aboutsummaryrefslogtreecommitdiff
path: root/libio/tst-fopenloc2.c
blob: 5ddd63446bb75f81273d7adcc44b63b65349aea9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <wchar.h>


static const struct
{
  const char *enc;
  const char *data;
  size_t datalen;
  const wchar_t *expected;
  size_t expectedlen;
} tests[] =
  {
    { "UCS-4LE", "a\0\0\0b\0\0\0", 8, L"ab", 2 },
    { "UCS-4BE", "\0\0\0a\0\0\0b", 8, L"ab", 2 },
  };
#define ntests (sizeof (tests) / sizeof (tests[0]))


static int do_test (void);
#define TEST_FUNCTION do_test ()

static void prepare (void);
#define PREPARE(argc, argv) prepare ();

#include "../test-skeleton.c"


static int fd;
static char *tmpname;


static void
prepare (void)
{
  fd = create_temp_file ("tst-fopenloc2", &tmpname);
  if (fd == -1)
    {
      puts ("cannot open temp file");
      exit (1);
    }
}


static int
do_test (void)
{
  for (int i = 0; i < ntests; ++i)
    {
      if (ftruncate (fd, 0) != 0)
	{
	  printf ("ftruncate in round %d failed\n", i + 1);
	  return 1;
	}

      if (TEMP_FAILURE_RETRY (write (fd, tests[i].data, tests[i].datalen))
	  != tests[i].datalen)
	{
	  printf ("write in round %d failed\n", i + 1);
	  return 1;
	}

      if (lseek (fd, 0, SEEK_SET) != 0)
	{
	  printf ("lseek in round %d failed\n", i + 1);
	  return 1;
	}

      char *ccs;
      if (asprintf (&ccs, "r,ccs=%s", tests[i].enc) == -1)
	{
	  printf ("asprintf in round %d failed\n", i + 1);
	  return 1;
	}

      FILE *fp = fopen (tmpname, ccs);
      if (fp == NULL)
	{
	  printf ("fopen in round %d failed\n", i + 1);
	  return 1;
	}

#define LINELEN 100
      wchar_t line[LINELEN];
      if (fgetws (line, LINELEN, fp) != line)
	{
	  printf ("fgetws in round %d failed\n", i + 1);
	  return 1;
	}

      if (wcslen (line) != tests[i].expectedlen)
	{
	  printf ("round %d: expected length %zu, got length %zu\n",
		  i + 1, tests[i].expectedlen, wcslen (line));
	  return 1;
	}

      if (wcscmp (tests[i].expected, line) != 0)
	{
	  printf ("round %d: expected L\"%ls\", got L\"%ls\"\n",
		  i + 1, tests[i].expected, line);
	  return 1;
	}

      fclose (fp);

      free (ccs);
    }

  close (fd);

  return 0;
}
ef='#n179'>179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/* Renesas M32C target-dependent code for GDB, the GNU debugger.

   Copyright 2004, 2005, 2007, 2008, 2009, 2010, 2011
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"

#include <stdarg.h>

#if defined (HAVE_STRING_H)
#include <string.h>
#endif

#include "gdb_assert.h"
#include "elf-bfd.h"
#include "elf/m32c.h"
#include "gdb/sim-m32c.h"
#include "dis-asm.h"
#include "gdbtypes.h"
#include "regcache.h"
#include "arch-utils.h"
#include "frame.h"
#include "frame-unwind.h"
#include "dwarf2-frame.h"
#include "dwarf2expr.h"
#include "symtab.h"
#include "gdbcore.h"
#include "value.h"
#include "reggroups.h"
#include "prologue-value.h"
#include "target.h"


/* The m32c tdep structure.  */

static struct reggroup *m32c_dma_reggroup;

struct m32c_reg;

/* The type of a function that moves the value of REG between CACHE or
   BUF --- in either direction.  */
typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
						struct regcache *cache,
						void *buf);

struct m32c_reg
{
  /* The name of this register.  */
  const char *name;

  /* Its type.  */
  struct type *type;

  /* The architecture this register belongs to.  */
  struct gdbarch *arch;

  /* Its GDB register number.  */
  int num;

  /* Its sim register number.  */
  int sim_num;

  /* Its DWARF register number, or -1 if it doesn't have one.  */
  int dwarf_num;

  /* Register group memberships.  */
  unsigned int general_p : 1;
  unsigned int dma_p : 1;
  unsigned int system_p : 1;
  unsigned int save_restore_p : 1;

  /* Functions to read its value from a regcache, and write its value
     to a regcache.  */
  m32c_move_reg_t *read, *write;

  /* Data for READ and WRITE functions.  The exact meaning depends on
     the specific functions selected; see the comments for those
     functions.  */
  struct m32c_reg *rx, *ry;
  int n;
};


/* An overestimate of the number of raw and pseudoregisters we will
   have.  The exact answer depends on the variant of the architecture
   at hand, but we can use this to declare statically allocated
   arrays, and bump it up when needed.  */
#define M32C_MAX_NUM_REGS (75)

/* The largest assigned DWARF register number.  */
#define M32C_MAX_DWARF_REGNUM (40)


struct gdbarch_tdep
{
  /* All the registers for this variant, indexed by GDB register
     number, and the number of registers present.  */
  struct m32c_reg regs[M32C_MAX_NUM_REGS];

  /* The number of valid registers.  */
  int num_regs;

  /* Interesting registers.  These are pointers into REGS.  */
  struct m32c_reg *pc, *flg;
  struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
  struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
  struct m32c_reg *sb, *fb, *sp;

  /* A table indexed by DWARF register numbers, pointing into
     REGS.  */
  struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];

  /* Types for this architecture.  We can't use the builtin_type_foo
     types, because they're not initialized when building a gdbarch
     structure.  */
  struct type *voyd, *ptr_voyd, *func_voyd;
  struct type *uint8, *uint16;
  struct type *int8, *int16, *int32, *int64;

  /* The types for data address and code address registers.  */
  struct type *data_addr_reg_type, *code_addr_reg_type;

  /* The number of bytes a return address pushed by a 'jsr' instruction
     occupies on the stack.  */
  int ret_addr_bytes;

  /* The number of bytes an address register occupies on the stack
     when saved by an 'enter' or 'pushm' instruction.  */
  int push_addr_bytes;
};


/* Types.  */

static void
make_types (struct gdbarch *arch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
  int data_addr_reg_bits, code_addr_reg_bits;
  char type_name[50];

#if 0
  /* This is used to clip CORE_ADDR values, so this value is
     appropriate both on the m32c, where pointers are 32 bits long,
     and on the m16c, where pointers are sixteen bits long, but there
     may be code above the 64k boundary.  */
  set_gdbarch_addr_bit (arch, 24);
#else
  /* GCC uses 32 bits for addrs in the dwarf info, even though
     only 16/24 bits are used.  Setting addr_bit to 24 causes
     errors in reading the dwarf addresses.  */
  set_gdbarch_addr_bit (arch, 32);
#endif

  set_gdbarch_int_bit (arch, 16);
  switch (mach)
    {
    case bfd_mach_m16c:
      data_addr_reg_bits = 16;
      code_addr_reg_bits = 24;
      set_gdbarch_ptr_bit (arch, 16);
      tdep->ret_addr_bytes = 3;
      tdep->push_addr_bytes = 2;
      break;

    case bfd_mach_m32c:
      data_addr_reg_bits = 24;
      code_addr_reg_bits = 24;
      set_gdbarch_ptr_bit (arch, 32);
      tdep->ret_addr_bytes = 4;
      tdep->push_addr_bytes = 4;
      break;

    default:
      gdb_assert_not_reached ("unexpected mach");
    }

  /* The builtin_type_mumble variables are sometimes uninitialized when
     this is called, so we avoid using them.  */
  tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
  tdep->ptr_voyd
    = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
                 NULL);
  TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
  TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
  tdep->func_voyd = lookup_function_type (tdep->voyd);

  sprintf (type_name, "%s_data_addr_t",
	   gdbarch_bfd_arch_info (arch)->printable_name);
  tdep->data_addr_reg_type
    = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
                 xstrdup (type_name));
  TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
  TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;

  sprintf (type_name, "%s_code_addr_t",
	   gdbarch_bfd_arch_info (arch)->printable_name);
  tdep->code_addr_reg_type
    = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
                 xstrdup (type_name));
  TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
  TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;

  tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
  tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
  tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
  tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
  tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
  tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
}



/* Register set.  */

static const char *
m32c_register_name (struct gdbarch *gdbarch, int num)
{
  return gdbarch_tdep (gdbarch)->regs[num].name;
}


static struct type *
m32c_register_type (struct gdbarch *arch, int reg_nr)
{
  return gdbarch_tdep (arch)->regs[reg_nr].type;
}


static int
m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
{
  return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
}


static int
m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
      && tdep->dwarf_regs[reg_nr])
    return tdep->dwarf_regs[reg_nr]->num;
  else
    /* The DWARF CFI code expects to see -1 for invalid register
       numbers.  */
    return -1;
}


static int
m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *group)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct m32c_reg *reg = &tdep->regs[regnum];

  /* The anonymous raw registers aren't in any groups.  */
  if (! reg->name)
    return 0;

  if (group == all_reggroup)
    return 1;

  if (group == general_reggroup
      && reg->general_p)
    return 1;

  if (group == m32c_dma_reggroup
      && reg->dma_p)
    return 1;

  if (group == system_reggroup
      && reg->system_p)
    return 1;

