aboutsummaryrefslogtreecommitdiff
path: root/stdio-common/scanf7.c
AgeCommit message (Expand)AuthorFilesLines
1998-11-13Update.Ulrich Drepper1-1/+1
1996-10-08update from main archive 961008cvs/libc-961009Ulrich Drepper1-1/+2
1996-09-20update from main archive 960919cvs/libc-960920Ulrich Drepper1-1/+1
1996-01-24* stdio-common/Makefile (tests): Add scanf[1-9]. Roland McGrath1-0/+22
td>
/*
 * internal execution defines for qemu
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/* allow to see translation results - the slowdown should be negligible, so we leave it */
#define DEBUG_DISAS

/* is_jmp field values */
#define DISAS_NEXT    0 /* next instruction can be analyzed */
#define DISAS_JUMP    1 /* only pc was modified dynamically */
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP 3 /* only pc was modified statically */

struct TranslationBlock;

/* XXX: make safe guess about sizes */
#define MAX_OP_PER_INSTR 32
/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
#define MAX_OPC_PARAM 10
#define OPC_BUF_SIZE 512
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)

/* Maximum size a TCG op can expand to.  This is complicated because a
   single op may require several host instructions and regirster reloads.
   For now take a wild guess at 128 bytes, which should allow at least
   a couple of fixup instructions per argument.  */
#define TCG_MAX_OP_SIZE 128

#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)

extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
extern target_ulong gen_opc_jump_pc[2];
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];

typedef void (GenOpFunc)(void);
typedef void (GenOpFunc1)(long);
typedef void (GenOpFunc2)(long, long);
typedef void (GenOpFunc3)(long, long, long);

#if defined(TARGET_I386)

void optimize_flags_init(void);

#endif

extern FILE *logfile;
extern int loglevel;

int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
unsigned long code_gen_max_block_size(void);
void cpu_gen_init(void);
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
                 int *gen_code_size_ptr);
int cpu_restore_state(struct TranslationBlock *tb,
                      CPUState *env, unsigned long searched_pc,
                      void *puc);
int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
                      int max_code_size, int *gen_code_size_ptr);
int cpu_restore_state_copy(struct TranslationBlock *tb,
                           CPUState *env, unsigned long searched_pc,
                           void *puc);
void cpu_resume_from_signal(CPUState *env1, void *puc);
void cpu_exec_init(CPUState *env);
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
                                   int is_cpu_write_access);
void tb_invalidate_page_range(target_ulong start, target_ulong end);
void tlb_flush_page(CPUState *env, target_ulong addr);
void tlb_flush(CPUState *env, int flush_global);
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
                      target_phys_addr_t paddr, int prot,
                      int mmu_idx, int is_softmmu);
static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
                               target_phys_addr_t paddr, int prot,
                               int mmu_idx, int is_softmmu)
{
    if (prot & PAGE_READ)
        prot |= PAGE_EXEC;
    return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
}

#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */

#define CODE_GEN_PHYS_HASH_BITS     15
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)

/* maximum total translate dcode allocated */

/* NOTE: the translated code area cannot be too big because on some
   archs the range of "fast" function calls is limited. Here is a
   summary of the ranges:

   i386  : signed 32 bits
   arm   : signed 26 bits
   ppc   : signed 24 bits
   sparc : signed 32 bits
   alpha : signed 23 bits
*/

#if defined(__alpha__)
#define CODE_GEN_BUFFER_SIZE     (2 * 1024 * 1024)
#elif defined(__ia64)
#define CODE_GEN_BUFFER_SIZE     (4 * 1024 * 1024)	/* range of addl */
#elif defined(__powerpc__)
#define CODE_GEN_BUFFER_SIZE     (6 * 1024 * 1024)
#else
/* XXX: make it dynamic on x86 */
#define CODE_GEN_BUFFER_SIZE     (16 * 1024 * 1024)
#endif

//#define CODE_GEN_BUFFER_SIZE     (128 * 1024)

/* estimated block size for TB allocation */
/* XXX: use a per code average code fragment size and modulate it
   according to the host CPU */
#if defined(CONFIG_SOFTMMU)
#define CODE_GEN_AVG_BLOCK_SIZE 128
#else
#define CODE_GEN_AVG_BLOCK_SIZE 64
#endif

