/* Linuxthreads - a simple clone()-based implementation of Posix */ /* threads for Linux. */ /* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */ /* */ /* This program is free software; you can redistribute it and/or */ /* modify it under the terms of the GNU Library General Public License */ /* as published by the Free Software Foundation; either version 2 */ /* of the License, or (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU Library General Public License for more details. */ /* Mutexes */ #include <bits/libc-lock.h> #include <errno.h> #include <sched.h> #include <stddef.h> #include <limits.h> #include "pthread.h" #include "internals.h" #include "spinlock.h" #include "queue.h" #include "restart.h" int __pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutexattr_t * mutex_attr) { __pthread_init_lock(&mutex->__m_lock); mutex->__m_kind = mutex_attr == NULL ? PTHREAD_MUTEX_TIMED_NP : mutex_attr->__mutexkind; mutex->__m_count = 0; mutex->__m_owner = NULL; return 0; } strong_alias (__pthread_mutex_init, pthread_mutex_init) hidden_def (__pthread_mutex_init) int __pthread_mutex_destroy(pthread_mutex_t * mutex) { switch (mutex->__m_kind) { case PTHREAD_MUTEX_ADAPTIVE_NP: case PTHREAD_MUTEX_RECURSIVE_NP: if ((mutex->__m_lock.__status & 1) != 0) return EBUSY; return 0; case PTHREAD_MUTEX_ERRORCHECK_NP: case PTHREAD_MUTEX_TIMED_NP: if (mutex->__m_lock.__status != 0) return EBUSY; return 0; default: return EINVAL; } } strong_alias (__pthread_mutex_destroy, pthread_mutex_destroy) hidden_def (__pthread_mutex_destroy) int __pthread_mutex_trylock(pthread_mutex_t * mutex) { pthread_descr self; int retcode; switch(mutex->__m_kind) { case PTHREAD_MUTEX_ADAPTIVE_NP: retcode = __pthread_trylock(&mutex->__m_lock); return retcode; case PTHREAD_MUTEX_RECURSIVE_NP: self = thread_self(); if (mutex->__m_owner == self) { mutex->__m_count++; return 0; } retcode = __pthread_trylock(&mutex->__m_lock); if (retcode == 0) { mutex->__m_owner = self; mutex->__m_count = 0; } return retcode; case PTHREAD_MUTEX_ERRORCHECK_NP: retcode = __pthread_alt_trylock(&mutex->__m_lock); if (retcode == 0) { mutex->__m_owner = thread_self(); } return retcode; case PTHREAD_MUTEX_TIMED_NP: retcode = __pthread_alt_trylock(&mutex->__m_lock); return retcode; default: return EINVAL; } } strong_alias (__pthread_mutex_trylock, pthread_mutex_trylock) hidden_def (__pthread_mutex_trylock) int __pthread_mutex_lock(pthread_mutex_t * mutex) { pthread_descr self; switch(mutex->__m_kind) { case PTHREAD_MUTEX_ADAPTIVE_NP: __pthread_lock(&mutex->__m_lock, NULL); return 0; case PTHREAD_MUTEX_RECURSIVE_NP: self = thread_self(); if (mutex->__m_owner == self) { mutex->__m_count++; return 0; } __pthread_lock(&mutex->__m_lock, self); mutex->__m_owner = self; mutex->__m_count = 0; return 0; case PTHREAD_MUTEX_ERRORCHECK_NP: self = thread_self(); if (mutex->__m_owner == self) return EDEADLK; __pthread_alt_lock(&mutex->__m_lock, self); mutex->__m_owner = self; return 0; case PTHREAD_MUTEX_TIMED_NP: __pthread_alt_lock(&mutex->__m_lock, NULL); return 0; default: return EINVAL; } } strong_alias (__pthread_mutex_lock, pthread_mutex_lock) hidden_def (__pthread_mutex_lock) int __pthread_mutex_timedlock (pthread_mutex_t *mutex, const struct timespec *abstime) { pthread_descr self; int res; if (__builtin_expect (abstime->tv_nsec, 0) < 0 || __builtin_expect (abstime->tv_nsec, 0) >= 1000000000) return EINVAL; switch(mutex->__m_kind) { case PTHREAD_MUTEX_ADAPTIVE_NP: __pthread_lock(&mutex->__m_lock, NULL); return 0; case PTHREAD_MUTEX_RECURSIVE_NP: self = thread_self(); if (mutex->__m_owner == self) { mutex->__m_count++; return 0; } __pthread_lock(&mutex->__m_lock, self); mutex->__m_owner = self; mutex->__m_count = 0; return 0; case PTHREAD_MUTEX_ERRORCHECK_NP: self = thread_self(); if (mutex->__m_owner == self) return EDEADLK; res = __pthread_alt_timedlock(&mutex->__m_lock, self, abstime); if (res != 0) { mutex->__m_owner = self; return 0; } return ETIMEDOUT; case PTHREAD_MUTEX_TIMED_NP: /* Only this type supports timed out lock. */ return (__pthread_alt_timedlock(&mutex->__m_lock, NULL, abstime) ? 0 : ETIMEDOUT); default: return EINVAL; } } strong_alias (__pthread_mutex_timedlock, pthread_mutex_timedlock) int __pthread_mutex_unlock(pthread_mutex_t * mutex) { switch (mutex->__m_kind) { case PTHREAD_MUTEX_ADAPTIVE_NP: __pthread_unlock(&mutex->__m_lock); return 0; case PTHREAD_MUTEX_RECURSIVE_NP: if (mutex->__m_owner != thread_self()) return EPERM; if (mutex->__m_count > 0) { mutex->__m_count--; return 0; } mutex->__m_owner = NULL; __pthread_unlock(&mutex->__m_lock); return 0; case PTHREAD_MUTEX_ERRORCHECK_NP: if (mutex->__m_owner != thread_self() || mutex->__m_lock.