  /* Since the m32c DWARF register numbers refer to cooked registers, not
     raw registers, and frame_pop depends on the save and restore groups
     containing registers the DWARF CFI will actually mention, our save
     and restore groups are cooked registers, not raw registers.  (This is
     why we can't use the default reggroup function.)  */
  if ((group == save_reggroup
       || group == restore_reggroup)
      && reg->save_restore_p)
    return 1;

  return 0;
}


/* Register move functions.  We declare them here using
   m32c_move_reg_t to check the types.  */
static m32c_move_reg_t m32c_raw_read,      m32c_raw_write;
static m32c_move_reg_t m32c_banked_read,   m32c_banked_write;
static m32c_move_reg_t m32c_sb_read, 	   m32c_sb_write;
static m32c_move_reg_t m32c_part_read,     m32c_part_write;
static m32c_move_reg_t m32c_cat_read,      m32c_cat_write;
static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;


/* Copy the value of the raw register REG from CACHE to BUF.  */
static enum register_status
m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  return regcache_raw_read (cache, reg->num, buf);
}


/* Copy the value of the raw register REG from BUF to CACHE.  */
static enum register_status
m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  regcache_raw_write (cache, reg->num, (const void *) buf);

  return REG_VALID;
}


/* Return the value of the 'flg' register in CACHE.  */
static int
m32c_read_flg (struct regcache *cache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
  ULONGEST flg;
  regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
  return flg & 0xffff;
}


/* Evaluate the real register number of a banked register.  */
static struct m32c_reg *
m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
{
  return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
}


/* Move the value of a banked register from CACHE to BUF.
   If the value of the 'flg' register in CACHE has any of the bits
   masked in REG->n set, then read REG->ry.  Otherwise, read
   REG->rx.  */
static enum register_status
m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
  return regcache_raw_read (cache, bank_reg->num, buf);
}


/* Move the value of a banked register from BUF to CACHE.
   If the value of the 'flg' register in CACHE has any of the bits
   masked in REG->n set, then write REG->ry.  Otherwise, write
   REG->rx.  */
static enum register_status
m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
  regcache_raw_write (cache, bank_reg->num, (const void *) buf);

  return REG_VALID;
}


/* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
   banked register; on bfd_mach_m16c, it's not.  */
static enum register_status
m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
    return m32c_raw_read (reg->rx, cache, buf);
  else
    return m32c_banked_read (reg, cache, buf);
}


/* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
   banked register; on bfd_mach_m16c, it's not.  */
static enum register_status
m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
    m32c_raw_write (reg->rx, cache, buf);
  else
    m32c_banked_write (reg, cache, buf);

  return REG_VALID;
}


/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
   and *LEN_P to the offset and length, in bytes, of the part REG
   occupies in its underlying register.  The offset is from the
   lower-addressed end, regardless of the architecture's endianness.
   (The M32C family is always little-endian, but let's keep those
   assumptions out of here.)  */
static void
m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
{
  /* The length of the containing register, of which REG is one part.  */
  int containing_len = TYPE_LENGTH (reg->rx->type);

  /* The length of one "element" in our imaginary array.  */
  int elt_len = TYPE_LENGTH (reg->type);

  /* The offset of REG's "element" from the least significant end of
     the containing register.  */
  int elt_offset = reg->n * elt_len;

  /* If we extend off the end, trim the length of the element.  */
  if (elt_offset + elt_len > containing_len)
    {
      elt_len = containing_len - elt_offset;
      /* We shouldn't be declaring partial registers that go off the
	 end of their containing registers.  */
      gdb_assert (elt_len > 0);
    }

  /* Flip the offset around if we're big-endian.  */
  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;

  *offset_p = elt_offset;
  *len_p = elt_len;
}


/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
   to BUF.  Treating the value of the register REG->rx as an array of
   REG->type values, where higher indices refer to more significant
   bits, read the value of the REG->n'th element.  */
static enum register_status
m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  int offset, len;

  memset (buf, 0, TYPE_LENGTH (reg->type));
  m32c_find_part (reg, &offset, &len);
  return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
}


/* Move the value of a banked register from BUF to CACHE.
   Treating the value of the register REG->rx as an array of REG->type
   values, where higher indices refer to more significant bits, write
   the value of the REG->n'th element.  */
static enum register_status
m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  int offset, len;

  m32c_find_part (reg, &offset, &len);
  regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);

  return REG_VALID;
}


/* Move the value of REG from CACHE to BUF.  REG's value is the
   concatenation of the values of the registers REG->rx and REG->ry,
   with REG->rx contributing the more significant bits.  */
static enum register_status
m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  int high_bytes = TYPE_LENGTH (reg->rx->type);
  int low_bytes  = TYPE_LENGTH (reg->ry->type);
  /* For address arithmetic.  */
  unsigned char *cbuf = buf;
  enum register_status status;

  gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);

  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    {
      status = regcache_cooked_read (cache, reg->rx->num, cbuf);
      if (status == REG_VALID)
	status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
    }
  else
    {
      status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
      if (status == REG_VALID)
	status = regcache_cooked_read (cache, reg->ry->num, cbuf);
    }

  return status;
}


/* Move the value of REG from CACHE to BUF.  REG's value is the
   concatenation of the values of the registers REG->rx and REG->ry,
   with REG->rx contributing the more significant bits.  */
static enum register_status
m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  int high_bytes = TYPE_LENGTH (reg->rx->type);
  int low_bytes  = TYPE_LENGTH (reg->ry->type);
  /* For address arithmetic.  */
  unsigned char *cbuf = buf;

  gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);

  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    {
      regcache_cooked_write (cache, reg->rx->num, cbuf);
      regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
    }
  else
    {
      regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
      regcache_cooked_write (cache, reg->ry->num, cbuf);
    }

  return REG_VALID;
}


/* Copy the value of the raw register REG from CACHE to BUF.  REG is
   the concatenation (from most significant to least) of r3, r2, r1,
   and r0.  */
static enum register_status
m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
  int len = TYPE_LENGTH (tdep->r0->type);
  enum register_status status;

  /* For address arithmetic.  */
  unsigned char *cbuf = buf;

  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    {
      status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
      if (status == REG_VALID)
	status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
      if (status == REG_VALID)
	status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
      if (status == REG_VALID)
	status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
    }
  else
    {
      status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
      if (status == REG_VALID)
	status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
      if (status == REG_VALID)
	status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
      if (status == REG_VALID)
	status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
    }

  return status;
}


/* Copy the value of the raw register REG from BUF to CACHE.  REG is
   the concatenation (from most significant to least) of r3, r2, r1,
   and r0.  */
static enum register_status
m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
  int len = TYPE_LENGTH (tdep->r0->type);

  /* For address arithmetic.  */
  unsigned char *cbuf = buf;

  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    {
      regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
      regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
      regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
      regcache_cooked_write (cache, tdep->r3->num, cbuf);
    }
  else
    {
      regcache_cooked_write (cache, tdep->r0->num, cbuf);
      regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
      regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
      regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
    }

  return REG_VALID;
}


static enum register_status
m32c_pseudo_register_read (struct gdbarch *arch,
			   struct regcache *cache,
			   int cookednum,
			   gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  struct m32c_reg *reg;

  gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
  gdb_assert (arch == get_regcache_arch (cache));
  gdb_assert (arch == tdep->regs[cookednum].arch);
  reg = &tdep->regs[cookednum];

  return reg->read (reg, cache, buf);
}


static void
m32c_pseudo_register_write (struct gdbarch *arch,
			    struct regcache *cache,
			    int cookednum,
			    const gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  struct m32c_reg *reg;

  gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
  gdb_assert (arch == get_regcache_arch (cache));
  gdb_assert (arch == tdep->regs[cookednum].arch);
  reg = &tdep->regs[cookednum];

  reg->write (reg, cache, (void *) buf);
}


/* Add a register with the given fields to the end of ARCH's table.
   Return a pointer to the newly added register.  */
static struct m32c_reg *
add_reg (struct gdbarch *arch,
	 const char *name,
	 struct type *type,
	 int sim_num,
	 m32c_move_reg_t *read,
	 m32c_move_reg_t *write,
	 struct m32c_reg *rx,
	 struct m32c_reg *ry,
	 int n)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  struct m32c_reg *r = &tdep->regs[tdep->num_regs];

  gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);

  r->name           = name;
  r->type           = type;
  r->arch           = arch;
  r->num            = tdep->num_regs;
  r->sim_num        = sim_num;
  r->dwarf_num      = -1;
  r->general_p      = 0;
  r->dma_p          = 0;
  r->system_p       = 0;
  r->save_restore_p = 0;
  r->read           = read;
  r->write          = write;
  r->rx             = rx;
  r->ry             = ry;
  r->n              = n;

  tdep->num_regs++;

  return r;
}


/* Record NUM as REG's DWARF register number.  */
static void
set_dwarf_regnum (struct m32c_reg *reg, int num)
{
  gdb_assert (num < M32C_MAX_NUM_REGS);

  /* Update the reg->DWARF mapping.  Only count the first number
     assigned to this register.  */
  if (reg->dwarf_num == -1)
    reg->dwarf_num = num;

