/* Hardware capability support for run-time dynamic loader.
Copyright (C) 2012-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#include
#include
#include
#include
#include
#include
#include
#include
/* This is the result of counting the substrings in a colon-separated
hwcaps string. */
struct hwcaps_counts
{
/* Number of substrings. */
size_t count;
/* Sum of the individual substring lengths (without separators or
null terminators). */
size_t total_length;
/* Maximum length of an individual substring. */
size_t maximum_length;
};
/* Update *COUNTS according to the contents of HWCAPS. Skip over
entries whose bit is not set in MASK. */
static void
update_hwcaps_counts (struct hwcaps_counts *counts, const char *hwcaps,
uint32_t bitmask, const char *mask)
{
struct dl_hwcaps_split_masked sp;
_dl_hwcaps_split_masked_init (&sp, hwcaps, bitmask, mask);
while (_dl_hwcaps_split_masked (&sp))
{
++counts->count;
counts->total_length += sp.split.length;
if (sp.split.length > counts->maximum_length)
counts->maximum_length = sp.split.length;
}
}
/* State for copy_hwcaps. Must be initialized to point to
the storage areas for the array and the strings themselves. */
struct copy_hwcaps
{
struct r_strlenpair *next_pair;
char *next_string;
};
/* Copy HWCAPS into the string pairs and strings, advancing *TARGET.
Skip over entries whose bit is not set in MASK. */
static void
copy_hwcaps (struct copy_hwcaps *target, const char *hwcaps,
uint32_t bitmask, const char *mask)
{
struct dl_hwcaps_split_masked sp;
_dl_hwcaps_split_masked_init (&sp, hwcaps, bitmask, mask);
while (_dl_hwcaps_split_masked (&sp))
{
target->next_pair->str = target->next_string;
char *slash = __mempcpy (__mempcpy (target->next_string,
GLIBC_HWCAPS_PREFIX,
strlen (GLIBC_HWCAPS_PREFIX)),
sp.split.segment, sp.split.length);
*slash = '/';
target->next_pair->len
= strlen (GLIBC_HWCAPS_PREFIX) + sp.split.length + 1;
++target->next_pair;
target->next_string = slash + 1;
}
}
struct dl_hwcaps_priority *_dl_hwcaps_priorities;
uint32_t _dl_hwcaps_priorities_length;
/* Allocate _dl_hwcaps_priorities and fill it with data. */
static void
compute_priorities (size_t total_count, const char *prepend,
uint32_t bitmask, const char *mask)
{
_dl_hwcaps_priorities = malloc (total_count
* sizeof (*_dl_hwcaps_priorities));
if (_dl_hwcaps_priorities == NULL)
_dl_signal_error (ENOMEM, NULL, NULL,
N_("cannot create HWCAP priorities"));
_dl_hwcaps_priorities_length = total_count;
/* First the prepended subdirectories. */
size_t i = 0;
{
struct dl_hwcaps_split sp;
_dl_hwcaps_split_init (&sp, prepend);
while (_dl_hwcaps_split (&sp))
{
_dl_hwcaps_priorities[i].name = sp.segment;
_dl_hwcaps_priorities[i].name_length = sp.length;
_dl_hwcaps_priorities[i].priority = i + 1;
++i;
}
}
/* Then the built-in subdirectories that are actually active. */
{
struct dl_hwcaps_split_masked sp;
_dl_hwcaps_split_masked_init (&sp, _dl_hwcaps_subdirs, bitmask, mask);
while (_dl_hwcaps_split_masked (&sp))
{
_dl_hwcaps_priorities[i].name = sp.split.segment;
_dl_hwcaps_priorities[i].name_length = sp.split.length;
_dl_hwcaps_priorities[i].priority = i + 1;
++i;
}
}
assert (i == total_count);
}
/* Sort the _dl_hwcaps_priorities array by name. */
static void
sort_priorities_by_name (void)
{
/* Insertion sort. There is no need to link qsort into the dynamic
loader for such a short array. */
for (size_t i = 1; i < _dl_hwcaps_priorities_length; ++i)
for (size_t j = i; j > 0; --j)
{
struct dl_hwcaps_priority *previous = _dl_hwcaps_priorities + j - 1;
struct dl_hwcaps_priority *current = _dl_hwcaps_priorities + j;
/* Bail out if current is greater or equal to the previous
value. */
uint32_t to_compare;
if (current->name_length < previous->name_length)
to_compare = current->name_length;
else
to_compare = previous->name_length;
int cmp = memcmp (current->name, previous->name, to_compare);
if (cmp > 0
|| (cmp == 0 && current->name_length >= previous->name_length))
break;
/* Swap *previous and *current. */
struct dl_hwcaps_priority tmp = *previous;
*previous = *current;
*current = tmp;
}
}
/* Return an array of useful/necessary hardware capability names. */
const struct r_strlenpair *
_dl_important_hwcaps (const char *glibc_hwcaps_prepend,
const char *glibc_hwcaps_mask,
size_t *sz, size_t *max_capstrlen)
{
uint64_t hwcap_mask = GET_HWCAP_MASK();
/* Determine how many important bits are set. */
uint64_t masked = GLRO(dl_hwcap) & hwcap_mask;
size_t cnt = GLRO (dl_platform) != NULL;
size_t n, m;
struct r_strlenpair *result;
struct r_strlenpair *rp;
char *cp;
/* glibc-hwcaps subdirectories. These are exempted from the power
set construction below. */
uint32_t hwcaps_subdirs_active = _dl_hwcaps_subdirs_active ();
