/* A Thunderx2 Optimized memcpy implementation for AARCH64. Copyright (C) 2018-2019 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include /* Assumptions: * * ARMv8-a, AArch64, unaligned accesses. * */ #define dstin x0 #define src x1 #define count x2 #define dst x3 #define srcend x4 #define dstend x5 #define tmp2 x6 #define tmp3 x7 #define tmp3w w7 #define A_l x6 #define A_lw w6 #define A_h x7 #define A_hw w7 #define B_l x8 #define B_lw w8 #define B_h x9 #define C_l x10 #define C_h x11 #define D_l x12 #define D_h x13 #define E_l src #define E_h count #define F_l srcend #define F_h dst #define G_l count #define G_h dst #define tmp1 x14 #define A_q q0 #define B_q q1 #define C_q q2 #define D_q q3 #define E_q q4 #define F_q q5 #define G_q q6 #define H_q q7 #define I_q q16 #define J_q q17 #define A_v v0 #define B_v v1 #define C_v v2 #define D_v v3 #define E_v v4 #define F_v v5 #define G_v v6 #define H_v v7 #define I_v v16 #define J_v v17 #ifndef MEMMOVE # define MEMMOVE memmove #endif #ifndef MEMCPY # define MEMCPY memcpy #endif #if IS_IN (libc) #undef MEMCPY #undef MEMMOVE #define MEMCPY __memcpy_thunderx2 #define MEMMOVE __memmove_thunderx2 /* Moves are split into 3 main cases: small copies of up to 16 bytes, medium copies of 17..96 bytes which are fully unrolled. Large copies of more than 96 bytes align the destination and use an unrolled loop processing 64 bytes per iteration. Overlapping large forward memmoves use a loop that copies backwards. */ ENTRY_ALIGN (MEMMOVE, 6) DELOUSE (0) DELOUSE (1) DELOUSE (2) sub tmp1, dstin, src cmp count, 96 ccmp tmp1, count, 2, hi b.lo L(move_long) prfm PLDL1KEEP, [src] add srcend, src, count add dstend, dstin, count cmp count, 16 b.ls L(copy16) cmp count, 96 b.hi L(copy_long) /* Medium copies: 17..96 bytes. */ sub tmp1, count, 1 ldp A_l, A_h, [src] tbnz tmp1, 6, L(copy96) ldp D_l, D_h, [srcend, -16] tbz tmp1, 5, 1f ldp B_l, B_h, [src, 16] ldp C_l, C_h, [srcend, -32] stp B_l, B_h, [dstin, 16] stp C_l, C_h, [dstend, -32] 1: stp A_l, A_h, [dstin] stp D_l, D_h, [dstend, -16] ret .p2align 4 /* Small copies: 0..16 bytes. */ L(copy16): cmp count, 8 b.lo 1f ldr A_l, [src] ldr A_h, [srcend, -8] str A_l, [dstin] str A_h, [dstend, -8] ret .p2align 4 1: tbz count, 2, 1f ldr A_lw, [src] ldr A_hw, [srcend, -4] str A_lw, [dstin] str A_hw, [dstend, -4] ret /* Copy 0..3 bytes. Use a branchless sequence that copies the same byte 3 times if count==1, or the 2nd byte twice if count==2. */ 1: cbz count, 2f lsr tmp1, count, 1 ldrb A_lw, [src] ldrb A_hw, [srcend, -1] ldrb B_lw, [src, tmp1] strb A_lw, [dstin] strb B_lw, [dstin, tmp1] strb A_hw, [dstend, -1] 2: ret .p2align 4 /* Copy 64..96 bytes. Copy 64 bytes from the start and 32 bytes from the end. */ L(copy96): ldp B_l, B_h, [src, 16] ldp C_l, C_h, [src, 32] ldp D_l, D_h, [src, 48] ldp E_l, E_h, [srcend, -32] ldp F_l, F_h, [srcend, -16] stp A_l, A_h, [dstin] stp B_l, B_h, [dstin, 16] stp C_l, C_h, [dstin, 32] stp D_l, D_h, [dstin, 48] stp E_l, E_h, [dstend, -32] stp F_l, F_h, [dstend, -16] ret /* Align DST to 16 byte alignment so that we don't cross cache line boundaries on both loads and stores. There are at least 96 bytes to copy, so copy 16 bytes unaligned and then align. The loop copies 64 bytes per iteration and prefetches one iteration ahead. */ .p2align 4 L(copy_long): and tmp1, dstin, 15 bic