__builtin_nansf16 (""))
#endif
#if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF32 (__builtin_nansf32 (""))
#endif
#if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF64 (__builtin_nansf64 (""))
#endif
#if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF128 (__builtin_nansf128 (""))
#endif
#if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF32X (__builtin_nansf32x (""))
#endif
#if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF64X (__builtin_nansf64x (""))
#endif
#if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF128X (__builtin_nansf128x (""))
#endif
/* Get __GLIBC_FLT_EVAL_METHOD. */
#include <bits/flt-eval-method.h>
#ifdef __USE_ISOC99
/* Define the following typedefs.
float_t floating-point type at least as wide as `float' used
to evaluate `float' expressions
double_t floating-point type at least as wide as `double' used
to evaluate `double' expressions
*/
# if __GLIBC_FLT_EVAL_METHOD == 0 || __GLIBC_FLT_EVAL_METHOD == 16
typedef float float_t;
typedef double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 1
typedef double float_t;
typedef double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 2
typedef long double float_t;
typedef long double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 32
typedef _Float32 float_t;
typedef double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 33
typedef _Float32x float_t;
typedef _Float32x double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 64
typedef _Float64 float_t;
typedef _Float64 double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 65
typedef _Float64x float_t;
typedef _Float64x double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 128
typedef _Float128 float_t;
typedef _Float128 double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 129
typedef _Float128x float_t;
typedef _Float128x double_t;
# else
# error "Unknown __GLIBC_FLT_EVAL_METHOD"
# endif
#endif
/* Define macros for the return values of ilogb and llogb, based on
__FP_LOGB0_IS_MIN and __FP_LOGBNAN_IS_MIN.
FP_ILOGB0 Expands to a value returned by `ilogb (0.0)'.
FP_ILOGBNAN Expands to a value returned by `ilogb (NAN)'.
FP_LLOGB0 Expands to a value returned by `llogb (0.0)'.
FP_LLOGBNAN Expands to a value returned by `llogb (NAN)'.
*/
#include <bits/fp-logb.h>
#ifdef __USE_ISOC99
# if __FP_LOGB0_IS_MIN
# define FP_ILOGB0 (-2147483647 - 1)
# else
# define FP_ILOGB0 (-2147483647)
# endif
# if __FP_LOGBNAN_IS_MIN
# define FP_ILOGBNAN (-2147483647 - 1)
# else
# define FP_ILOGBNAN 2147483647
# endif
#endif
#if __GLIBC_USE (IEC_60559_BFP_EXT)
# if __WORDSIZE == 32
# define __FP_LONG_MAX 0x7fffffffL
# else
# define __FP_LONG_MAX 0x7fffffffffffffffL
# endif
# if __FP_LOGB0_IS_MIN
# define FP_LLOGB0 (-__FP_LONG_MAX - 1)
# else
# define FP_LLOGB0 (-__FP_LONG_MAX)
# endif
# if __FP_LOGBNAN_IS_MIN
# define FP_LLOGBNAN (-__FP_LONG_MAX - 1)
# else
# define FP_LLOGBNAN __FP_LONG_MAX
# endif
#endif
/* Get the architecture specific values describing the floating-point
evaluation. The following symbols will get defined:
FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL
If defined it indicates that the `fma' function
generally executes about as fast as a multiply and an add.
This macro is defined only iff the `fma' function is
implemented directly with a hardware multiply-add instructions.
