/* Correctly-rounded base-2 exponent function biased by 1 for binary32 value. Copyright (c) 2022-2024 Alexei Sibidanov. The original version of this file was copied from the CORE-MATH project (file src/binary32/exp2m1/exp2m1f.c, revision baf5f6b). Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "math_config.h" #include #include #include float __exp2m1f (float x) { double z = x; uint32_t ux = asuint (x); uint32_t ax = ux & (~0u >> 1); if (__glibc_unlikely (ux >= 0xc1c80000u)) { /* x <= -25 */ if (ax > (0xffu << 23)) return x + x; /* nan */ return (ux == 0xff800000) ? -0x1p+0f : -0x1p+0f + 0x1p-26f; } else if (__glibc_unlikely (ax >= 0x43000000u)) { /* x >= 128 */ if (ax >= asuint (INFINITY)) return x + x; /* +Inf or NaN */ /* exp2m1 (MAX_EXP) should not overflow when rounding towards zero or towards -Inf. We round FLT_MAX + 2^103 which is in the middle between FLT_MAX and 2^128 (the next number with unbounded range). */ float ret = math_narrow_eval (FLT_MAX + 0x1p103f); if (x == FLT_MAX_EXP && ret == FLT_MAX) return ret; return __math_oflowf (0); } else if (__glibc_unlikely (ax < 0x3df95f1fu)) { /* |x| < 8.44e-2/log(2) */ double z2 = z * z, r; if (__glibc_unlikely (ax < 0x3d67a4ccu)) { /* |x| < 3.92e-2/log(2) */ if (__glibc_unlikely (ax < 0x3caa2feeu)) { /* |x| < 1.44e-2/log(2) */ if (__glibc_unlikely (ax < 0x3bac1405u)) { /* |x| < 3.64e-3/log(2) */ if (__glibc_unlikely (ax < 0x3a358876u)) { /* |x| < 4.8e-4/log(2) */ if (__glibc_unlikely (ax < 0x37d32ef6u)) { /* |x| < 1.745e-5/log(2) */ if (__glibc_unlikely (ax < 0x331fdd82u)) { /* |x| < 2.58e-8/log(2) */ if (__glibc_unlikely (ax < 0x2538aa3bu)) /* |x| < 1.60171e-16 */ r = 0x1.62e42fefa39efp-1; else r = 0x1.62e42fefa39fp-1 + z * 0x1.ebfbdff82c58fp-3; } else { if (__glibc_unlikely (ux == 0xb3d85005u)) return -0x1.2bdf76p-24 - 0x1.8p-77; if (__glibc_unlikely (ux == 0x3338428du)) return 0x1.fee08ap-26 + 0x1p-80; static const double c[] = { 0x1.62e42fefa39efp-1, 0x1.ebfbdff8548fdp-3, 0x1.c6b08d704a06dp-5 }; r = c[0] + z * (c[1] + z * c[2]); } } else { if (__glibc_unlikely (ux == 0x388bca4fu)) return 0x1.839702p-15 - 0x1.8p-68; static const double c[] = { 0x1.62e42fefa39efp-1, 0x1.ebfbdff82c58fp-3, 0x1.c6b08dc82b347p-5, 0x1.3b2ab6fbad172p-7 }; r = (c[0] + z * c[1]) + z2 * (c[2] + z * c[3]); } } else { static const double c[] = { 0x1.62e42fefa39efp-1, 0x1.ebfbdff82c068p-3, 0x1.c6b08d704a6dcp-5, 0x1.3b2ac262c3eedp-7, 0x1.5d87fe7af779ap-10 }; r = (c[0] + z * c[1]) + z2 * (c[2] + z * (c[3] + z * c[4])); } } else { static const double c[] = { 0x1.62e42fefa39fp-1, 0x1.ebfbdff82c58dp-3, 0x1.c6b08d7011d13p-5, 0x1.3b2ab6fbd267dp-7, 0x1.5d88a81cea49ep-10, 0x1.430912ea9b963p-13 }; r = (c[0] + z * c[1]) + z2 * ((c[2] + z * c[3]) + z2 * (c[4] + z * c[5])); } } else { static const double c[] = { 0x1.62e42fefa39efp-1, 0x1.ebfbdff82c639p-3, 0x1.c6b08d7049f1cp-5, 0x1.3b2ab6f5243bdp-7, 0x1.5d87fe80a9e6cp-10, 0x1.430d0b9257fa8p-13, 0x1.ffcbfc4cf0952p-17 }; r = (c[0] + z * c[1]) + z2 * ((c[2] + z * c[3]) + z2 * (c[4] + z * (c[5] + z * c[6]))); } } else { static const double c[] = { 0x1.62e42fefa39efp-1, 0x1.ebfbdff82c591p-3, 0x1.c6b08d704cf6bp-5, 0x1.3b2ab6fba00cep-7, 0x1.5d87fdfdaadb4p-10, 0x1.4309137333066p-13, 0x1.ffe5e90daf7ddp-17, 0x1.62c0220eed731p-20 }; r = ((c[0] + z * c[1]) + z2 * (c[2] + z * c[3])) + (z2 * z2) * ((c[4] + z * c[5]) + z2 * (c[6] + z * c[7])); } r *= z; return r; } else { static const double c[] = { 0x1.62e42fefa398bp-5, 0x1.ebfbdff84555ap-11, 0x1.c6b08d4ad86d3p-17, 0x1.3b2ad1b1716a2p-23, 0x1.5d7472718ce9dp-30, 0x1.4a1d7f457ac56p-37 }; static const double tb[] = { 0x1p+0, 0x1.0b5586cf9890fp+0, 0x1.172b83c7d517bp+0, 0x1.2387a6e756238p+0, 0x1.306fe0a31b715p+0, 0x1.3dea64c123422p+0, 0x1.4bfdad5362a27p+0, 0x1.5ab07dd485429p+0, 0x1.6a09e667f3bcdp+0, 0x1.7a11473eb0187p+0, 0x1.8ace5422aa0dap+0, 0x1.9c49182a3f09p+0, 0x1.ae89f995ad3adp+0, 0x1.c199bdd85529cp+0, 0x1.d5818dcfba487p+0, 0x1.ea4afa2a490dap+0 }; double a = 16.0 * z; double ia = floor (a); double h = a - ia; double h2 = h * h; int64_t i = ia, j = i & 0xf, e = i - j; e >>= 4; double s = tb[j]; s *= asdouble ((e + 0x3ffull) << 52); double c0 = c[0] + h * c[1]; double c2 = c[2] + h * c[3]; double c4 = c[4] + h * c[5]; c0 += h2 * (c2 + h2 * c4); double w = s * h; return (s - 1.0) + w * c0; } } #ifndef __exp2m1f libm_alias_float (__exp2m1, exp2m1) #endif