  /* Update the DWARF->reg mapping.  */
  gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
}


/* Mark REG as a general-purpose register, and return it.  */
static struct m32c_reg *
mark_general (struct m32c_reg *reg)
{
  reg->general_p = 1;
  return reg;
}


/* Mark REG as a DMA register, and return it.  */
static struct m32c_reg *
mark_dma (struct m32c_reg *reg)
{
  reg->dma_p = 1;
  return reg;
}


/* Mark REG as a SYSTEM register, and return it.  */
static struct m32c_reg *
mark_system (struct m32c_reg *reg)
{
  reg->system_p = 1;
  return reg;
}


/* Mark REG as a save-restore register, and return it.  */
static struct m32c_reg *
mark_save_restore (struct m32c_reg *reg)
{
  reg->save_restore_p = 1;
  return reg;
}


#define FLAGBIT_B	0x0010
#define FLAGBIT_U	0x0080

/* Handy macros for declaring registers.  These all evaluate to
   pointers to the register declared.  Macros that define two
   registers evaluate to a pointer to the first.  */

/* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
#define R(name, type, sim_num)					\
  (add_reg (arch, (name), (type), (sim_num),			\
	    m32c_raw_read, m32c_raw_write, NULL, NULL, 0))

/* The simulator register number for a raw register named NAME.  */
#define SIM(name) (m32c_sim_reg_ ## name)

/* A raw unsigned 16-bit data register named NAME.
   NAME should be an identifier, not a string.  */
#define R16U(name)						\
  (R(#name, tdep->uint16, SIM (name)))

/* A raw data address register named NAME.
   NAME should be an identifier, not a string.  */
#define RA(name)						\
  (R(#name, tdep->data_addr_reg_type, SIM (name)))

/* A raw code address register named NAME.  NAME should
   be an identifier, not a string.  */
#define RC(name)						\
  (R(#name, tdep->code_addr_reg_type, SIM (name)))

/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
   NAME should be an identifier, not a string.  */
#define RP(name, type)				\
  (R(#name "0", (type), SIM (name ## 0)),	\
   R(#name "1", (type), SIM (name ## 1)) - 1)

/* A raw banked general-purpose data register named NAME.
   NAME should be an identifier, not a string.  */
#define RBD(name)						\
  (R(NULL, tdep->int16, SIM (name ## _bank0)),		\
   R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)

/* A raw banked data address register named NAME.
   NAME should be an identifier, not a string.  */
#define RBA(name)						\
  (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),	\
   R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)

/* A cooked register named NAME referring to a raw banked register
   from the bank selected by the current value of FLG.  RAW_PAIR
   should be a pointer to the first register in the banked pair.
   NAME must be an identifier, not a string.  */
#define CB(name, raw_pair)				\
  (add_reg (arch, #name, (raw_pair)->type, 0,		\
	    m32c_banked_read, m32c_banked_write,	\
            (raw_pair), (raw_pair + 1), FLAGBIT_B))

/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
   access the top and bottom halves of the register pointed to by
   NAME.  NAME should be an identifier.  */
#define CHL(name, type)							\
  (add_reg (arch, #name "h", (type), 0,					\
	    m32c_part_read, m32c_part_write, name, NULL, 1),		\
   add_reg (arch, #name "l", (type), 0,					\
	    m32c_part_read, m32c_part_write, name, NULL, 0) - 1)

/* A register constructed by concatenating the two registers HIGH and
   LOW, whose name is HIGHLOW and whose type is TYPE.  */
#define CCAT(high, low, type)					\
  (add_reg (arch, #high #low, (type), 0,			\
	    m32c_cat_read, m32c_cat_write, (high), (low), 0))

/* Abbreviations for marking register group membership.  */
#define G(reg)   (mark_general (reg))
#define S(reg)   (mark_system  (reg))
#define DMA(reg) (mark_dma     (reg))


/* Construct the register set for ARCH.  */
static void
make_regs (struct gdbarch *arch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  int mach = gdbarch_bfd_arch_info (arch)->mach;
  int num_raw_regs;
  int num_cooked_regs;

  struct m32c_reg *r0;
  struct m32c_reg *r1;
  struct m32c_reg *r2;
  struct m32c_reg *r3;
  struct m32c_reg *a0;
  struct m32c_reg *a1;
  struct m32c_reg *fb;
  struct m32c_reg *sb;
  struct m32c_reg *sp;
  struct m32c_reg *r0hl;
  struct m32c_reg *r1hl;
  struct m32c_reg *r2hl;
  struct m32c_reg *r3hl;
  struct m32c_reg *intbhl;
  struct m32c_reg *r2r0;
  struct m32c_reg *r3r1;
  struct m32c_reg *r3r1r2r0;
  struct m32c_reg *r3r2r1r0;
  struct m32c_reg *a1a0;

  struct m32c_reg *raw_r0_pair = RBD (r0);
  struct m32c_reg *raw_r1_pair = RBD (r1);
  struct m32c_reg *raw_r2_pair = RBD (r2);
  struct m32c_reg *raw_r3_pair = RBD (r3);
  struct m32c_reg *raw_a0_pair = RBA (a0);
  struct m32c_reg *raw_a1_pair = RBA (a1);
  struct m32c_reg *raw_fb_pair = RBA (fb);

  /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
     We always declare both raw registers, and deal with the distinction
     in the pseudoregister.  */
  struct m32c_reg *raw_sb_pair = RBA (sb);

  struct m32c_reg *usp         = S (RA (usp));
  struct m32c_reg *isp         = S (RA (isp));
  struct m32c_reg *intb        = S (RC (intb));
  struct m32c_reg *pc          = G (RC (pc));
  struct m32c_reg *flg         = G (R16U (flg));

  if (mach == bfd_mach_m32c)
    {
      struct m32c_reg *svf     = S (R16U (svf));
      struct m32c_reg *svp     = S (RC (svp));
      struct m32c_reg *vct     = S (RC (vct));

      struct m32c_reg *dmd01   = DMA (RP (dmd, tdep->uint8));
      struct m32c_reg *dct01   = DMA (RP (dct, tdep->uint16));
      struct m32c_reg *drc01   = DMA (RP (drc, tdep->uint16));
      struct m32c_reg *dma01   = DMA (RP (dma, tdep->data_addr_reg_type));
      struct m32c_reg *dsa01   = DMA (RP (dsa, tdep->data_addr_reg_type));
      struct m32c_reg *dra01   = DMA (RP (dra, tdep->data_addr_reg_type));
    }

  num_raw_regs = tdep->num_regs;

  r0 	      = G (CB (r0, raw_r0_pair));
  r1 	      = G (CB (r1, raw_r1_pair));
  r2          = G (CB (r2, raw_r2_pair));
  r3          = G (CB (r3, raw_r3_pair));
  a0          = G (CB (a0, raw_a0_pair));
  a1          = G (CB (a1, raw_a1_pair));
  fb          = G (CB (fb, raw_fb_pair));

  /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
     Specify custom read/write functions that do the right thing.  */
  sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
			    m32c_sb_read, m32c_sb_write,
			    raw_sb_pair, raw_sb_pair + 1, 0));

  /* The current sp is either usp or isp, depending on the value of
     the FLG register's U bit.  */
  sp          = G (add_reg (arch, "sp", usp->type, 0,
			    m32c_banked_read, m32c_banked_write,
			    isp, usp, FLAGBIT_U));

  r0hl        = CHL (r0, tdep->int8);
  r1hl        = CHL (r1, tdep->int8);
  r2hl        = CHL (r2, tdep->int8);
  r3hl        = CHL (r3, tdep->int8);
  intbhl      = CHL (intb, tdep->int16);

  r2r0        = CCAT (r2,   r0,   tdep->int32);
  r3r1        = CCAT (r3,   r1,   tdep->int32);
  r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);

  r3r2r1r0
    = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
	       m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);

  if (mach == bfd_mach_m16c)
    a1a0 = CCAT (a1, a0, tdep->int32);
  else
    a1a0 = NULL;

  num_cooked_regs = tdep->num_regs - num_raw_regs;

  tdep->pc   	 = pc;
  tdep->flg  	 = flg;
  tdep->r0   	 = r0;
  tdep->r1   	 = r1;
  tdep->r2   	 = r2;
  tdep->r3   	 = r3;
  tdep->r2r0 	 = r2r0;
  tdep->r3r2r1r0 = r3r2r1r0;
  tdep->r3r1r2r0 = r3r1r2r0;
  tdep->a0       = a0;
  tdep->a1       = a1;
  tdep->sb       = sb;
  tdep->fb   	 = fb;
  tdep->sp   	 = sp;

  /* Set up the DWARF register table.  */
  memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
  set_dwarf_regnum (r0hl + 1, 0x01);
  set_dwarf_regnum (r0hl + 0, 0x02);
  set_dwarf_regnum (r1hl + 1, 0x03);
  set_dwarf_regnum (r1hl + 0, 0x04);
  set_dwarf_regnum (r0,       0x05);
  set_dwarf_regnum (r1,       0x06);
  set_dwarf_regnum (r2,       0x07);
  set_dwarf_regnum (r3,       0x08);
  set_dwarf_regnum (a0,       0x09);
  set_dwarf_regnum (a1,       0x0a);
  set_dwarf_regnum (fb,       0x0b);
  set_dwarf_regnum (sp,       0x0c);
  set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
  set_dwarf_regnum (sb,       0x13);
  set_dwarf_regnum (r2r0,     0x15);
  set_dwarf_regnum (r3r1,     0x16);
  if (a1a0)
    set_dwarf_regnum (a1a0,   0x17);

  /* Enumerate the save/restore register group.