*/
#include <bits/fp-fast.h>
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Rounding direction macros for fromfp functions. */
enum
{
FP_INT_UPWARD =
# define FP_INT_UPWARD 0
FP_INT_UPWARD,
FP_INT_DOWNWARD =
# define FP_INT_DOWNWARD 1
FP_INT_DOWNWARD,
FP_INT_TOWARDZERO =
# define FP_INT_TOWARDZERO 2
FP_INT_TOWARDZERO,
FP_INT_TONEARESTFROMZERO =
# define FP_INT_TONEARESTFROMZERO 3
FP_INT_TONEARESTFROMZERO,
FP_INT_TONEAREST =
# define FP_INT_TONEAREST 4
FP_INT_TONEAREST,
};
#endif
/* The file <bits/mathcalls.h> contains the prototypes for all the
actual math functions. These macros are used for those prototypes,
so we can easily declare each function as both `name' and `__name',
and can declare the float versions `namef' and `__namef'. */
#define __SIMD_DECL(function) __CONCAT (__DECL_SIMD_, function)
#define __MATHCALL_VEC(function, suffix, args) \
__SIMD_DECL (__MATH_PRECNAME (function, suffix)) \
__MATHCALL (function, suffix, args)
#define __MATHDECL_VEC(type, function,suffix, args) \
__SIMD_DECL (__MATH_PRECNAME (function, suffix)) \
__MATHDECL(type, function,suffix, args)
#define __MATHCALL(function,suffix, args) \
__MATHDECL (_Mdouble_,function,suffix, args)
#define __MATHDECL(type, function,suffix, args) \
__MATHDECL_1(type, function,suffix, args); \
__MATHDECL_1(type, __CONCAT(__,function),suffix, args)
#define __MATHCALLX(function,suffix, args, attrib) \
__MATHDECLX (_Mdouble_,function,suffix, args, attrib)
#define __MATHDECLX(type, function,suffix, args, attrib) \
__MATHDECL_1(type, function,suffix, args) __attribute__ (attrib); \
__MATHDECL_1(type, __CONCAT(__,function),suffix, args) __attribute__ (attrib)
#define __MATHDECL_1(type, function,suffix, args) \
extern type __MATH_PRECNAME(function,suffix) args __THROW
#define _Mdouble_ double
#define __MATH_PRECNAME(name,r) __CONCAT(name,r)
#define __MATH_DECLARING_DOUBLE 1
#define __MATH_DECLARING_FLOATN 0
#include <bits/mathcalls-helper-functions.h>
#include <bits/mathcalls.h>
#undef _Mdouble_
#undef __MATH_PRECNAME
#undef __MATH_DECLARING_DOUBLE
#undef __MATH_DECLARING_FLOATN
#ifdef __USE_ISOC99
/* Include the file of declarations again, this time using `float'
instead of `double' and appending f to each function name. */
# ifndef _Mfloat_
# define _Mfloat_ float
# endif
# define _Mdouble_ _Mfloat_
# define __MATH_PRECNAME(name,r) name##f##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# include <bits/mathcalls-helper-functions.h>
# include <bits/mathcalls.h>
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# if !(defined __NO_LONG_DOUBLE_MATH && defined _LIBC) \
|| defined __LDBL_COMPAT \
|| defined _LIBC_TEST
# ifdef __LDBL_COMPAT
# ifdef __USE_ISOC99
extern float __nldbl_nexttowardf (float __x, long double __y)
__THROW __attribute__ ((__const__));
# ifdef __REDIRECT_NTH
extern float __REDIRECT_NTH (nexttowardf, (float __x, long double __y),
__nldbl_nexttowardf)
__attribute__ ((__const__));
extern double __REDIRECT_NTH (nexttoward, (double __x, long double __y),
nextafter) __attribute__ ((__const__));
extern long double __REDIRECT_NTH (nexttowardl,
(long double __x, long double __y),
nextafter) __attribute__ ((__const__));
# endif
# endif
# undef __MATHDECL_1
# define __MATHDECL_2(type, function,suffix, args, alias) \
extern type __REDIRECT_NTH(__MATH_PRECNAME(function,suffix), \
args, alias)
# define __MATHDECL_1(type, function,suffix, args) \
__MATHDECL_2(type, function,suffix, args, __CONCAT(function,suffix))
# endif
/* Include the file of declarations again, this time using `long double'
instead of `double' and appending l to each function name. */
# ifndef _Mlong_double_
# define _Mlong_double_ long double
# endif
# define _Mdouble_ _Mlong_double_
# define __MATH_PRECNAME(name,r) name##l##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# define __MATH_DECLARE_LDOUBLE 1
# include <bits/mathcalls-helper-functions.h>
# include <bits/mathcalls.h>
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# endif /* !(__NO_LONG_DOUBLE_MATH && _LIBC) || __LDBL_COMPAT */
#endif /* Use ISO C99. */
/* Include the file of declarations again, this time using `_Float128'
instead of `double' and appending f128 to each function name. */
#if __HAVE_DISTINCT_FLOAT128 || (__HAVE_FLOAT128 && !defined _LIBC)
# ifndef _Mfloat128_
# define _Mfloat128_ _Float128
# endif
# define _Mdouble_ _Mfloat128_
# define __MATH_PRECNAME(name,r) name##f128##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# if __HAVE_DISTINCT_FLOAT128
# include <bits/mathcalls-helper-functions.h>
# endif
# if __GLIBC_USE (IEC_60559_TYPES_EXT)
# include <bits/mathcalls.h>
# endif
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
#endif /* __HAVE_DISTINCT_FLOAT128. */
#undef __MATHDECL_1
#undef __MATHDECL
#undef __MATHCALL
#if defined __USE_MISC || defined __USE_XOPEN
/* This variable is used by `gamma' and `lgamma'. */
extern int signgam;
#endif
/* Depending on the type of TG_ARG, call an appropriately suffixed
version of FUNC with arguments (including parentheses) ARGS.