dst, dstin, 15 ldp D_l, D_h, [src] sub src, src, tmp1 add count, count, tmp1 /* Count is now 16 too large. */ ldp A_l, A_h, [src, 16] stp D_l, D_h, [dstin] ldp B_l, B_h, [src, 32] ldp C_l, C_h, [src, 48] ldp D_l, D_h, [src, 64]! subs count, count, 128 + 16 /* Test and readjust count. */ b.ls L(last64) L(loop64): stp A_l, A_h, [dst, 16] ldp A_l, A_h, [src, 16] stp B_l, B_h, [dst, 32] ldp B_l, B_h, [src, 32] stp C_l, C_h, [dst, 48] ldp C_l, C_h, [src, 48] stp D_l, D_h, [dst, 64]! ldp D_l, D_h, [src, 64]! subs count, count, 64 b.hi L(loop64) /* Write the last full set of 64 bytes. The remainder is at most 64 bytes, so it is safe to always copy 64 bytes from the end even if there is just 1 byte left. */ L(last64): ldp E_l, E_h, [srcend, -64] stp A_l, A_h, [dst, 16] ldp A_l, A_h, [srcend, -48] stp B_l, B_h, [dst, 32] ldp B_l, B_h, [srcend, -32] stp C_l, C_h, [dst, 48] ldp C_l, C_h, [srcend, -16] stp D_l, D_h, [dst, 64] stp E_l, E_h, [dstend, -64] stp A_l, A_h, [dstend, -48] stp B_l, B_h, [dstend, -32] stp C_l, C_h, [dstend, -16] ret .p2align 4 L(move_long): cbz tmp1, 3f add srcend, src, count add dstend, dstin, count /* Align dstend to 16 byte alignment so that we don't cross cache line boundaries on both loads and stores. There are at least 96 bytes to copy, so copy 16 bytes unaligned and then align. The loop copies 64 bytes per iteration and prefetches one iteration ahead. */ and tmp1, dstend, 15 ldp D_l, D_h, [srcend, -16] sub srcend, srcend, tmp1 sub count, count, tmp1 ldp A_l, A_h, [srcend, -16] stp D_l, D_h, [dstend, -16] ldp B_l, B_h, [srcend, -32] ldp C_l, C_h, [srcend, -48] ldp D_l, D_h, [srcend, -64]! sub dstend, dstend, tmp1 subs count, count, 128 b.ls 2f nop 1: stp A_l, A_h, [dstend, -16] ldp A_l, A_h, [srcend, -16] stp B_l, B_h, [dstend, -32] ldp B_l, B_h, [srcend, -32] stp C_l, C_h, [dstend, -48] ldp C_l, C_h, [srcend, -48] stp D_l, D_h, [dstend, -64]! ldp D_l, D_h, [srcend, -64]! subs count, count, 64 b.hi 1b /* Write the last full set of 64 bytes. The remainder is at most 64 bytes, so it is safe to always copy 64 bytes from the start even if there is just 1 byte left. */ 2: ldp G_l, G_h, [src, 48] stp A_l, A_h, [dstend, -16] ldp A_l, A_h, [src, 32] stp B_l, B_h, [dstend, -32] ldp B_l, B_h, [src, 16] stp C_l, C_h, [dstend, -48] ldp C_l, C_h, [src] stp D_l, D_h, [dstend, -64] stp G_l, G_h, [dstin, 48] stp A_l, A_h, [dstin, 32] stp B_l, B_h, [dstin, 16] stp C_l, C_h, [dstin] 3: ret END (MEMMOVE) libc_hidden_builtin_def (MEMMOVE) /* Copies are split into 3 main cases: small copies of up to 16 bytes, medium copies of 17..96 bytes which are fully unrolled. Large copies of more than 96 bytes align the destination and use load-and-merge approach in the case src and dst addresses are unaligned not evenly, so that, loads and stores are always aligned. Large copies use an unrolled loop processing 64 bytes per iteration. The current optimized memcpy implementation is not compatible with memmove and is separated from it completely. memcpy implementation below is not compatible with memmove because of pipelined loads/stores, which are faster, but they can't be used in the case of overlapping memmove arrays */ #define MEMCPY_PREFETCH_LDR 640 ENTRY (MEMCPY) DELOUSE (0) DELOUSE (1) DELOUSE (2) add srcend, src, count cmp count, 16 b.ls L(memcopy16) ldr A_q, [src], #16 add dstend, dstin, count