     The regcache_save and regcache_restore functions apply their read
     function to each register in this group.

     Since frame_pop supplies frame_unwind_register as its read
     function, the registers meaningful to the Dwarf unwinder need to
     be in this group.

     On the other hand, when we make inferior calls, save_inferior_status
     and restore_inferior_status use them to preserve the current register
     values across the inferior call.  For this, you'd kind of like to
     preserve all the raw registers, to protect the interrupted code from
     any sort of bank switching the callee might have done.  But we handle
     those cases so badly anyway --- for example, it matters whether we
     restore FLG before or after we restore the general-purpose registers,
     but there's no way to express that --- that it isn't worth worrying
     about.

     We omit control registers like inthl: if you call a function that
     changes those, it's probably because you wanted that change to be
     visible to the interrupted code.  */
  mark_save_restore (r0);
  mark_save_restore (r1);
  mark_save_restore (r2);
  mark_save_restore (r3);
  mark_save_restore (a0);
  mark_save_restore (a1);
  mark_save_restore (sb);
  mark_save_restore (fb);
  mark_save_restore (sp);
  mark_save_restore (pc);
  mark_save_restore (flg);

  set_gdbarch_num_regs (arch, num_raw_regs);
  set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
  set_gdbarch_pc_regnum (arch, pc->num);
  set_gdbarch_sp_regnum (arch, sp->num);
  set_gdbarch_register_name (arch, m32c_register_name);
  set_gdbarch_register_type (arch, m32c_register_type);
  set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
  set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
  set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
  set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
  set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);

  reggroup_add (arch, general_reggroup);
  reggroup_add (arch, all_reggroup);
  reggroup_add (arch, save_reggroup);
  reggroup_add (arch, restore_reggroup);
  reggroup_add (arch, system_reggroup);
  reggroup_add (arch, m32c_dma_reggroup);
}



/* Breakpoints.  */

static const unsigned char *
m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
{
  static unsigned char break_insn[] = { 0x00 };	/* brk */

  *len = sizeof (break_insn);
  return break_insn;
}



/* Prologue analysis.  */

struct m32c_prologue
{
  /* For consistency with the DWARF 2 .debug_frame info generated by
     GCC, a frame's CFA is the address immediately after the saved
     return address.  */

  /* The architecture for which we generated this prologue info.  */
  struct gdbarch *arch;

  enum {
    /* This function uses a frame pointer.  */
    prologue_with_frame_ptr,

    /* This function has no frame pointer.  */
    prologue_sans_frame_ptr,

    /* This function sets up the stack, so its frame is the first
       frame on the stack.  */
    prologue_first_frame

  } kind;

  /* If KIND is prologue_with_frame_ptr, this is the offset from the
     CFA to where the frame pointer points.  This is always zero or
     negative.  */
  LONGEST frame_ptr_offset;

  /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
     the stack pointer --- always zero or negative.

     Calling this a "size" is a bit misleading, but given that the
     stack grows downwards, using offsets for everything keeps one
     from going completely sign-crazy: you never change anything's
     sign for an ADD instruction; always change the second operand's
     sign for a SUB instruction; and everything takes care of
     itself.

     Functions that use alloca don't have a constant frame size.  But
     they always have frame pointers, so we must use that to find the
     CFA (and perhaps to unwind the stack pointer).  */
  LONGEST frame_size;

  /* The address of the first instruction at which the frame has been
     set up and the arguments are where the debug info says they are
     --- as best as we can tell.  */
  CORE_ADDR prologue_end;

  /* reg_offset[R] is the offset from the CFA at which register R is
     saved, or 1 if register R has not been saved.  (Real values are
     always zero or negative.)  */
  LONGEST reg_offset[M32C_MAX_NUM_REGS];
};


/* The longest I've seen, anyway.  */
#define M32C_MAX_INSN_LEN (9)

/* Processor state, for the prologue analyzer.  */
struct m32c_pv_state
{
  struct gdbarch *arch;
  pv_t r0, r1, r2, r3;
  pv_t a0, a1;
  pv_t sb, fb, sp;
  pv_t pc;
  struct pv_area *stack;

  /* Bytes from the current PC, the address they were read from,
     and the address of the next unconsumed byte.  */
  gdb_byte insn[M32C_MAX_INSN_LEN];
  CORE_ADDR scan_pc, next_addr;
};


/* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
   all went well, or non-zero if simulating the action would trash our
   state.  */
static int
m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
{
  if (pv_area_store_would_trash (state->stack, state->sp))
    return 1;

  state->sp = pv_add_constant (state->sp, -size);
  pv_area_store (state->stack, state->sp, size, value);

  return 0;
}


/* A source or destination location for an m16c or m32c
   instruction.  */
struct srcdest
{
  /* If srcdest_reg, the location is a register pointed to by REG.
     If srcdest_partial_reg, the location is part of a register pointed
     to by REG.  We don't try to handle this too well.
     If srcdest_mem, the location is memory whose address is ADDR.  */
  enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
  pv_t *reg, addr;
};


/* Return the SIZE-byte value at LOC in STATE.  */
static pv_t
m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
{
  if (loc.kind == srcdest_mem)
    return pv_area_fetch (state->stack, loc.addr, size);
  else if (loc.kind == srcdest_partial_reg)
    return pv_unknown ();
  else
    return *loc.reg;
}


/* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
   all went well, or non-zero if simulating the store would trash our
   state.  */
static int
m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
		    pv_t value, int size)
{
  if (loc.kind == srcdest_mem)
    {
      if (pv_area_store_would_trash (state->stack, loc.addr))
	return 1;
      pv_area_store (state->stack, loc.addr, size, value);
    }
  else if (loc.kind == srcdest_partial_reg)
    *loc.reg = pv_unknown ();
  else
    *loc.reg = value;

  return 0;
}


static int
m32c_sign_ext (int v, int bits)
{
  int mask = 1 << (bits - 1);
  return (v ^ mask) - mask;
}

static unsigned int
m32c_next_byte (struct m32c_pv_state *st)
{
  gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
  return st->insn[st->next_addr++ - st->scan_pc];
}

static int
m32c_udisp8 (struct m32c_pv_state *st)
{
  return m32c_next_byte (st);
}


static int
m32c_sdisp8 (struct m32c_pv_state *st)
{
  return m32c_sign_ext (m32c_next_byte (st), 8);
}


static int
m32c_udisp16 (struct m32c_pv_state *st)
{
  int low  = m32c_next_byte (st);
  int high = m32c_next_byte (st);

  return low + (high << 8);
}


static int
m32c_sdisp16 (struct m32c_pv_state *st)
{
  int low  = m32c_next_byte (st);
  int high = m32c_next_byte (st);

  return m32c_sign_ext (low + (high << 8), 16);
}


static int
m32c_udisp24 (struct m32c_pv_state *st)
{
  int low  = m32c_next_byte (st);
  int mid  = m32c_next_byte (st);
  int high = m32c_next_byte (st);

  return low + (mid << 8) + (high << 16);
}


/* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
static int
m32c_get_src23 (unsigned char *i)
{
  return (((i[0] & 0x70) >> 2)
	  | ((i[1] & 0x30) >> 4));
}


/* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
static int
m32c_get_dest23 (unsigned char *i)
{
  return (((i[0] & 0x0e) << 1)
	  | ((i[1] & 0xc0) >> 6));
}


static struct srcdest
m32c_decode_srcdest4 (struct m32c_pv_state *st,
		      int code, int size)
{
  struct srcdest sd;

  if (code < 6)
    sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
  else
    sd.kind = srcdest_mem;

  sd.addr = pv_unknown ();
  sd.reg = 0;

  switch (code)
    {
    case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
    case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
    case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
    case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;

    case 0x4: sd.reg = &st->a0; break;
    case 0x5: sd.reg = &st->a1; break;

    case 0x6: sd.addr = st->a0; break;
    case 0x7: sd.addr = st->a1; break;

    case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
    case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
    case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
    case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;

    case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
    case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
    case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
    case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;

    default:
      gdb_assert_not_reached ("unexpected srcdest4");
    }

  return sd;
}


static struct srcdest
m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
{
  struct srcdest sd;

  sd.addr = pv_unknown ();
  sd.reg = 0;

  switch (code)
    {
    case 0x12:
    case 0x13:
    case 0x10:
    case 0x11:
      sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
      break;

    case 0x02:
    case 0x03:
      sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
      break;

    default:
      sd.kind = srcdest_mem;
      break;

    }

  switch (code)
    {
    case 0x12: sd.reg = &st->r0; break;
    case 0x13: sd.reg = &st->r1; break;
    case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
    case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
    case 0x02: sd.reg = &st->a0; break;
    case 0x03: sd.reg = &st->a1; break;

    case 0x00: sd.addr = st->a0; break;
    case 0x01: sd.addr = st->a1; break;
    case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
    case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
    case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
    case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
    case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
    case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
    case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
    case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
    case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
    case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
    case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
    case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
    default:
      gdb_assert_not_reached ("unexpected sd23");
    }

  if (ind)
    {
      sd.addr = m32c_srcdest_fetch (st, sd, 4);
      sd.kind = srcdest_mem;
    }

  return sd;
}


/* The r16c and r32c machines have instructions with similar
   semantics, but completely different machine language encodings.  So
   we break out the semantics into their own functions, and leave
   machine-specific decoding in m32c_analyze_prologue.