Suffixed functions may not exist for long double if it has the same
format as double, or for other types with the same format as float,
double or long double. The behavior is undefined if the argument
does not have a real floating type. The definition may use a
conditional expression, so all suffixed versions of FUNC must
return the same type (FUNC may include a cast if necessary rather
than being a single identifier). */
#ifdef __NO_LONG_DOUBLE_MATH
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
(sizeof (TG_ARG) == sizeof (float) ? FUNC ## f ARGS : FUNC ARGS)
#elif __HAVE_DISTINCT_FLOAT128
# if __HAVE_GENERIC_SELECTION
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
_Generic ((TG_ARG), \
float: FUNC ## f ARGS, \
default: FUNC ARGS, \
long double: FUNC ## l ARGS, \
_Float128: FUNC ## f128 ARGS)
# else
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
__builtin_choose_expr \
(__builtin_types_compatible_p (__typeof (TG_ARG), float), \
FUNC ## f ARGS, \
__builtin_choose_expr \
(__builtin_types_compatible_p (__typeof (TG_ARG), double), \
FUNC ARGS, \
__builtin_choose_expr \
(__builtin_types_compatible_p (__typeof (TG_ARG), long double), \
FUNC ## l ARGS, \
FUNC ## f128 ARGS)))
# endif
#else
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
(sizeof (TG_ARG) == sizeof (float) \
? FUNC ## f ARGS \
: sizeof (TG_ARG) == sizeof (double) \
? FUNC ARGS \
: FUNC ## l ARGS)
#endif
/* ISO C99 defines some generic macros which work on any data type. */
#ifdef __USE_ISOC99
/* All floating-point numbers can be put in one of these categories. */
enum
{
FP_NAN =
# define FP_NAN 0
FP_NAN,
FP_INFINITE =
# define FP_INFINITE 1
FP_INFINITE,
FP_ZERO =
# define FP_ZERO 2
FP_ZERO,
FP_SUBNORMAL =
# define FP_SUBNORMAL 3
FP_SUBNORMAL,
FP_NORMAL =
# define FP_NORMAL 4
FP_NORMAL
};
/* GCC bug 66462 means we cannot use the math builtins with -fsignaling-nan,
so disable builtins if this is enabled. When fixed in a newer GCC,
the __SUPPORT_SNAN__ check may be skipped for those versions. */
/* Return number of classification appropriate for X. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__ \
&& (!defined __OPTIMIZE_SIZE__ || defined __cplusplus)
/* The check for __cplusplus allows the use of the builtin, even
when optimization for size is on. This is provided for
libstdc++, only to let its configure test work when it is built
with -Os. No further use of this definition of fpclassify is
expected in C++ mode, since libstdc++ provides its own version
of fpclassify in cmath (which undefines fpclassify). */
# define fpclassify(x) __builtin_fpclassify (FP_NAN, FP_INFINITE, \
FP_NORMAL, FP_SUBNORMAL, FP_ZERO, x)
