/* Locate the shared object symbol nearest a given address. Copyright (C) 1996-2004, 2005 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include <dlfcn.h> #include <stddef.h> #include <ldsodefs.h> int internal_function _dl_addr (const void *address, Dl_info *info, struct link_map **mapp, const ElfW(Sym) **symbolp) { const ElfW(Addr) addr = DL_LOOKUP_ADDRESS (address); /* Protect against concurrent loads and unloads. */ __rtld_lock_lock_recursive (GL(dl_load_lock)); /* Find the highest-addressed object that ADDRESS is not below. */ struct link_map *match = NULL; for (Lmid_t ns = 0; ns < DL_NNS; ++ns) for (struct link_map *l = GL(dl_ns)[ns]._ns_loaded; l; l = l->l_next) if (addr >= l->l_map_start && addr < l->l_map_end) { /* We know ADDRESS lies within L if in any shared object. Make sure it isn't past the end of L's segments. */ size_t n = l->l_phnum; if (n > 0) { do --n; while (l->l_phdr[n].p_type != PT_LOAD); if (addr >= (l->l_addr + l->l_phdr[n].p_vaddr + l->l_phdr[n].p_memsz)) /* Off the end of the highest-addressed shared object. */ continue; } match = l; break; } int result = 0; if (match != NULL) { /* Now we know what object the address lies in. */ info->dli_fname = match->l_name; info->dli_fbase = (void *) match->l_map_start; /* If this is the main program the information is incomplete. */ if (__builtin_expect (match->l_name[0], 'a') == '\0' && match->l_type == lt_executable) info->dli_fname = _dl_argv[0]; const ElfW(Sym) *symtab = (const ElfW(Sym) *) D_PTR (match, l_info[DT_SYMTAB]); const char *strtab = (const char *) D_PTR (match, l_info[DT_STRTAB]); ElfW(Word) strtabsize = match->l_info[DT_STRSZ]->d_un.d_val; const ElfW(Sym) *symtabend; if (match->l_info[DT_HASH] != NULL) symtabend = (symtab + ((Elf_Symndx *) D_PTR (match, l_info[DT_HASH]))[1]); else /* There is no direct way to determine the number of symbols in the dynamic symbol table and no hash table is present. The ELF binary is ill-formed but what shall we do? Use the beginning of the string table which generally follows the symbol table. */ symtabend = (const ElfW(Sym) *) strtab; const ElfW(Sym) *matchsym; for (matchsym = NULL; (void *) symtab < (void *) symtabend; ++symtab) if ((ELFW(ST_BIND) (symtab->st_info) == STB_GLOBAL || ELFW(ST_BIND) (symtab->st_info) == STB_WEAK) #if defined USE_TLS && ELFW(ST_TYPE) (symtab->st_info) != STT_TLS #endif && DL_ADDR_SYM_MATCH (match, symtab, matchsym, addr) && symtab->st_name < strtabsize) matchsym = (ElfW(Sym) *) symtab; if (mapp) *mapp = match; if (symbolp) *symbolp = matchsym; if (matchsym) { /* We found a symbol close by. Fill in its name and exact address. */ lookup_t matchl = LOOKUP_VALUE (match); info->dli_sname = strtab + matchsym->st_name; info->dli_saddr = DL_SYMBOL_ADDRESS (matchl, matchsym); } else { /* No symbol matches. We return only the containing object. */ info->dli_sname = NULL; info->dli_saddr = NULL; } result = 1; } __rtld_lock_unlock_recursive (GL(dl_load_lock)); return result; } libc_hidden_def (_dl_addr)