struct hwcaps_counts hwcaps_counts = { 0, };
update_hwcaps_counts (&hwcaps_counts, glibc_hwcaps_prepend, -1, NULL);
update_hwcaps_counts (&hwcaps_counts, _dl_hwcaps_subdirs,
hwcaps_subdirs_active, glibc_hwcaps_mask);
compute_priorities (hwcaps_counts.count, glibc_hwcaps_prepend,
hwcaps_subdirs_active, glibc_hwcaps_mask);
sort_priorities_by_name ();
/* Each hwcaps subdirectory has a GLIBC_HWCAPS_PREFIX string prefix
and a "/" suffix once stored in the result. */
hwcaps_counts.maximum_length += strlen (GLIBC_HWCAPS_PREFIX) + 1;
size_t total = (hwcaps_counts.count * (strlen (GLIBC_HWCAPS_PREFIX) + 1)
+ hwcaps_counts.total_length);
/* Count the number of bits set in the masked value. */
for (n = 0; (~((1ULL << n) - 1) & masked) != 0; ++n)
if ((masked & (1ULL << n)) != 0)
++cnt;
/* For TLS enabled builds always add 'tls'. */
++cnt;
/* Create temporary data structure to generate result table. */
struct r_strlenpair temp[cnt];
m = 0;
for (n = 0; masked != 0; ++n)
if ((masked & (1ULL << n)) != 0)
{
temp[m].str = _dl_hwcap_string (n);
temp[m].len = strlen (temp[m].str);
masked ^= 1ULL << n;
++m;
}
if (GLRO (dl_platform) != NULL)
{
temp[m].str = GLRO (dl_platform);
temp[m].len = GLRO (dl_platformlen);
++m;
}
temp[m].str = "tls";
temp[m].len = 3;
++m;
assert (m == cnt);
/* Determine the total size of all strings together. */
if (cnt == 1)
total += temp[0].len + 1;
else
{
total += temp[0].len + temp[cnt - 1].len + 2;
if (cnt > 2)
{
total <<= 1;
for (n = 1; n + 1 < cnt; ++n)
total += temp[n].len + 1;
if (cnt > 3
&& (cnt >= sizeof (size_t) * 8
|| total + (sizeof (*result) << 3)
>= (1UL << (sizeof (size_t) * 8 - cnt + 3))))
_dl_signal_error (ENOMEM, NULL, NULL,
N_("cannot create capability list"));
total <<= cnt - 3;
}
}
*sz = hwcaps_counts.count + (1 << cnt);
/* This is the overall result, including both glibc-hwcaps
subdirectories and the legacy hwcaps subdirectories using the
power set construction. */
struct r_strlenpair *overall_result
= malloc (*sz * sizeof (*result) + total);
if (overall_result == NULL)
_dl_signal_error (ENOMEM, NULL, NULL,
N_("cannot create capability list"));
/* Fill in the glibc-hwcaps subdirectories. */
{
struct copy_hwcaps target;
target.next_pair = overall_result;
target.next_string = (char *) (overall_result + *sz);
copy_hwcaps (&target, glibc_hwcaps_prepend, -1, NULL);
copy_hwcaps (&target, _dl_hwcaps_subdirs,
hwcaps_subdirs_active, glibc_hwcaps_mask);
/* Set up the write target for the power set construction. */
result = target.next_pair;
cp = target.next_string;
}
/* Power set construction begins here. We use a very compressed way
to store the various combinations of capability names. */
if (cnt == 1)
{
result[0].str = cp;
result[0].len = temp[0].len + 1;
result[1].str = cp;
result[1].len = 0;
cp = __mempcpy (cp, temp[0].str, temp[0].len);
*cp = '/';
if (result[0].len > hwcaps_counts.maximum_length)
*max_capstrlen = result[0].len;
else
*max_capstrlen = hwcaps_counts.maximum_length;
return overall_result;
}
/* Fill in the information. This follows the following scheme
(indices from TEMP for four strings):
entry #0: 0, 1, 2, 3 binary: 1111
#1: 0, 1, 3 1101
#2: 0, 2, 3 1011
#3: 0, 3 1001
This allows the representation of all possible combinations of
capability names in the string. First generate the strings. */
result[1].str = result[0].str = cp;
#define add(idx) \
cp = __mempcpy (__mempcpy (cp, temp[idx].str, temp[idx].len), "/", 1);
if (cnt == 2)
{
add (1);
add (0);
}
else
{
n = 1 << (cnt - 1);
do
{
n -= 2;
/* We always add the last string. */
add (cnt - 1);
/* Add the strings which have the bit set in N. */
for (m = cnt - 2; m > 0; --m)
if ((n & (1 << m)) != 0)
add (m);
/* Always add the first string. */
add (0);
}
while (n != 0);
}
#undef add
/* Now we are ready to install the string pointers and length. */
for (n = 0; n < (1UL << cnt); ++n)
result[n].len = 0;
n = cnt;
do
{
size_t mask = 1 << --n;
rp = result;
for (m = 1 << cnt; m > 0; ++rp)
if ((--m & mask) != 0)
rp->len += temp[n].len + 1;
}
while (n != 0);
/* The first half of the strings all include the first string. */
n = (1 << cnt) - 2;
rp = &result[2];
while (n != (1UL << (cnt - 1)))
{
if ((--n & 1) != 0)
rp[0].str = rp[-2].str + rp[-2].len;
else
rp[0].str = rp[-1].str;
++rp;
}
/* The second half starts right after the first part of the string of
the corresponding entry in the first half. */
do
{
rp[0].str = rp[-(1 << (cnt - 1))].str + temp[cnt - 1].len + 1;
++rp;
}
while (--n != 0);
/* The maximum string length. */
if (result[0].len > hwcaps_counts.maximum_length)
*max_capstrlen = result[0].len;
else
*max_capstrlen = hwcaps_counts.maximum_length;
return overall_result;
}