# else
# define fpclassify(x) __MATH_TG ((x), __fpclassify, (x))
# endif
/* Return nonzero value if sign of X is negative. */
# if __GNUC_PREREQ (6,0)
# define signbit(x) __builtin_signbit (x)
# elif defined __cplusplus
/* In C++ mode, __MATH_TG cannot be used, because it relies on
__builtin_types_compatible_p, which is a C-only builtin.
The check for __cplusplus allows the use of the builtin instead of
__MATH_TG. This is provided for libstdc++, only to let its configure
test work. No further use of this definition of signbit is expected
in C++ mode, since libstdc++ provides its own version of signbit
in cmath (which undefines signbit). */
# define signbit(x) __builtin_signbitl (x)
# elif __GNUC_PREREQ (4,0)
# define signbit(x) __MATH_TG ((x), __builtin_signbit, (x))
# else
# define signbit(x) __MATH_TG ((x), __signbit, (x))
# endif
/* Return nonzero value if X is not +-Inf or NaN. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isfinite(x) __builtin_isfinite (x)
# else
# define isfinite(x) __MATH_TG ((x), __finite, (x))
# endif
/* Return nonzero value if X is neither zero, subnormal, Inf, nor NaN. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isnormal(x) __builtin_isnormal (x)
# else
# define isnormal(x) (fpclassify (x) == FP_NORMAL)
# endif
/* Return nonzero value if X is a NaN. We could use `fpclassify' but
we already have this functions `__isnan' and it is faster. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isnan(x) __builtin_isnan (x)
# else
# define isnan(x) __MATH_TG ((x), __isnan, (x))
# endif
/* Return nonzero value if X is positive or negative infinity. */
# if __HAVE_DISTINCT_FLOAT128 && !__GNUC_PREREQ (7,0) \
&& !defined __SUPPORT_SNAN__ && !defined __cplusplus
/* Since __builtin_isinf_sign is broken for float128 before GCC 7.0,
use the helper function, __isinff128, with older compilers. This is
only provided for C mode, because in C++ mode, GCC has no support
for __builtin_types_compatible_p (and when in C++ mode, this macro is
not used anyway, because libstdc++ headers undefine it). */
# define isinf(x) \
(__builtin_types_compatible_p (__typeof (x), _Float128) \
? __isinff128 (x) : __builtin_isinf_sign (x))
# elif __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isinf(x) __builtin_isinf_sign (x)
# else
# define isinf(x) __MATH_TG ((x), __isinf, (x))
# endif
/* Bitmasks for the math_errhandling macro. */
# define MATH_ERRNO 1 /* errno set by math functions. */
# define MATH_ERREXCEPT 2 /* Exceptions raised by math functions. */
/* By default all functions support both errno and exception handling.
In gcc's fast math mode and if inline functions are defined this
might not be true. */
# ifndef __FAST_MATH__
# define math_errhandling (MATH_ERRNO | MATH_ERREXCEPT)
# endif
#endif /* Use ISO C99. */
#if __GLIBC_USE (IEC_60559_BFP_EXT)
# include <bits/iscanonical.h>
/* Return nonzero value if X is a signaling NaN. */
# ifndef __cplusplus
# define issignaling(x) __MATH_TG ((x), __issignaling, (x))
# else
/* In C++ mode, __MATH_TG cannot be used, because it relies on
__builtin_types_compatible_p, which is a C-only builtin. On the
other hand, overloading provides the means to distinguish between
the floating-point types. The overloading resolution will match
the correct parameter (regardless of type qualifiers (i.e.: const
and volatile)). */
extern "C++" {
inline int issignaling (float __val) { return __issignalingf (__val); }
inline int issignaling (double __val) { return __issignaling (__val); }
inline int
issignaling (long double __val)
{
# ifdef __NO_LONG_DOUBLE_MATH
return __issignaling (__val);
# else
return __issignalingl (__val);
# endif
}
# if __HAVE_DISTINCT_FLOAT128
inline int issignaling (_Float128 __val) { return __issignalingf128 (__val); }
# endif
} /* extern C++ */
# endif
/* Return nonzero value if X is subnormal. */
# define issubnormal(x) (fpclassify (x) == FP_SUBNORMAL)
/* Return nonzero value if X is zero. */
# ifndef __cplusplus
# ifdef __SUPPORT_SNAN__
# define iszero(x) (fpclassify (x) == FP_ZERO)
# else
# define iszero(x) (((__typeof (x)) (x)) == 0)
# endif
# else /* __cplusplus */
extern "C++" {
# ifdef __SUPPORT_SNAN__
inline int