and tmp1, src, 15 cmp count, 96 b.hi L(memcopy_long) /* Medium copies: 17..96 bytes. */ ldr E_q, [srcend, -16] cmp count, 64 b.gt L(memcpy_copy96) cmp count, 48 b.le L(bytes_17_to_48) /* 49..64 bytes */ ldp B_q, C_q, [src] str E_q, [dstend, -16] stp A_q, B_q, [dstin] str C_q, [dstin, 32] ret L(bytes_17_to_48): /* 17..48 bytes*/ cmp count, 32 b.gt L(bytes_32_to_48) /* 17..32 bytes*/ str A_q, [dstin] str E_q, [dstend, -16] ret L(bytes_32_to_48): /* 32..48 */ ldr B_q, [src] str A_q, [dstin] str E_q, [dstend, -16] str B_q, [dstin, 16] ret .p2align 4 /* Small copies: 0..16 bytes. */ L(memcopy16): cmp count, 8 b.lo L(bytes_0_to_8) ldr A_l, [src] ldr A_h, [srcend, -8] add dstend, dstin, count str A_l, [dstin] str A_h, [dstend, -8] ret .p2align 4 L(bytes_0_to_8): tbz count, 2, L(bytes_0_to_3) ldr A_lw, [src] ldr A_hw, [srcend, -4] add dstend, dstin, count str A_lw, [dstin] str A_hw, [dstend, -4] ret /* Copy 0..3 bytes. Use a branchless sequence that copies the same byte 3 times if count==1, or the 2nd byte twice if count==2. */ L(bytes_0_to_3): cbz count, L(end) lsr tmp1, count, 1 ldrb A_lw, [src] ldrb A_hw, [srcend, -1] add dstend, dstin, count ldrb B_lw, [src, tmp1] strb A_lw, [dstin] strb B_lw, [dstin, tmp1] strb A_hw, [dstend, -1] L(end): ret .p2align 4 L(memcpy_copy96): /* Copying 65..96 bytes. A_q (first 16 bytes) and E_q(last 16 bytes) are already loaded. The size is large enough to benefit from aligned loads */ bic src, src, 15 ldp B_q, C_q, [src] str A_q, [dstin] /* Loaded 64 bytes, second 16-bytes chunk can be overlapping with the first chunk by tmp1 bytes. Stored 16 bytes. */ sub dst, dstin, tmp1 add count, count, tmp1 /* The range of count being [65..96] becomes [65..111] after tmp [0..15] gets added to it, count now is +48 */ cmp count, 80 b.gt L(copy96_medium) ldr D_q, [src, 32] stp B_q, C_q, [dst, 16] str E_q, [dstend, -16] str D_q, [dst, 48] ret .p2align 4 L(copy96_medium): ldp D_q, A_q, [src, 32] str B_q, [dst, 16] cmp count, 96 b.gt L(copy96_large) str E_q, [dstend, -16] stp C_q, D_q, [dst, 32] str A_q, [dst, 64] ret L(copy96_large): ldr F_q, [src, 64] stp C_q, D_q, [dst, 32] str E_q, [dstend, -16] stp A_q, F_q, [dst, 64] ret .p2align 4 L(memcopy_long): bic src, src, 15 ldp B_q, C_q, [src], #32 str A_q, [dstin] sub dst, dstin, tmp1 add count, count, tmp1 add dst, dst, 16 and tmp1, dst, 15 ldp D_q, E_q, [src], #32 str B_q, [dst], #16 /* Already loaded 64+16 bytes. Check if at least 64 more bytes left */ subs count, count, 64+64+16 b.lt L(loop128_exit2) cmp count, MEMCPY_PREFETCH_LDR + 64 + 32 b.lt L(loop128) cbnz tmp1, L(dst_unaligned) sub count, count, MEMCPY_PREFETCH_LDR + 64 + 32 .p2align 4 L(loop128_prefetch): str C_q, [dst], #16 prfm pldl1strm, [src, MEMCPY_PREFETCH_LDR] str D_q, [dst], #16 ldp F_q, G_q, [src], #32 str E_q, [dst], #16 ldp H_q, A_q, [src], #32 str F_q, [dst], #16 prfm pldl1strm, [src, MEMCPY_PREFETCH_LDR] str G_q, [dst], #16 ldp B_q, C_q, [src], #32 str H_q, [dst], #16 ldp D_q, E_q, [src], #32 stp A_q, B_q, [dst], #32 subs count, count, 128 b.ge L(loop128_prefetch) L(preloop128): add count, count, MEMCPY_PREFETCH_LDR + 64 + 32 .p2align 4 L(loop128): ldp F_q, G_q, [src], #32 str C_q, [dst], #16 ldp B_q, A_q, [src], #32 str D_q, [dst], #16 stp E_q, F_q, [dst], #32 stp G_q, B_q, [dst], #32 subs count, count, 64 b.lt L(loop128_exit1) L(loop128_proceed): ldp B_q, C_q, [src], #32 str A_q, [dst], #16 ldp D_q, E_q, [src], #32 str B_q, [dst], #16 subs count, count, 64 b.ge L(loop128) .p2align 4 L(loop128_exit2): stp C_q, D_q, [dst], #32 str E_q, [dst], #16 b L(copy_long_check32); L(loop128_exit1): /* A_q is still not stored and 0..63 bytes left, so, count is -64..