/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2025 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /************************************************************************/ /* MODULE_NAME: atnat2.c */ /* */ /* FUNCTIONS: uatan2 */ /* signArctan2 */ /* */ /* FILES NEEDED: dla.h endian.h mydefs.h atnat2.h */ /* uatan.tbl */ /* */ /************************************************************************/ #include #include "mydefs.h" #include "uatan.tbl" #include "atnat2.h" #include #include #include #include #include #include #include #ifndef SECTION # define SECTION #endif #define TWO52 0x1.0p52 #define TWOM1022 0x1.0p-1022 /* Fix the sign and return after stage 1 or stage 2 */ static double signArctan2 (double y, double z) { return copysign (z, y); } /* atan2 with max ULP of ~0.524 based on random sampling. */ double SECTION __ieee754_atan2 (double y, double x) { int i, de, ux, dx, uy, dy; double ax, ay, u, du, v, vv, dv, t1, t2, t3, z, zz, cor; mynumber num; static const int ep = 59768832, /* 57*16**5 */ em = -59768832; /* -57*16**5 */ /* x=NaN or y=NaN */ num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; if ((ux & 0x7ff00000) == 0x7ff00000) { if (((ux & 0x000fffff) | dx) != 0x00000000) return x + y; } num.d = y; uy = num.i[HIGH_HALF]; dy = num.i[LOW_HALF]; if ((uy & 0x7ff00000) == 0x7ff00000) { if (((uy & 0x000fffff) | dy) != 0x00000000) return y + y; } /* y=+-0 */ if (uy == 0x00000000) { if (dy == 0x00000000) { if ((ux & 0x80000000) == 0x00000000) return 0; else return opi.d; } } else if (uy == 0x80000000) { if (dy == 0x00000000) { if ((ux & 0x80000000) == 0x00000000) return -0.0; else return mopi.d; } } /* x=+-0 */ if (x == 0) { if ((uy & 0x80000000) == 0x00000000) return hpi.d; else return mhpi.d; } /* x=+-INF */ if (ux == 0x7ff00000) { if (dx == 0x00000000) { if (uy == 0x7ff00000) { if (dy == 0x00000000) return qpi.d; } else if (uy == 0xfff00000) { if (dy == 0x00000000) return mqpi.d; } else { if ((uy & 0x80000000) == 0x00000000) return 0; else return -0.0; } } } else if (ux == 0xfff00000) { if (dx == 0x00000000) { if (uy == 0x7ff00000) { if (dy == 0x00000000) return tqpi.d; } else if (uy == 0xfff00000) { if (dy == 0x00000000) return mtqpi.d; } else { if ((uy & 0x80000000) == 0x00000000) return opi.d; else return mopi.d; } } } /* y=+-INF */ if (uy == 0x7ff00000) { if (dy == 0x00000000) return hpi.d; } else if (uy == 0xfff00000) { if (dy == 0x00000000) return mhpi.d; } SET_RESTORE_ROUND (FE_TONEAREST); /* either x/y or y/x is very close to zero */ ax = (x < 0) ? -x : x; ay = (y < 0) ? -y : y; de = (uy & 0x7ff00000) - (ux & 0x7ff00000); if (de >= ep) { return ((y > 0) ? hpi.d : mhpi.d); } else if (de <= em) { if (x > 0) { double ret; z = ay / ax; ret = signArctan2 (y, z); if (fabs (ret) < DBL_MIN) { double vret = ret ? ret : DBL_MIN; double force_underflow = vret * vret; math_force_eval (force_underflow); } return ret; } else { return ((y > 0) ? opi.d : mopi.d); } } /* if either x or y is extremely close to zero, scale abs(x), abs(y). */ if (ax < twom500.d || ay < twom500.d) { ax *= two500.d; ay *= two500.d; } /* Likewise for large x and y. */ if (ax > two500.d || ay > two500.d) { ax *= twom500.d; ay *= twom500.d; } /* x,y which are neither special nor extreme */ if (ay < ax) { u = ay / ax; EMULV (ax, u, v, vv); du = ((ay - v) - vv) / ax; } else { u = ax / ay; EMULV (ay, u, v, vv); du = ((ax - v) - vv) / ay; } if (x > 0) { /* (i) x>0, abs(y)< abs(x): atan(ay/ax) */ if (ay < ax) { if (u < inv16.d) { v = u * u; zz = du + u * v * (d3.d + v * (d5.d + v * (d7.d + v * (d9.d + v * (d11.d + v * d13.d))))); z = u + zz; /* Max ULP is 0.504. */ return signArctan2 (y, z); } i = (TWO52 + 256 * u) - TWO52; i -= 16; t3 = u - cij[i][0].d; EADD (t3, du, v, dv); t1 = cij[i][1].d; t2 = cij[i][2].d; zz = v * t2 + (dv * t2 + v * v * (cij[i][3].d + v * (cij[i][4].d + v * (cij[i][5].d + v * cij[i][6].d)))); z = t1 + zz; /* Max ULP is 0.56. */ return signArctan2 (y, z); } /* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */ if (u < inv16.d) { v = u * u; zz = u * v * (d3.d + v * (d5.d + v * (d7.d + v * (d9.d + v * (d11.d + v * d13.d))))); ESUB (hpi.d, u, t2, cor); t3 = ((hpi1.d + cor) - du) - zz; z = t2 + t3; /* Max ULP is 0.501. */ return signArctan2 (y, z); } i = (TWO52 + 256 * u) - TWO52; i -= 16; v = (u - cij[i][0].d) + du; zz = hpi1.d - v * (cij[i][2].d + v * (cij[i][3].d + v * (cij[i][4].d + v * (cij[i][5].d + v * cij[i][6].d)))); t1 = hpi.d - cij[i][1].d; z = t1 + zz; /* Max ULP is 0.503. */ return signArctan2 (y, z); } /* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */ if (ax < ay) { if (u < inv16.d) { v = u * u; zz = u * v * (d3.d + v * (d5.d + v * (d7.d + v * (d9.d + v * (d11.d + v * d13.d))))); EADD (hpi.d, u, t2, cor); t3 = ((hpi1.d + cor) + du) + zz; z = t2 + t3; /* Max ULP is 0.501. */ return signArctan2 (y, z); } i = (TWO52 + 256 * u) - TWO52; i -= 16; v = (u - cij[i][0].d) + du; zz = hpi1.d + v * (cij[i][2].d + v * (cij[i][3].d + v * (cij[i][4].d + v * (cij[i][5].d + v * cij[i][6].d)))); t1 = hpi.d + cij[i][1].d; z = t1 + zz; /* Max ULP is 0.503. */ return signArctan2 (y, z); } /* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */ if (u < inv16.d) { v = u * u; zz = u * v * (d3.d + v * (d5.d + v * (d7.d + v * (d9.d + v * (d11.d + v * d13.d))))); ESUB (opi.d, u, t2, cor); t3 = ((opi1.d + cor) - du) - zz; z = t2 + t3; /* Max ULP is 0.501. */ return signArctan2 (y, z); } i = (TWO52 + 256 * u) - TWO52; i -= 16; v = (u - cij[i][0].d) + du; zz = opi1.d - v * (cij[i][2].d + v * (cij[i][3].d + v * (cij[i][4].d + v * (cij[i][5].d + v * cij[i][6].d)))); t1 = opi.d - cij[i][1].d; z = t1 + zz; /* Max ULP is 0.502. */ return signArctan2 (y, z); } #ifndef __ieee754_atan2 libm_alias_finite (__ieee754_atan2, __atan2) #endif