   The following functions all expect their arguments already decoded,
   and they all return zero if analysis should continue past this
   instruction, or non-zero if analysis should stop.  */


/* Simulate an 'enter SIZE' instruction in STATE.  */
static int
m32c_pv_enter (struct m32c_pv_state *state, int size)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);

  /* If simulating this store would require us to forget
     everything we know about the stack frame in the name of
     accuracy, it would be better to just quit now.  */
  if (pv_area_store_would_trash (state->stack, state->sp))
    return 1;

  if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
    return 1;
  state->fb = state->sp;
  state->sp = pv_add_constant (state->sp, -size);

  return 0;
}


static int
m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
		   int bit, int src, int size)
{
  if (bit & src)
    {
      if (m32c_pv_push (state, reg, size))
	return 1;
    }

  return 0;
}


/* Simulate a 'pushm SRC' instruction in STATE.  */
static int
m32c_pv_pushm (struct m32c_pv_state *state, int src)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);

  /* The bits in SRC indicating which registers to save are:
     r0 r1 r2 r3 a0 a1 sb fb */
  return
    (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
     || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
     || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
     || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
     || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
     || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
     || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
     || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
}

/* Return non-zero if VALUE is the first incoming argument register.  */

static int
m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
  return (value.kind == pvk_register
          && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
	      ? (value.reg == tdep->r1->num)
	      : (value.reg == tdep->r0->num))
          && value.k == 0);
}

/* Return non-zero if VALUE is an incoming argument register.  */

static int
m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
  return (value.kind == pvk_register
          && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
	      ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
	      : (value.reg == tdep->r0->num))
          && value.k == 0);
}

/* Return non-zero if a store of VALUE to LOC is probably spilling an
   argument register to its stack slot in STATE.  Such instructions
   should be included in the prologue, if possible.

   The store is a spill if:
   - the value being stored is the original value of an argument register;
   - the value has not already been stored somewhere in STACK; and
   - LOC is a stack slot (e.g., a memory location whose address is
     relative to the original value of the SP).  */

static int
m32c_is_arg_spill (struct m32c_pv_state *st, 
		   struct srcdest loc, 
		   pv_t value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);

  return (m32c_is_arg_reg (st, value)
	  && loc.kind == srcdest_mem
          && pv_is_register (loc.addr, tdep->sp->num)
          && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
}

/* Return non-zero if a store of VALUE to LOC is probably 
   copying the struct return address into an address register
   for immediate use.  This is basically a "spill" into the
   address register, instead of onto the stack. 

   The prerequisites are:
   - value being stored is original value of the FIRST arg register;
   - value has not already been stored on stack; and
   - LOC is an address register (a0 or a1).  */

static int
m32c_is_struct_return (struct m32c_pv_state *st,
		       struct srcdest loc, 
		       pv_t value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);

  return (m32c_is_1st_arg_reg (st, value)
	  && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
	  && loc.kind == srcdest_reg
	  && (pv_is_register (*loc.reg, tdep->a0->num)
	      || pv_is_register (*loc.reg, tdep->a1->num)));
}

/* Return non-zero if a 'pushm' saving the registers indicated by SRC
   was a register save:
   - all the named registers should have their original values, and
   - the stack pointer should be at a constant offset from the
     original stack pointer.  */
static int
m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
  /* The bits in SRC indicating which registers to save are:
     r0 r1 r2 r3 a0 a1 sb fb */
  return
    (pv_is_register (st->sp, tdep->sp->num)
     && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
     && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
     && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
     && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
     && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
     && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
     && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
     && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
}


/* Function for finding saved registers in a 'struct pv_area'; we pass
   this to pv_area_scan.

   If VALUE is a saved register, ADDR says it was saved at a constant
   offset from the frame base, and SIZE indicates that the whole
   register was saved, record its offset in RESULT_UNTYPED.  */
static void
check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
{
  struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
  struct gdbarch *arch = prologue->arch;
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);

  /* Is this the unchanged value of some register being saved on the
     stack?  */
  if (value.kind == pvk_register
      && value.k == 0
      && pv_is_register (addr, tdep->sp->num))
    {
      /* Some registers require special handling: they're saved as a
	 larger value than the register itself.  */
      CORE_ADDR saved_size = register_size (arch, value.reg);

      if (value.reg == tdep->pc->num)
	saved_size = tdep->ret_addr_bytes;
      else if (register_type (arch, value.reg)
	       == tdep->data_addr_reg_type)
	saved_size = tdep->push_addr_bytes;

      if (size == saved_size)
	{
	  /* Find which end of the saved value corresponds to our
	     register.  */
	  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
	    prologue->reg_offset[value.reg]
	      = (addr.k + saved_size - register_size (arch, value.reg));
	  else
	    prologue->reg_offset[value.reg] = addr.k;
	}
    }
}


/* Analyze the function prologue for ARCH at START, going no further
   than LIMIT, and place a description of what we found in
   PROLOGUE.  */
static void
m32c_analyze_prologue (struct gdbarch *arch,
		       CORE_ADDR start, CORE_ADDR limit,
		       struct m32c_prologue *prologue)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
  CORE_ADDR after_last_frame_related_insn;
  struct cleanup *back_to;
  struct m32c_pv_state st;

  st.arch = arch;
  st.r0 = pv_register (tdep->r0->num, 0);
  st.r1 = pv_register (tdep->r1->num, 0);
  st.r2 = pv_register (tdep->r2->num, 0);
  st.r3 = pv_register (tdep->r3->num, 0);
  st.a0 = pv_register (tdep->a0->num, 0);
  st.a1 = pv_register (tdep->a1->num, 0);
  st.sb = pv_register (tdep->sb->num, 0);
  st.fb = pv_register (tdep->fb->num, 0);
  st.sp = pv_register (tdep->sp->num, 0);
  st.pc = pv_register (tdep->pc->num, 0);
  st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
  back_to = make_cleanup_free_pv_area (st.stack);

  /* Record that the call instruction has saved the return address on
     the stack.  */
  m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);

  memset (prologue, 0, sizeof (*prologue));
  prologue->arch = arch;
  {
    int i;
    for (i = 0; i < M32C_MAX_NUM_REGS; i++)
      prologue->reg_offset[i] = 1;
  }

  st.scan_pc = after_last_frame_related_insn = start;

  while (st.scan_pc < limit)
    {
      pv_t pre_insn_fb = st.fb;
      pv_t pre_insn_sp = st.sp;

      /* In theory we could get in trouble by trying to read ahead
	 here, when we only know we're expecting one byte.  In
	 practice I doubt anyone will care, and it makes the rest of
	 the code easier.  */
      if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
	/* If we can't fetch the instruction from memory, stop here
	   and hope for the best.  */
	break;
      st.next_addr = st.scan_pc;

      /* The assembly instructions are written as they appear in the
	 section of the processor manuals that describe the
	 instruction encodings.

	 When a single assembly language instruction has several
	 different machine-language encodings, the manual
	 distinguishes them by a number in parens, before the
	 mnemonic.  Those numbers are included, as well.

	 The srcdest decoding instructions have the same names as the
	 analogous functions in the simulator.  */
      if (mach == bfd_mach_m16c)
	{
	  /* (1) ENTER #imm8 */
	  if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
	    {
	      if (m32c_pv_enter (&st, st.insn[2]))
		break;
	      st.next_addr += 3;
	    }
	  /* (1) PUSHM src */
	  else if (st.insn[0] == 0xec)
	    {
	      int src = st.insn[1];
	      if (m32c_pv_pushm (&st, src))
		break;
	      st.next_addr += 2;

	      if (m32c_pushm_is_reg_save (&st, src))
		after_last_frame_related_insn = st.next_addr;
	    }

	  /* (6) MOV.size:G src, dest */
	  else if ((st.insn[0] & 0xfe) == 0x72)
	    {
	      int size = (st.insn[0] & 0x01) ? 2 : 1;
	      struct srcdest src;
	      struct srcdest dest;
	      pv_t src_value;
	      st.next_addr += 2;

	      src
		= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
	      dest
		= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
	      src_value = m32c_srcdest_fetch (&st, src, size);

	      if (m32c_is_arg_spill (&st, dest, src_value))
		after_last_frame_related_insn = st.next_addr;
	      else if (m32c_is_struct_return (&st, dest, src_value))
		after_last_frame_related_insn = st.next_addr;

	      if (m32c_srcdest_store (&st, dest, src_value, size))
		break;
	    }

	  /* (1) LDC #IMM16, sp */
	  else if (st.insn[0] == 0xeb
		   && st.insn[1] == 0x50)
	    {
	      st.next_addr += 2;
	      st.sp = pv_constant (m32c_udisp16 (&st));
	    }

	  else
	    /* We've hit some instruction we don't know how to simulate.
	       Strictly speaking, we should set every value we're
	       tracking to "unknown".  But we'll be optimistic, assume
	       that we have enough information already, and stop
	       analysis here.  */
	    break;
	}
      else
	{
	  int src_indirect = 0;
	  int dest_indirect = 0;
	  int i = 0;

	  gdb_assert (mach == bfd_mach_m32c);