-1. Check if less than 32 bytes left (count < -32) */ str A_q, [dst], #16 L(copy_long_check32): cmn count, 64 b.eq L(copy_long_done) cmn count, 32 b.le L(copy_long_last32) ldp B_q, C_q, [src] stp B_q, C_q, [dst] L(copy_long_last32): ldp F_q, G_q, [srcend, -32] stp F_q, G_q, [dstend, -32] L(copy_long_done): ret L(dst_unaligned): /* For the unaligned store case the code loads two aligned chunks and then merges them using ext instruction. This can be up to 30% faster than the the simple unaligned store access. Current state: tmp1 = dst % 16; C_q, D_q, E_q contains data yet to be stored. src and dst points to next-to-be-processed data. A_q, B_q contains data already stored before, count = bytes left to be load decremented by 64. The control is passed here if at least 64 bytes left to be loaded. The code does two aligned loads and then extracts (16-tmp1) bytes from the first register and tmp1 bytes from the next register forming the value for the aligned store. As ext instruction can only have it's index encoded as immediate. 15 code chunks process each possible index value. Computed goto is used to reach the required code. */ /* Store the 16 bytes to dst and align dst for further operations, several bytes will be stored at this address once more */ str C_q, [dst], #16 ldp F_q, G_q, [src], #32 bic dst, dst, 15 adrp tmp2, L(ext_table) add tmp2, tmp2, :lo12:L(ext_table) add tmp2, tmp2, tmp1, LSL #2 ldr tmp3w, [tmp2] add tmp2, tmp2, tmp3w, SXTW br tmp2 #define EXT_CHUNK(shft) \ .p2align 4 ;\ L(ext_size_ ## shft):;\ ext A_v.16b, C_v.16b, D_v.16b, 16-shft;\ ext B_v.16b, D_v.16b, E_v.16b, 16-shft;\ subs count, count, 32;\ b.ge 2f;\ 1:;\ stp A_q, B_q, [dst], #32;\ ext H_v.16b, E_v.16b, F_v.16b, 16-shft;\ ext I_v.16b, F_v.16b, G_v.16b, 16-shft;\ stp H_q, I_q, [dst], #16;\ add dst, dst, tmp1;\ str G_q, [dst], #16;\ b L(copy_long_check32);\ 2:;\ stp A_q, B_q, [dst], #32;\ prfm pldl1strm, [src, MEMCPY_PREFETCH_LDR];\ ldp D_q, J_q, [src], #32;\ ext H_v.16b, E_v.16b, F_v.16b, 16-shft;\ ext I_v.16b, F_v.16b, G_v.16b, 16-shft;\ mov C_v.16b, G_v.16b;\ stp H_q, I_q, [dst], #32;\ ldp F_q, G_q, [src], #32;\ ext A_v.16b, C_v.16b, D_v.16b, 16-shft;\ ext B_v.16b, D_v.16b, J_v.16b, 16-shft;\ mov E_v.16b, J_v.16b;\ subs count, count, 64;\ b.ge 2b;\ b 1b;\ EXT_CHUNK(1) EXT_CHUNK(2) EXT_CHUNK(3) EXT_CHUNK(4) EXT_CHUNK(5) EXT_CHUNK(6) EXT_CHUNK(7) EXT_CHUNK(8) EXT_CHUNK(9) EXT_CHUNK(10) EXT_CHUNK(11) EXT_CHUNK(12) EXT_CHUNK(13) EXT_CHUNK(14) EXT_CHUNK(15) END (MEMCPY) .section .rodata .p2align 4 L(ext_table): /* The first entry is for the alignment of 0 and is never actually used (could be any value). */ .word 0 .word L(ext_size_1) -. .word L(ext_size_2) -. .word L(ext_size_3) -. .word L(ext_size_4) -. .word L(ext_size_5) -. .word L(ext_size_6) -. .word L(ext_size_7) -. .word L(ext_size_8) -. .word L(ext_size_9) -. .word L(ext_size_10) -. .word L(ext_size_11) -. .word L(ext_size_12) -. .word L(ext_size_13) -. .word L(ext_size_14) -. .word L(ext_size_15) -. libc_hidden_builtin_def (MEMCPY) #endif