Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
Various code in glibc uses __strnlen instead of strnlen for namespace
reasons. However, __strnlen does not use libc_hidden_proto /
libc_hidden_def (as is normally done for any function defined and
called within the same library, whether or not exported from the
library and whatever namespace it is in), so the compiler does not
know that those calls are to a function within libc.
This patch uses libc_hidden_proto / libc_hidden_def with __strnlen.
On x86_64, it makes no difference to the installed stripped shared
libraries. On 32-bit x86, it causes __strnlen calls to go to the same
place as strnlen calls (the fallback strnlen implementation), rather
than through a PLT entry for the strnlen IFUNC; I'm not sure of the
logic behind when calls from within libc should use IFUNCs versus when
they should go direct to a particular function implementation, but
clearly it doesn't make sense for strnlen and __strnlen to be handled
differently in this regard.
Tested for x86_64 and x86 (testsuite, and comparison of installed
shared libraries as described above).
* string/strnlen.c [!STRNLEN] (__strnlen): Use libc_hidden_def.
* include/string.h (__strnlen): Use libc_hidden_proto.
* sysdeps/aarch64/strnlen.S (__strnlen): Use libc_hidden_def.
* sysdeps/i386/i686/multiarch/strnlen-c.c [SHARED]
(libc_hidden_def): Define __GI___strnlen as well as __GI_strnlen.
* sysdeps/powerpc/powerpc32/power4/multiarch/strnlen-power7.S
(libc_hidden_def): Undefine and redefine.
* sysdeps/powerpc/powerpc32/power4/multiarch/strnlen-ppc32.c
[SHARED] (libc_hidden_def): Define __GI___strnlen as well as
__GI_strnlen.
* sysdeps/powerpc/powerpc32/power7/strnlen.S (__strnlen): Use
libc_hidden_def.
* sysdeps/tile/tilegx/strnlen.c (__strnlen): Likewise.
|
|
|
|
I accidentally committed versions not following the conventions.
|
|
strnlen() is based on the existing tile strlen() with length
checking added. It speeds up by up to 5x, but on average across
the benchtest corpus by around 35%. No regressions are seen.
strstr() does 8-byte aligned loads and compares using a 2-byte
filter on the first two bytes of the needle and then testing
the remaining bytes in needle using memcmp(). It speeds up
about 5x in the best case (for "found" needles), about 2x looking
at benchtest as a whole, with some slowdowns as much as 45%.
on a few cases (including the "fail" case for 128KB search).
strcasestr() is based on strstr() but uses a SIMD tolower
routine to convert 8-bytes to lower case in 5 instructions.
It also uses a 2-byte filter and then strncasecmp() for the
remaining bytes. strncasecmp() is not optimized for SIMD, so
there is futher room for improvement. However, it is still up
to 16x faster for "found" needles, averaging 2x faster on the
whole corpus of benchtests. It does slow down by up to 35%
on a few cases, similarly to strstr().
|