/* @(#)xdr.c 2.1 88/07/29 4.0 RPCSRC */ /* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ #if !defined(lint) && defined(SCCSIDS) static char sccsid[] = "@(#)xdr.c 1.35 87/08/12"; #endif /* * xdr.c, Generic XDR routines implementation. * * Copyright (C) 1986, Sun Microsystems, Inc. * * These are the "generic" xdr routines used to serialize and de-serialize * most common data items. See xdr.h for more info on the interface to * xdr. */ #include <stdio.h> #include <limits.h> #include <string.h> #include <rpc/types.h> #include <rpc/xdr.h> /* * constants specific to the xdr "protocol" */ #define XDR_FALSE ((long) 0) #define XDR_TRUE ((long) 1) #define LASTUNSIGNED ((u_int) 0-1) /* * for unit alignment */ static const char xdr_zero[BYTES_PER_XDR_UNIT] = {0, 0, 0, 0}; /* * Free a data structure using XDR * Not a filter, but a convenient utility nonetheless */ void xdr_free (xdrproc_t proc, char *objp) { XDR x; x.x_op = XDR_FREE; (*proc) (&x, objp); } /* * XDR nothing */ bool_t xdr_void (void) { return TRUE; } /* * XDR integers */ bool_t xdr_int (XDR *xdrs, int *ip) { #if INT_MAX < LONG_MAX long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *ip; return XDR_PUTLONG (xdrs, &l); case XDR_DECODE: if (!XDR_GETLONG (xdrs, &l)) { return FALSE; } *ip = (int) l; case XDR_FREE: return TRUE; } return FALSE; #elif INT_MAX == LONG_MAX return xdr_long (xdrs, (long *) ip); #elif INT_MAX == SHRT_MAX return xdr_short (xdrs, (short *) ip); #else #error unexpected integer sizes in_xdr_int() #endif } /* * XDR unsigned integers */ bool_t xdr_u_int (XDR *xdrs, u_int *up) { #if UINT_MAX < ULONG_MAX u_long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) * up; return XDR_PUTLONG (xdrs, &l); case XDR_DECODE: if (!XDR_GETLONG (xdrs, &l)) { return FALSE; } *up = (u_int) l; case XDR_FREE: return TRUE; } return FALSE; #elif UINT_MAX == ULONG_MAX return xdr_u_long (xdrs, (u_long *) up); #elif UINT_MAX == USHRT_MAX return xdr_short (xdrs, (short *) up); #else #error unexpected integer sizes in_xdr_u_int() #endif } /* * XDR long integers * same as xdr_u_long - open coded to save a proc call! */ bool_t xdr_long (XDR *xdrs, long *lp) { if (xdrs->x_op == XDR_ENCODE) return XDR_PUTLONG (xdrs, lp); if (xdrs->x_op == XDR_DECODE) return XDR_GETLONG (xdrs, lp); if (xdrs->x_op == XDR_FREE) return TRUE; return FALSE; } /* * XDR unsigned long integers * same as xdr_long - open coded to save a proc call! */ bool_t xdr_u_long (XDR *xdrs, u_long *ulp) { switch (xdrs->x_op) { case XDR_DECODE: return XDR_GETLONG (xdrs, (long *) ulp); case XDR_ENCODE: return XDR_PUTLONG (xdrs, (long *) ulp); case XDR_FREE: return TRUE; } return FALSE; } /* * XDR hyper integers * same as xdr_u_hyper - open coded to save a proc call! */ bool_t xdr_hyper (XDR *xdrs, quad_t *llp) { long t1; unsigned long int t2; if (xdrs->x_op == XDR_ENCODE) { t1 = (long) ((*llp) >> 32); t2 = (long) (*llp); return (XDR_PUTLONG(xdrs, &t1) && XDR_PUTLONG(xdrs, &t2)); } if (xdrs->x_op == XDR_DECODE) { if (!XDR_GETLONG(xdrs, &t1) || !XDR_GETLONG(xdrs, &t2)) return FALSE; *llp = ((quad_t) t1) << 32; *llp |= t2; return TRUE; } if (xdrs->x_op == XDR_FREE) return TRUE; return FALSE; } /* * XDR hyper integers * same as xdr_hyper - open coded to save a proc call! */ bool_t xdr_u_hyper (XDR *xdrs, u_quad_t *ullp) { unsigned long t1; unsigned long t2; if (xdrs->x_op == XDR_ENCODE) { t1 = (unsigned long) ((*ullp) >> 32); t2 = (unsigned long) (*ullp); return (XDR_PUTLONG(xdrs, &t1) && XDR_PUTLONG(xdrs, &t2)); } if (xdrs->x_op == XDR_DECODE) { if (!XDR_GETLONG(xdrs, &t1) || !XDR_GETLONG(xdrs, &t2)) return FALSE; *ullp = ((u_quad_t) t1) << 32; *ullp |= t2; return TRUE; } if (xdrs->x_op == XDR_FREE) return TRUE; return FALSE; } bool_t xdr_longlong_t (XDR *xdrs, quad_t *llp) { return xdr_hyper (xdrs, llp); } bool_t xdr_u_longlong_t (XDR *xdrs, u_quad_t *ullp) { return xdr_u_hyper (xdrs, ullp); } /* * XDR short integers */ bool_t xdr_short (XDR *xdrs, short *sp) { long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *sp; return XDR_PUTLONG (xdrs, &l); case XDR_DECODE: if (!XDR_GETLONG (xdrs, &l)) { return FALSE; } *sp = (short) l; return TRUE; case XDR_FREE: return TRUE; } return FALSE; } /* * XDR unsigned short integers */ bool_t xdr_u_short (XDR *xdrs, u_short *usp) { u_long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (u_long) * usp; return XDR_PUTLONG (xdrs, &l); case XDR_DECODE: if (!XDR_GETLONG (xdrs, &l)) { return FALSE; } *usp = (u_short) l; return TRUE; case XDR_FREE: return TRUE; } return FALSE; } /* * XDR a char */ bool_t xdr_char (XDR *xdrs, char *cp) { int i; i = (*cp); if (!xdr_int (xdrs, &i)) { return FALSE; } *cp = i; return TRUE; } /* * XDR an unsigned char */ bool_t xdr_u_char (XDR *xdrs, u_char *cp) { u_int u; u = (*cp); if (!xdr_u_int (xdrs, &u)) { return FALSE; } *cp = u; return TRUE; } /* * XDR booleans */ bool_t xdr_bool (XDR *xdrs, bool_t *bp) { long lb; switch (xdrs->x_op) { case XDR_ENCODE: lb = *bp ? XDR_TRUE : XDR_FALSE; return XDR_PUTLONG (xdrs, &lb); case XDR_DECODE: if (!XDR_GETLONG (xdrs, &lb)) { return FALSE; } *bp = (lb == XDR_FALSE) ? FALSE : TRUE; return TRUE; case XDR_FREE: return TRUE; } return FALSE; } /* * XDR enumerations */ bool_t xdr_enum (XDR *xdrs, enum_t *ep) { enum sizecheck { SIZEVAL }; /* used to find the size of an enum */ /* * enums are treated as ints */ if (sizeof (enum sizecheck) == 4) { #if INT_MAX < LONG_MAX long l; switch (xdrs->x_op) { case XDR_ENCODE: l = *ep; return XDR_PUTLONG (xdrs, &l); case XDR_DECODE: if (!XDR_GETLONG (xdrs, &l)) { return FALSE; } *ep = l; case XDR_FREE: return TRUE; } return FALSE; #else return xdr_long (xdrs, (long *) ep); #endif } else if (sizeof (enum sizecheck) == sizeof (short)) { return xdr_short (xdrs, (short *) ep); } else { return FALSE; } } /* * XDR opaque data * Allows the specification of a fixed size sequence of opaque bytes. * cp points to the opaque object and cnt gives the byte length. */ bool_t xdr_opaque (XDR *xdrs, caddr_t cp, u_int cnt) { u_int rndup; static char crud[BYTES_PER_XDR_UNIT]; /* * if no data we are done */ if (cnt == 0) return TRUE; /* * round byte count to full xdr units */ rndup = cnt % BYTES_PER_XDR_UNIT; if (rndup > 0) rndup = BYTES_PER_XDR_UNIT - rndup; switch (xdrs->x_op) { case XDR_DECODE: if (!XDR_GETBYTES (xdrs, cp, cnt)) { return FALSE; } if (rndup == 0) return TRUE; return XDR_GETBYTES (xdrs, (caddr_t)crud, rndup); case XDR_ENCODE: if (!XDR_PUTBYTES (xdrs, cp, cnt)) { return FALSE; } if (rndup == 0) return TRUE; return XDR_PUTBYTES (xdrs, xdr_zero, rndup); case XDR_FREE: return TRUE; } return FALSE; } /* * XDR counted bytes * *cpp is a pointer to the bytes, *sizep is the count. * If *cpp is NULL maxsize bytes are allocated */ bool_t xdr_bytes (xdrs, cpp, sizep, maxsize) XDR *xdrs; char **cpp; u_int *sizep; u_int maxsize; { char *sp = *cpp; /* sp is the actual string pointer */ u_int nodesize; /* * first deal with the length since xdr bytes are counted */ if (!xdr_u_int (xdrs, sizep)) { return FALSE; } nodesize = *sizep; if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE)) { return FALSE; } /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (nodesize == 0) { return TRUE; } if (sp == NULL) { *cpp = sp = (char *) mem_alloc (nodesize); } if (sp == NULL) { (void) fprintf (stderr, "xdr_bytes: out of memory\n"); return FALSE; } /* fall into ... */ case XDR_ENCODE: return xdr_opaque (xdrs, sp, nodesize); case XDR_FREE: if (sp != NULL) { mem_free (sp, nodesize); *cpp = NULL; } return TRUE; } return FALSE; } /* * Implemented here due to commonality of the object. */ bool_t xdr_netobj (xdrs, np) XDR *xdrs; struct netobj *np; { return xdr_bytes (xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ); } /* * XDR a discriminated union * Support routine for discriminated unions. * You create an array of xdrdiscrim structures, terminated with * an entry with a null procedure pointer. The routine gets * the discriminant value and then searches the array of xdrdiscrims * looking for that value. It calls the procedure given in the xdrdiscrim * to handle the discriminant. If there is no specific routine a default * routine may be called. * If there is no specific or default routine an error is returned. */ bool_t xdr_union (xdrs, dscmp, unp, choices, dfault) XDR *xdrs; enum_t *dscmp; /* enum to decide which arm to work on */ char *unp; /* the union itself */ const struct xdr_discrim *choices; /* [value, xdr proc] for each arm */ xdrproc_t dfault; /* default xdr routine */ { enum_t dscm; /* * we deal with the discriminator; it's an enum */ if (!xdr_enum (xdrs, dscmp)) { return FALSE; } dscm = *dscmp; /* * search choices for a value that matches the discriminator. * if we find one, execute the xdr routine for that value. */ for (; choices->proc != NULL_xdrproc_t; choices++) { if (choices->value == dscm) return (*(choices->proc)) (xdrs, unp, LASTUNSIGNED); } /* * no match - execute the default xdr routine if there is one */ return ((dfault == NULL_xdrproc_t) ? FALSE : (*dfault) (xdrs, unp, LASTUNSIGNED)); } /* * Non-portable xdr primitives. * Care should be taken when moving these routines to new architectures. */ /* * XDR null terminated ASCII strings * xdr_string deals with "C strings" - arrays of bytes that are * terminated by a NULL character. The parameter cpp references a * pointer to storage; If the pointer is null, then the necessary * storage is allocated. The last parameter is the max allowed length * of the string as specified by a protocol. */ bool_t xdr_string (xdrs, cpp, maxsize) XDR *xdrs; char **cpp; u_int maxsize; { char *sp = *cpp; /* sp is the actual string pointer */ u_int size; u_int nodesize; /* * first deal with the length since xdr strings are counted-strings */ switch (xdrs->x_op) { case XDR_FREE: if (sp == NULL) { return TRUE; /* already free */ } /* fall through... */ case XDR_ENCODE: if (sp == NULL) return FALSE; size = strlen (sp); break; case XDR_DECODE: break; } if (!xdr_u_int (xdrs, &size)) { return FALSE; } if (size > maxsize) { return FALSE; } nodesize = size + 1; /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (nodesize == 0) { return TRUE; } if (sp == NULL) *cpp = sp = (char *) mem_alloc (nodesize); if (sp == NULL) { (void) fprintf (stderr, "xdr_string: out of memory\n"); return FALSE; } sp[size] = 0; /* fall into ... */ case XDR_ENCODE: return xdr_opaque (xdrs, sp, size); case XDR_FREE: mem_free (sp, nodesize); *cpp = NULL; return TRUE; } return FALSE; } /* * Wrapper for xdr_string that can be called directly from * routines like clnt_call */ bool_t xdr_wrapstring (xdrs, cpp) XDR *xdrs; char **cpp; { if (xdr_string (xdrs, cpp, LASTUNSIGNED)) { return TRUE; } return FALSE; }