iszero (float __val)
{
return __fpclassifyf (__val) == FP_ZERO;
}
inline int
iszero (double __val)
{
return __fpclassify (__val) == FP_ZERO;
}
inline int
iszero (long double __val)
{
# ifdef __NO_LONG_DOUBLE_MATH
return __fpclassify (__val) == FP_ZERO;
# else
return __fpclassifyl (__val) == FP_ZERO;
# endif
}
# if __HAVE_DISTINCT_FLOAT128
inline int
iszero (_Float128 __val)
{
return __fpclassifyf128 (__val) == FP_ZERO;
}
# endif
# else
template <class __T> inline bool
iszero (__T __val)
{
return __val == 0;
}
# endif
} /* extern C++ */
# endif /* __cplusplus */
#endif /* Use IEC_60559_BFP_EXT. */
#ifdef __USE_XOPEN
/* X/Open wants another strange constant. */
# define MAXFLOAT 3.40282347e+38F
#endif
/* Some useful constants. */
#if defined __USE_MISC || defined __USE_XOPEN
# define M_E 2.7182818284590452354 /* e */
# define M_LOG2E 1.4426950408889634074 /* log_2 e */
# define M_LOG10E 0.43429448190325182765 /* log_10 e */
# define M_LN2 0.69314718055994530942 /* log_e 2 */
# define M_LN10 2.30258509299404568402 /* log_e 10 */
# define M_PI 3.14159265358979323846 /* pi */
# define M_PI_2 1.57079632679489661923 /* pi/2 */
# define M_PI_4 0.78539816339744830962 /* pi/4 */
# define M_1_PI 0.31830988618379067154 /* 1/pi */
# define M_2_PI 0.63661977236758134308 /* 2/pi */
# define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
# define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
# define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#endif
/* The above constants are not adequate for computation using `long double's.
Therefore we provide as an extension constants with similar names as a
GNU extension. Provide enough digits for the 128-bit IEEE quad. */
#ifdef __USE_GNU
# define M_El 2.718281828459045235360287471352662498L /* e */
# define M_LOG2El 1.442695040888963407359924681001892137L /* log_2 e */
# define M_LOG10El 0.434294481903251827651128918916605082L /* log_10 e */
# define M_LN2l 0.693147180559945309417232121458176568L /* log_e 2 */
# define M_LN10l 2.302585092994045684017991454684364208L /* log_e 10 */
# define M_PIl 3.141592653589793238462643383279502884L /* pi */
# define M_PI_2l 1.570796326794896619231321691639751442L /* pi/2 */
# define M_PI_4l 0.785398163397448309615660845819875721L /* pi/4 */
# define M_1_PIl 0.318309886183790671537767526745028724L /* 1/pi */
# define M_2_PIl 0.636619772367581343075535053490057448L /* 2/pi */
# define M_2_SQRTPIl 1.128379167095512573896158903121545172L /* 2/sqrt(pi) */
# define M_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */
# define M_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */
#endif
#if __HAVE_FLOAT128 && defined __USE_GNU
# define M_Ef128 __f128 (2.718281828459045235360287471352662498) /* e */
# define M_LOG2Ef128 __f128 (1.442695040888963407359924681001892137) /* log_2 e */
# define M_LOG10Ef128 __f128 (0.434294481903251827651128918916605082) /* log_10 e */
# define M_LN2f128 __f128 (0.693147180559945309417232121458176568) /* log_e 2 */
# define M_LN10f128 __f128 (2.302585092994045684017991454684364208) /* log_e 10 */
# define M_PIf128 __f128 (3.141592653589793238462643383279502884) /* pi */
# define M_PI_2f128 __f128 (1.570796326794896619231321691639751442) /* pi/2 */
# define M_PI_4f128 __f128 (0.785398163397448309615660845819875721) /* pi/4 */
# define M_1_PIf128 __f128 (0.318309886183790671537767526745028724) /* 1/pi */
# define M_2_PIf128 __f128 (0.636619772367581343075535053490057448) /* 2/pi */
# define M_2_SQRTPIf128 __f128 (1.128379167095512573896158903121545172) /* 2/sqrt(pi) */
# define M_SQRT2f128 __f128 (1.414213562373095048801688724209698079) /* sqrt(2) */
# define M_SQRT1_2f128 __f128 (0.707106781186547524400844362104849039) /* 1/sqrt(2) */
#endif
/* When compiling in strict ISO C compatible mode we must not use the
inline functions since they, among other things, do not set the
`errno' variable correctly. */
#if defined __STRICT_ANSI__ && !defined __NO_MATH_INLINES
# define __NO_MATH_INLINES 1
#endif
#ifdef __USE_ISOC99
# if __GNUC_PREREQ (3, 1)
/* ISO C99 defines some macros to compare number while taking care for