	  /* Check for prefix bytes indicating indirect addressing.  */
	  if (st.insn[0] == 0x41)
	    {
	      src_indirect = 1;
	      i++;
	    }
	  else if (st.insn[0] == 0x09)
	    {
	      dest_indirect = 1;
	      i++;
	    }
	  else if (st.insn[0] == 0x49)
	    {
	      src_indirect = dest_indirect = 1;
	      i++;
	    }

	  /* (1) ENTER #imm8 */
	  if (st.insn[i] == 0xec)
	    {
	      if (m32c_pv_enter (&st, st.insn[i + 1]))
		break;
	      st.next_addr += 2;
	    }

	  /* (1) PUSHM src */
	  else if (st.insn[i] == 0x8f)
	    {
	      int src = st.insn[i + 1];
	      if (m32c_pv_pushm (&st, src))
		break;
	      st.next_addr += 2;

	      if (m32c_pushm_is_reg_save (&st, src))
		after_last_frame_related_insn = st.next_addr;
	    }

	  /* (7) MOV.size:G src, dest */
	  else if ((st.insn[i] & 0x80) == 0x80
		   && (st.insn[i + 1] & 0x0f) == 0x0b
		   && m32c_get_src23 (&st.insn[i]) < 20
		   && m32c_get_dest23 (&st.insn[i]) < 20)
	    {
	      struct srcdest src;
	      struct srcdest dest;
	      pv_t src_value;
	      int bw = st.insn[i] & 0x01;
	      int size = bw ? 2 : 1;
	      st.next_addr += 2;

	      src
		= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
				    size, src_indirect);
	      dest
		= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
				    size, dest_indirect);
	      src_value = m32c_srcdest_fetch (&st, src, size);

	      if (m32c_is_arg_spill (&st, dest, src_value))
		after_last_frame_related_insn = st.next_addr;

	      if (m32c_srcdest_store (&st, dest, src_value, size))
		break;
	    }
	  /* (2) LDC #IMM24, sp */
	  else if (st.insn[i] == 0xd5
		   && st.insn[i + 1] == 0x29)
	    {
	      st.next_addr += 2;
	      st.sp = pv_constant (m32c_udisp24 (&st));
	    }
	  else
	    /* We've hit some instruction we don't know how to simulate.
	       Strictly speaking, we should set every value we're
	       tracking to "unknown".  But we'll be optimistic, assume
	       that we have enough information already, and stop
	       analysis here.  */
	    break;
	}

      /* If this instruction changed the FB or decreased the SP (i.e.,
         allocated more stack space), then this may be a good place to
         declare the prologue finished.  However, there are some
         exceptions:

         - If the instruction just changed the FB back to its original
           value, then that's probably a restore instruction.  The
           prologue should definitely end before that.

         - If the instruction increased the value of the SP (that is,
           shrunk the frame), then it's probably part of a frame
           teardown sequence, and the prologue should end before
           that.  */

      if (! pv_is_identical (st.fb, pre_insn_fb))
        {
          if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
            after_last_frame_related_insn = st.next_addr;
        }
      else if (! pv_is_identical (st.sp, pre_insn_sp))
        {
          /* The comparison of the constants looks odd, there, because
             .k is unsigned.  All it really means is that the SP is
             lower than it was before the instruction.  */
          if (   pv_is_register (pre_insn_sp, tdep->sp->num)
              && pv_is_register (st.sp,       tdep->sp->num)
              && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
            after_last_frame_related_insn = st.next_addr;
        }

      st.scan_pc = st.next_addr;
    }

  /* Did we load a constant value into the stack pointer?  */
  if (pv_is_constant (st.sp))
    prologue->kind = prologue_first_frame;

  /* Alternatively, did we initialize the frame pointer?  Remember
     that the CFA is the address after the return address.  */
  if (pv_is_register (st.fb, tdep->sp->num))
    {
      prologue->kind = prologue_with_frame_ptr;
      prologue->frame_ptr_offset = st.fb.k;
    }

  /* Is the frame size a known constant?  Remember that frame_size is
     actually the offset from the CFA to the SP (i.e., a negative
     value).  */
  else if (pv_is_register (st.sp, tdep->sp->num))
    {
      prologue->kind = prologue_sans_frame_ptr;
      prologue->frame_size = st.sp.k;
    }

  /* We haven't been able to make sense of this function's frame.  Treat
     it as the first frame.  */
  else
    prologue->kind = prologue_first_frame;

  /* Record where all the registers were saved.  */
  pv_area_scan (st.stack, check_for_saved, (void *) prologue);

  prologue->prologue_end = after_last_frame_related_insn;

  do_cleanups (back_to);
}


static CORE_ADDR
m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
{
  char *name;
  CORE_ADDR func_addr, func_end, sal_end;
  struct m32c_prologue p;

  /* Try to find the extent of the function that contains IP.  */
  if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
    return ip;

  /* Find end by prologue analysis.  */
  m32c_analyze_prologue (gdbarch, ip, func_end, &p);
  /* Find end by line info.  */
  sal_end = skip_prologue_using_sal (gdbarch, ip);
  /* Return whichever is lower.  */
  if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
    return sal_end;
  else
    return p.prologue_end;
}



/* Stack unwinding.  */

static struct m32c_prologue *
m32c_analyze_frame_prologue (struct frame_info *this_frame,
			     void **this_prologue_cache)
{
  if (! *this_prologue_cache)
    {
      CORE_ADDR func_start = get_frame_func (this_frame);
      CORE_ADDR stop_addr = get_frame_pc (this_frame);

      /* If we couldn't find any function containing the PC, then
         just initialize the prologue cache, but don't do anything.  */
      if (! func_start)
        stop_addr = func_start;

      *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
      m32c_analyze_prologue (get_frame_arch (this_frame),
			     func_start, stop_addr, *this_prologue_cache);
    }

  return *this_prologue_cache;
}


static CORE_ADDR
m32c_frame_base (struct frame_info *this_frame,
                void **this_prologue_cache)
{
  struct m32c_prologue *p
    = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));

  /* In functions that use alloca, the distance between the stack
     pointer and the frame base varies dynamically, so we can't use
     the SP plus static information like prologue analysis to find the
     frame base.  However, such functions must have a frame pointer,
     to be able to restore the SP on exit.  So whenever we do have a
     frame pointer, use that to find the base.  */
  switch (p->kind)
    {
    case prologue_with_frame_ptr:
      {
	CORE_ADDR fb
	  = get_frame_register_unsigned (this_frame, tdep->fb->num);
	return fb - p->frame_ptr_offset;
      }

    case prologue_sans_frame_ptr:
      {
	CORE_ADDR sp
	  = get_frame_register_unsigned (this_frame, tdep->sp->num);
	return sp - p->frame_size;
      }

    case prologue_first_frame:
      return 0;

    default:
      gdb_assert_not_reached ("unexpected prologue kind");
    }
}


static void
m32c_this_id (struct frame_info *this_frame,
	      void **this_prologue_cache,
	      struct frame_id *this_id)
{
  CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);

  if (base)
    *this_id = frame_id_build (base, get_frame_func (this_frame));
  /* Otherwise, leave it unset, and that will terminate the backtrace.  */
}


static struct value *
m32c_prev_register (struct frame_info *this_frame,
		    void **this_prologue_cache, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
  struct m32c_prologue *p
    = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
  CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
  int reg_size = register_size (get_frame_arch (this_frame), regnum);

  if (regnum == tdep->sp->num)
    return frame_unwind_got_constant (this_frame, regnum, frame_base);

  /* If prologue analysis says we saved this register somewhere,
     return a description of the stack slot holding it.  */
  if (p->reg_offset[regnum] != 1)
    return frame_unwind_got_memory (this_frame, regnum,
                                    frame_base + p->reg_offset[regnum]);

  /* Otherwise, presume we haven't changed the value of this
     register, and get it from the next frame.  */
  return frame_unwind_got_register (this_frame, regnum, regnum);
}


static const struct frame_unwind m32c_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  m32c_this_id,
  m32c_prev_register,
  NULL,
  default_frame_sniffer
};


static CORE_ADDR
m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
}


static CORE_ADDR
m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
}


/* Inferior calls.  */

/* The calling conventions, according to GCC:

   r8c, m16c
   ---------
   First arg may be passed in r1l or r1 if it (1) fits (QImode or
   HImode), (2) is named, and (3) is an integer or pointer type (no
   structs, floats, etc).  Otherwise, it's passed on the stack.

   Second arg may be passed in r2, same restrictions (but not QImode),
   even if the first arg is passed on the stack.

   Third and further args are passed on the stack.  No padding is
   used, stack "alignment" is 8 bits.

   m32cm, m32c
   -----------

   First arg may be passed in r0l or r0, same restrictions as above.