__status == 0) return EPERM; mutex->__m_owner = NULL; __pthread_alt_unlock(&mutex->__m_lock); return 0; case PTHREAD_MUTEX_TIMED_NP: __pthread_alt_unlock(&mutex->__m_lock); return 0; default: return EINVAL; } } strong_alias (__pthread_mutex_unlock, pthread_mutex_unlock) hidden_def (__pthread_mutex_unlock) int __pthread_mutexattr_init(pthread_mutexattr_t *attr) { attr->__mutexkind = PTHREAD_MUTEX_TIMED_NP; return 0; } strong_alias (__pthread_mutexattr_init, pthread_mutexattr_init) int __pthread_mutexattr_destroy(pthread_mutexattr_t *attr) { return 0; } strong_alias (__pthread_mutexattr_destroy, pthread_mutexattr_destroy) int __pthread_mutexattr_settype(pthread_mutexattr_t *attr, int kind) { if (kind != PTHREAD_MUTEX_ADAPTIVE_NP && kind != PTHREAD_MUTEX_RECURSIVE_NP && kind != PTHREAD_MUTEX_ERRORCHECK_NP && kind != PTHREAD_MUTEX_TIMED_NP) return EINVAL; attr->__mutexkind = kind; return 0; } weak_alias (__pthread_mutexattr_settype, pthread_mutexattr_settype) strong_alias ( __pthread_mutexattr_settype, __pthread_mutexattr_setkind_np) weak_alias (__pthread_mutexattr_setkind_np, pthread_mutexattr_setkind_np) int __pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *kind) { *kind = attr->__mutexkind; return 0; } weak_alias (__pthread_mutexattr_gettype, pthread_mutexattr_gettype) strong_alias (__pthread_mutexattr_gettype, __pthread_mutexattr_getkind_np) weak_alias (__pthread_mutexattr_getkind_np, pthread_mutexattr_getkind_np) int __pthread_mutexattr_getpshared (const pthread_mutexattr_t *attr, int *pshared) { *pshared = PTHREAD_PROCESS_PRIVATE; return 0; } weak_alias (__pthread_mutexattr_getpshared, pthread_mutexattr_getpshared) int __pthread_mutexattr_setpshared (pthread_mutexattr_t *attr, int pshared) { if (pshared != PTHREAD_PROCESS_PRIVATE && pshared != PTHREAD_PROCESS_SHARED) return EINVAL; /* For now it is not possible to shared a conditional variable. */ if (pshared != PTHREAD_PROCESS_PRIVATE) return ENOSYS; return 0; } weak_alias (__pthread_mutexattr_setpshared, pthread_mutexattr_setpshared) /* Once-only execution */ static pthread_mutex_t once_masterlock = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t once_finished = PTHREAD_COND_INITIALIZER; static int fork_generation = 0; /* Child process increments this after fork. */ enum { NEVER = 0, IN_PROGRESS = 1, DONE = 2 }; /* If a thread is canceled while calling the init_routine out of pthread once, this handler will reset the once_control variable to the NEVER state. */ static void pthread_once_cancelhandler(void *arg) { pthread_once_t *once_control = arg; pthread_mutex_lock(&once_masterlock); *once_control = NEVER; pthread_mutex_unlock(&once_masterlock); pthread_cond_broadcast(&once_finished); } int __pthread_once(pthread_once_t * once_control, void (*init_routine)(void)) { /* flag for doing the condition broadcast outside of mutex */ int state_changed; /* Test without locking first for speed */ if (*once_control == DONE) { READ_MEMORY_BARRIER(); return 0; } /* Lock and test again */ state_changed = 0; pthread_mutex_lock(&once_masterlock); /* If this object was left in an IN_PROGRESS state in a parent process (indicated by stale generation field), reset it to NEVER. */ if ((*once_control & 3) == IN_PROGRESS && (*once_control & ~3) != fork_generation) *once_control = NEVER; /* If init_routine is being called from another routine, wait until it completes. */ while ((*once_control & 3) == IN_PROGRESS) { pthread_cond_wait(&once_finished, &once_masterlock); } /* Here *once_control is stable and either NEVER or DONE. */ if (*once_control == NEVER) { *once_control = IN_PROGRESS | fork_generation; pthread_mutex_unlock(&once_masterlock); pthread_cleanup_push(pthread_once_cancelhandler, once_control); init_routine(); pthread_cleanup_pop(0); pthread_mutex_lock(&once_masterlock); WRITE_MEMORY_BARRIER(); *once_control = DONE; state_changed = 1; } pthread_mutex_unlock(&once_masterlock); if (state_changed) pthread_cond_broadcast(&once_finished); return 0; } strong_alias (__pthread_once, pthread_once) /* * Handle the state of the pthread_once mechanism across forks. The * once_masterlock is acquired in the parent process prior to a fork to ensure * that no thread is in the critical region protected by the lock. After the * fork, the lock is released. In the child, the lock and the condition * variable are simply reset. The child also increments its generation * counter which lets pthread_once calls detect stale IN_PROGRESS states * and reset them back to NEVER. */ void __pthread_once_fork_prepare(void) { pthread_mutex_lock(&once_masterlock); } void __pthread_once_fork_parent(void) { pthread_mutex_unlock(&once_masterlock); } void __pthread_once_fork_child(void) { pthread_mutex_init(&once_masterlock, NULL); pthread_cond_init(&once_finished, NULL); if (fork_generation <= INT_MAX - 4) fork_generation += 4; /* leave least significant two bits zero */ else fork_generation = 0; }