unordered numbers. Many FPUs provide special instructions to support
these operations. Generic support in GCC for these as builtins went
in 2.97, but not all cpus added their patterns until 3.1. Therefore
we enable the builtins from 3.1 onwards and use a generic implementation
othwerwise. */
# define isgreater(x, y) __builtin_isgreater(x, y)
# define isgreaterequal(x, y) __builtin_isgreaterequal(x, y)
# define isless(x, y) __builtin_isless(x, y)
# define islessequal(x, y) __builtin_islessequal(x, y)
# define islessgreater(x, y) __builtin_islessgreater(x, y)
# define isunordered(x, y) __builtin_isunordered(x, y)
# else
# define isgreater(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x > __y; }))
# define isgreaterequal(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x >= __y; }))
# define isless(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x < __y; }))
# define islessequal(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x <= __y; }))
# define islessgreater(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x != __y; }))
/* isunordered must always check both operands first for signaling NaNs. */
# define isunordered(x, y) \
(__extension__ ({ __typeof__ (x) __u = (x); __typeof__ (y) __v = (y); \
__u != __v && (__u != __u || __v != __v); }))
# endif
#endif
/* Get machine-dependent inline versions (if there are any). */
#ifdef __USE_EXTERN_INLINES
# include <bits/mathinline.h>
#endif
/* Define special entry points to use when the compiler got told to
only expect finite results. */
#if defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0
/* Include bits/math-finite.h for double. */
# define _Mdouble_ double
# define __MATH_DECLARING_DOUBLE 1
# define __MATH_DECLARING_FLOATN 0
# define __REDIRFROM_X(function, reentrant) \
function ## reentrant
# define __REDIRTO_X(function, reentrant) \
__ ## function ## reentrant ## _finite
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
/* When __USE_ISOC99 is defined, include math-finite for float and
long double, as well. */
# ifdef __USE_ISOC99
/* Include bits/math-finite.h for float. */
# define _Mdouble_ float
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# define __REDIRFROM_X(function, reentrant) \
function ## f ## reentrant
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f ## reentrant ## _finite
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
/* Include bits/math-finite.h for long double. */
# ifdef __MATH_DECLARE_LDOUBLE
# define _Mdouble_ long double
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# define __REDIRFROM_X(function, reentrant) \
function ## l ## reentrant
# ifdef __NO_LONG_DOUBLE_MATH
# define __REDIRTO_X(function, reentrant) \
__ ## function ## reentrant ## _finite
# else
# define __REDIRTO_X(function, reentrant) \
__ ## function ## l ## reentrant ## _finite
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
# endif /* __USE_ISOC99. */
/* Include bits/math-finite.h for float128. */
# if (__HAVE_DISTINCT_FLOAT128 || (__HAVE_FLOAT128 && !defined _LIBC)) \
&& __GLIBC_USE (IEC_60559_TYPES_EXT)
# define _Mdouble_ _Float128
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# define __REDIRFROM_X(function, reentrant) \
function ## f128 ## reentrant
# if __HAVE_DISTINCT_FLOAT128
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f128 ## reentrant ## _finite
# else
# define __REDIRTO_X(function, reentrant) \
__ ## function ## l ## reentrant ## _finite
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
#endif /* __FINITE_MATH_ONLY__ > 0. */
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* An expression whose type has the widest of the evaluation formats
of X and Y (which are of floating-point types). */
# if __FLT_EVAL_METHOD__ == 2 || __FLT_EVAL_METHOD__ > 64
# define __MATH_EVAL_FMT2(x, y) ((x) + (y) + 0.0L)
# elif __FLT_EVAL_METHOD__ == 1 || __FLT_EVAL_METHOD__ > 32
# define __MATH_EVAL_FMT2(x, y) ((x) + (y) + 0.0)
# else
# define __MATH_EVAL_FMT2(x, y) ((x) + (y))
# endif
/* Return X == Y but raising "invalid" and setting errno if X or Y is
a NaN. */
# define iseqsig(x, y) \
__MATH_TG (__MATH_EVAL_FMT2 (x, y), __iseqsig, ((x), (y)))
#endif
__END_DECLS
#endif /* math.h */
|