   Second and further args are passed on the stack.  Padding is used
   after QImode parameters (i.e. lower-addressed byte is the value,
   higher-addressed byte is the padding), stack "alignment" is 16
   bits.  */


/* Return true if TYPE is a type that can be passed in registers.  (We
   ignore the size, and pay attention only to the type code;
   acceptable sizes depends on which register is being considered to
   hold it.)  */
static int
m32c_reg_arg_type (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_INT
	  || code == TYPE_CODE_ENUM
	  || code == TYPE_CODE_PTR
	  || code == TYPE_CODE_REF
	  || code == TYPE_CODE_BOOL
	  || code == TYPE_CODE_CHAR);
}


static CORE_ADDR
m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		      struct value **args, CORE_ADDR sp, int struct_return,
		      CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
  CORE_ADDR cfa;
  int i;

  /* The number of arguments given in this function's prototype, or
     zero if it has a non-prototyped function type.  The m32c ABI
     passes arguments mentioned in the prototype differently from
     those in the ellipsis of a varargs function, or from those passed
     to a non-prototyped function.  */
  int num_prototyped_args = 0;

  {
    struct type *func_type = value_type (function);

    /* Dereference function pointer types.  */
    if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
      func_type = TYPE_TARGET_TYPE (func_type);

    gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
		TYPE_CODE (func_type) == TYPE_CODE_METHOD);

#if 0
    /* The ABI description in gcc/config/m32c/m32c.abi says that
       we need to handle prototyped and non-prototyped functions
       separately, but the code in GCC doesn't actually do so.  */
    if (TYPE_PROTOTYPED (func_type))
#endif
      num_prototyped_args = TYPE_NFIELDS (func_type);
  }

  /* First, if the function returns an aggregate by value, push a
     pointer to a buffer for it.  This doesn't affect the way
     subsequent arguments are allocated to registers.  */
  if (struct_return)
    {
      int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
      sp -= ptr_len;
      write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
    }

  /* Push the arguments.  */
  for (i = nargs - 1; i >= 0; i--)
    {
      struct value *arg = args[i];
      const gdb_byte *arg_bits = value_contents (arg);
      struct type *arg_type = value_type (arg);
      ULONGEST arg_size = TYPE_LENGTH (arg_type);

      /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
      if (i == 0
	  && arg_size <= 2
	  && i < num_prototyped_args
	  && m32c_reg_arg_type (arg_type))
	{
	  /* Extract and re-store as an integer as a terse way to make
	     sure it ends up in the least significant end of r1.  (GDB
	     should avoid assuming endianness, even on uni-endian
	     processors.)  */
	  ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
						 byte_order);
	  struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
	  regcache_cooked_write_unsigned (regcache, reg->num, u);
	}

      /* Can it go in r2?  */
      else if (mach == bfd_mach_m16c
	       && i == 1
	       && arg_size == 2
	       && i < num_prototyped_args
	       && m32c_reg_arg_type (arg_type))
	regcache_cooked_write (regcache, tdep->r2->num, arg_bits);

      /* Everything else goes on the stack.  */
      else
	{
	  sp -= arg_size;

	  /* Align the stack.  */
	  if (mach == bfd_mach_m32c)
	    sp &= ~1;

	  write_memory (sp, arg_bits, arg_size);
	}
    }

  /* This is the CFA we use to identify the dummy frame.  */
  cfa = sp;

  /* Push the return address.  */
  sp -= tdep->ret_addr_bytes;
  write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
				 bp_addr);

  /* Update the stack pointer.  */
  regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);

  /* We need to borrow an odd trick from the i386 target here.

     The value we return from this function gets used as the stack
     address (the CFA) for the dummy frame's ID.  The obvious thing is
     to return the new TOS.  However, that points at the return
     address, saved on the stack, which is inconsistent with the CFA's
     described by GCC's DWARF 2 .debug_frame information: DWARF 2
     .debug_frame info uses the address immediately after the saved
     return address.  So you end up with a dummy frame whose CFA
     points at the return address, but the frame for the function
     being called has a CFA pointing after the return address: the
     younger CFA is *greater than* the older CFA.  The sanity checks
     in frame.c don't like that.

     So we try to be consistent with the CFA's used by DWARF 2.
     Having a dummy frame and a real frame with the *same* CFA is
     tolerable.  */
  return cfa;
}


static struct frame_id
m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  /* This needs to return a frame ID whose PC is the return address
     passed to m32c_push_dummy_call, and whose stack_addr is the SP
     m32c_push_dummy_call returned.

     m32c_unwind_sp gives us the CFA, which is the value the SP had
     before the return address was pushed.  */
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
  return frame_id_build (sp, get_frame_pc (this_frame));
}



/* Return values.  */

/* Return value conventions, according to GCC:

   r8c, m16c
   ---------

   QImode in r0l
   HImode in r0
   SImode in r2r0
   near pointer in r0
   far pointer in r2r0

   Aggregate values (regardless of size) are returned by pushing a
   pointer to a temporary area on the stack after the args are pushed.
   The function fills in this area with the value.  Note that this
   pointer on the stack does not affect how register arguments, if any,
   are configured.

   m32cm, m32c
   -----------
   Same.  */

/* Return non-zero if values of type TYPE are returned by storing them
   in a buffer whose address is passed on the stack, ahead of the
   other arguments.  */
static int
m32c_return_by_passed_buf (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_STRUCT
	  || code == TYPE_CODE_UNION);
}

static enum return_value_convention
m32c_return_value (struct gdbarch *gdbarch,
		   struct type *func_type,
		   struct type *valtype,
		   struct regcache *regcache,
		   gdb_byte *readbuf,
		   const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum return_value_convention conv;
  ULONGEST valtype_len = TYPE_LENGTH (valtype);

  if (m32c_return_by_passed_buf (valtype))
    conv = RETURN_VALUE_STRUCT_CONVENTION;
  else
    conv = RETURN_VALUE_REGISTER_CONVENTION;

  if (readbuf)
    {
      /* We should never be called to find values being returned by
	 RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
	 unless we made the call ourselves.  */
      gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);

      gdb_assert (valtype_len <= 8);

      /* Anything that fits in r0 is returned there.  */
      if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
	{
	  ULONGEST u;
	  regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
	  store_unsigned_integer (readbuf, valtype_len, byte_order, u);
	}
      else
	{
	  /* Everything else is passed in mem0, using as many bytes as
	     needed.  This is not what the Renesas tools do, but it's
	     what GCC does at the moment.  */
	  struct minimal_symbol *mem0
	    = lookup_minimal_symbol ("mem0", NULL, NULL);

	  if (! mem0)
	    error (_("The return value is stored in memory at 'mem0', "
		     "but GDB cannot find\n"
		     "its address."));
	  read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
	}
    }

  if (writebuf)
    {
      /* We should never be called to store values to be returned
	 using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
	 finding the buffer, unless we made the call ourselves.  */
      gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);

      gdb_assert (valtype_len <= 8);

      /* Anything that fits in r0 is returned there.  */
      if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
	{
	  ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
						 byte_order);
	  regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
	}
      else
	{
	  /* Everything else is passed in mem0, using as many bytes as
	     needed.  This is not what the Renesas tools do, but it's
	     what GCC does at the moment.  */
	  struct minimal_symbol *mem0
	    = lookup_minimal_symbol ("mem0", NULL, NULL);

	  if (! mem0)
	    error (_("The return value is stored in memory at 'mem0', "
		     "but GDB cannot find\n"
		     " its address."));
	  write_memory (SYMBOL_VALUE_ADDRESS (mem0),
                        (char *) writebuf, valtype_len);
	}
    }

  return conv;
}



/* Trampolines.  */

/* The m16c and m32c use a trampoline function for indirect function
   calls.  An indirect call looks like this:

	     ... push arguments ...
	     ... push target function address ...
	     jsr.a m32c_jsri16

   The code for m32c_jsri16 looks like this:

     m32c_jsri16:

             # Save return address.
	     pop.w	m32c_jsri_ret
	     pop.b	m32c_jsri_ret+2

             # Store target function address.
	     pop.w	m32c_jsri_addr

	     # Re-push return address.
	     push.b	m32c_jsri_ret+2
	     push.w	m32c_jsri_ret

	     # Call the target function.
	     jmpi.a	m32c_jsri_addr

   Without further information, GDB will treat calls to m32c_jsri16
   like calls to any other function.  Since m32c_jsri16 doesn't have
   debugging information, that normally means that GDB sets a step-
   resume breakpoint and lets the program continue --- which is not
   what the user wanted.  (Giving the trampoline debugging info
   doesn't help: the user expects the program to stop in the function
   their program is calling, not in some trampoline code they've never
   seen before.)

   The gdbarch_skip_trampoline_code method tells GDB how to step
   through such trampoline functions transparently to the user.  When
   given the address of a trampoline function's first instruction,
   gdbarch_skip_trampoline_code should return the address of the first
   instruction of the function really being called.  If GDB decides it
   wants to step into that function, it will set a breakpoint there
   and silently continue to it.

   We recognize the trampoline by name, and extract the target address
   directly from the stack.  This isn't great, but recognizing by its
   code sequence seems more fragile.  */

static CORE_ADDR
m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* It would be nicer to simply look up the addresses of known
     trampolines once, and then compare stop_pc with them.  However,
     we'd need to ensure that that cached address got invalidated when
     someone loaded a new executable, and I'm not quite sure of the
     best way to do that.  find_pc_partial_function does do some
     caching, so we'll see how this goes.  */
  char *name;
  CORE_ADDR start, end;

  if (find_pc_partial_function (stop_pc, &name, &start, &end))
    {
      /* Are we stopped at the beginning of the trampoline function?  */
      if (strcmp (name, "m32c_jsri16") == 0
	  && stop_pc == start)
	{
	  /* Get the stack pointer.  The return address is at the top,
	     and the target function's address is just below that.  We
	     know it's a two-byte address, since the trampoline is
	     m32c_jsri*16*.  */
	  CORE_ADDR sp = get_frame_sp (get_current_frame ());
	  CORE_ADDR target
	    = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
					    2, byte_order);

	  /* What we have now is the address of a jump instruction.
	     What we need is the destination of that jump.
	     The opcode is 1 byte, and the destination is the next 3 bytes.  */

	  target = read_memory_unsigned_integer (target + 1, 3, byte_order);
	  return target;
	}
    }

  return 0;
}


/* Address/pointer conversions.  */

/* On the m16c, there is a 24-bit address space, but only a very few
   instructions can generate addresses larger than 0xffff: jumps,
   jumps to subroutines, and the lde/std (load/store extended)
   instructions.

   Since GCC can only support one size of pointer, we can't have
   distinct 'near' and 'far' pointer types; we have to pick one size
   for everything.  If we wanted to use 24-bit pointers, then GCC
   would have to use lde and ste for all memory references, which
   would be terrible for performance and code size.  So the GNU
   toolchain uses 16-bit pointers for everything, and gives up the
   ability to have pointers point outside the first 64k of memory.

   However, as a special hack, we let the linker place functions at
   addresses above 0xffff, as long as it also places a trampoline in
   the low 64k for every function whose address is taken.  Each
   trampoline consists of a single jmp.a instruction that jumps to the
   function's real entry point.  Pointers to functions can be 16 bits
   long, even though the functions themselves are at higher addresses:
   the pointers refer to the trampolines, not the functions.

   This complicates things for GDB, however: given the address of a
   function (from debug info or linker symbols, say) which could be
   anywhere in the 24-bit address space, how can we find an
   appropriate 16-bit value to use as a pointer to it?

   If the linker has not generated a trampoline for the function,
   we're out of luck.  Well, I guess we could malloc some space and
   write a jmp.a instruction to it, but I'm not going to get into that
   at the moment.

   If the linker has generated a trampoline for the function, then it
   also emitted a symbol for the trampoline: if the function's linker
   symbol is named NAME, then the function's trampoline's linker
   symbol is named NAME.plt.

   So, given a code address:
   - We try to find a linker symbol at that address.
   - If we find such a symbol named NAME, we look for a linker symbol
     named NAME.plt.
   - If we find such a symbol, we assume it is a trampoline, and use
     its address as the pointer value.

   And, given a function pointer:
   - We try to find a linker symbol at that address named NAME.plt.
   - If we find such a symbol, we look for a linker symbol named NAME.
   - If we find that, we provide that as the function's address.
   - If any of the above steps fail, we return the original address
     unchanged; it might really be a function in the low 64k.

   See?  You *knew* there was a reason you wanted to be a computer
   programmer!  :)  */

static void
m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
			      struct type *type, gdb_byte *buf, CORE_ADDR addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum type_code target_code;
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
	      TYPE_CODE (type) == TYPE_CODE_REF);

  target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));

  if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
    {
      char *func_name;
      char *tramp_name;
      struct minimal_symbol *tramp_msym;

      /* Try to find a linker symbol at this address.  */
      struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);

      if (! func_msym)
        error (_("Cannot convert code address %s to function pointer:\n"
               "couldn't find a symbol at that address, to find trampoline."),
               paddress (gdbarch, addr));

      func_name = SYMBOL_LINKAGE_NAME (func_msym);
      tramp_name = xmalloc (strlen (func_name) + 5);
      strcpy (tramp_name, func_name);
      strcat (tramp_name, ".plt");

      /* Try to find a linker symbol for the trampoline.  */
      tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);

      /* We've either got another copy of the name now, or don't need
         the name any more.  */
      xfree (tramp_name);

      if (! tramp_msym)
	{
	  CORE_ADDR ptrval;

	  /* No PLT entry found.  Mask off the upper bits of the address
	     to make a pointer.  As noted in the warning to the user
	     below, this value might be useful if converted back into
	     an address by GDB, but will otherwise, almost certainly,
	     be garbage.
	     
	     Using this masked result does seem to be useful
	     in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
	     PASSes.  These results appear to be correct as well.
	     
	     We print a warning here so that the user can make a
	     determination about whether the result is useful or not.  */
	  ptrval = addr & 0xffff;

	  warning (_("Cannot convert code address %s to function pointer:\n"
		   "couldn't find trampoline named '%s.plt'.\n"
		   "Returning pointer value %s instead; this may produce\n"
		   "a useful result if converted back into an address by GDB,\n"
		   "but will most likely not be useful otherwise.\n"),
		   paddress (gdbarch, addr), func_name,
		   paddress (gdbarch, ptrval));

	  addr = ptrval;

	}
      else
	{
	  /* The trampoline's address is our pointer.  */
	  addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
	}
    }

  store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
}


static CORE_ADDR
m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
			      struct type *type, const gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR ptr;
  enum type_code target_code;

  gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
	      TYPE_CODE (type) == TYPE_CODE_REF);

  ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);

  target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));

  if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
    {
      /* See if there is a minimal symbol at that address whose name is
         "NAME.plt".  */
      struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);

      if (ptr_msym)
        {
          char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
          int len = strlen (ptr_msym_name);

          if (len > 4
              && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
            {
	      struct minimal_symbol *func_msym;
              /* We have a .plt symbol; try to find the symbol for the
                 corresponding function.

                 Since the trampoline contains a jump instruction, we
                 could also just extract the jump's target address.  I
                 don't see much advantage one way or the other.  */
              char *func_name = xmalloc (len - 4 + 1);
              memcpy (func_name, ptr_msym_name, len - 4);
              func_name[len - 4] = '\0';
              func_msym
                = lookup_minimal_symbol (func_name, NULL, NULL);

              /* If we do have such a symbol, return its value as the
                 function's true address.  */
              if (func_msym)
                ptr = SYMBOL_VALUE_ADDRESS (func_msym);
            }
        }
      else
	{
	  int aspace;

	  for (aspace = 1; aspace <= 15; aspace++)
	    {
	      ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
	      
	      if (ptr_msym)
		ptr |= aspace << 16;
	    }
	}
    }

  return ptr;
}

static void
m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
			    int *frame_regnum,
			    LONGEST *frame_offset)
{
  char *name;
  CORE_ADDR func_addr, func_end, sal_end;
  struct m32c_prologue p;

  struct regcache *regcache = get_current_regcache ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  
  if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
    internal_error (__FILE__, __LINE__,
		    _("No virtual frame pointer available"));

  m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
  switch (p.kind)
    {
    case prologue_with_frame_ptr:
      *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
      *frame_offset = p.frame_ptr_offset;
      break;
    case prologue_sans_frame_ptr:
      *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
      *frame_offset = p.frame_size;
      break;
    default:
      *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
      *frame_offset = 0;
      break;
    }
  /* Sanity check */
  if (*frame_regnum > gdbarch_num_regs (gdbarch))
    internal_error (__FILE__, __LINE__,
		    _("No virtual frame pointer available"));
}


/* Initialization.  */

static struct gdbarch *
m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *arch;
  struct gdbarch_tdep *tdep;
  unsigned long mach = info.bfd_arch_info->mach;

  /* Find a candidate among the list of architectures we've created
     already.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    return arches->gdbarch;

  tdep = xcalloc (1, sizeof (*tdep));
  arch = gdbarch_alloc (&info, tdep);

  /* Essential types.  */
  make_types (arch);

  /* Address/pointer conversions.  */
  if (mach == bfd_mach_m16c)
    {
      set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
      set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
    }

  /* Register set.  */
  make_regs (arch);

  /* Disassembly.  */
  set_gdbarch_print_insn (arch, print_insn_m32c);

  /* Breakpoints.  */
  set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);

  /* Prologue analysis and unwinding.  */
  set_gdbarch_inner_than (arch, core_addr_lessthan);
  set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
  set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
  set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
#if 0
  /* I'm dropping the dwarf2 sniffer because it has a few problems.
     They may be in the dwarf2 cfi code in GDB, or they may be in
     the debug info emitted by the upstream toolchain.  I don't 
     know which, but I do know that the prologue analyzer works better.
     MVS 04/13/06  */
  dwarf2_append_sniffers (arch);
#endif
  frame_unwind_append_unwinder (arch, &m32c_unwind);

  /* Inferior calls.  */
  set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
  set_gdbarch_return_value (arch, m32c_return_value);
  set_gdbarch_dummy_id (arch, m32c_dummy_id);

  /* Trampolines.  */
  set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);

  set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);

  /* m32c function boundary addresses are not necessarily even.
     Therefore, the `vbit', which indicates a pointer to a virtual
     member function, is stored in the delta field, rather than as
     the low bit of a function pointer address.

     In order to verify this, see the definition of
     TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
     definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h.  */
  set_gdbarch_vbit_in_delta (arch, 1);

  return arch;
}

/* Provide a prototype to silence -Wmissing-prototypes.  */
extern initialize_file_ftype _initialize_m32c_tdep;

void
_initialize_m32c_tdep (void)
{
  register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);

  m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
}