#define CODE_GEN_MAX_BLOCKS    (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)

#if defined(__powerpc__) || defined(__x86_64__)
#define USE_DIRECT_JUMP
#endif
#if defined(__i386__) && !defined(_WIN32)
#define USE_DIRECT_JUMP
#endif

typedef struct TranslationBlock {
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
    target_ulong cs_base; /* CS base for this block */
    uint64_t flags; /* flags defining in which context the code was generated */
    uint16_t size;      /* size of target code for this block (1 <=
                           size <= TARGET_PAGE_SIZE) */
    uint16_t cflags;    /* compile flags */
#define CF_CODE_COPY   0x0001 /* block was generated in code copy mode */
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */

    uint8_t *tc_ptr;    /* pointer to the translated code */
    /* next matching tb for physical address. */
    struct TranslationBlock *phys_hash_next;
    /* first and second physical page containing code. The lower bit
       of the pointer tells the index in page_next[] */
    struct TranslationBlock *page_next[2];
    target_ulong page_addr[2];

    /* the following data are used to directly call another TB from
       the code of this one. */
    uint16_t tb_next_offset[2]; /* offset of original jump target */
#ifdef USE_DIRECT_JUMP
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
#else
    unsigned long tb_next[2]; /* address of jump generated code */
#endif
    /* list of TBs jumping to this one. This is a circular list using
       the two least significant bits of the pointers to tell what is
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
       jmp_first */
    struct TranslationBlock *jmp_next[2];
    struct TranslationBlock *jmp_first;
} TranslationBlock;

static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
{
    target_ulong tmp;
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
    return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
}

static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
{
    target_ulong tmp;
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
    return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
	    (tmp & TB_JMP_ADDR_MASK));
}

static inline unsigned int tb_phys_hash_func(unsigned long pc)
{
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
}

TranslationBlock *tb_alloc(target_ulong pc);
void tb_flush(CPUState *env);
void tb_link_phys(TranslationBlock *tb,
                  target_ulong phys_pc, target_ulong phys_page2);

extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];

extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
extern uint8_t *code_gen_ptr;

#if defined(USE_DIRECT_JUMP)

#if defined(__powerpc__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
    uint32_t val, *ptr;

    /* patch the branch destination */
    ptr = (uint32_t *)jmp_addr;
    val = *ptr;
    val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
    *ptr = val;
    /* flush icache */
    asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
    asm volatile ("sync" : : : "memory");
    asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
    asm volatile ("sync" : : : "memory");
    asm volatile ("isync" : : : "memory");
}
#elif defined(__i386__) || defined(__x86_64__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
    /* patch the branch destination */
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
    /* no need to flush icache explicitely */
}
#endif

static inline void tb_set_jmp_target(TranslationBlock *tb,
                                     int n, unsigned long addr)
{
    unsigned long offset;

    offset = tb->tb_jmp_offset[n];
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
    offset = tb->tb_jmp_offset[n + 2];
    if (offset != 0xffff)
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
}

#else

/* set the jump target */
static inline void tb_set_jmp_target(TranslationBlock *tb,
                                     int n, unsigned long addr)
{
    tb->tb_next[n] = addr;
}

#endif

static inline void tb_add_jump(TranslationBlock *tb, int n,
                               TranslationBlock *tb_next)
{
    /* NOTE: this test is only needed for thread safety */
    if (!tb->jmp_next[n]) {
        /* patch the native jump address */
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);

        /* add in TB jmp circular list */
        tb->jmp_next[n] = tb_next->jmp_first;
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
    }
}

TranslationBlock *tb_find_pc(unsigned long pc_ptr);

#ifndef offsetof
#define offsetof(type, field) ((size_t) &((type *)0)->field)
#endif

#if defined(_WIN32)
#define ASM_DATA_SECTION ".section \".data\"\n"
#define ASM_PREVIOUS_SECTION ".section .text\n"
#elif defined(__APPLE__)
#define ASM_DATA_SECTION ".data\n"
#define ASM_PREVIOUS_SECTION ".text\n"
#else
#define ASM_DATA_SECTION ".section \".data\"\n"
#define ASM_PREVIOUS_SECTION ".previous\n"
#endif

#define ASM_OP_LABEL_NAME(n, opname) \
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)

extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];

#if defined(__hppa__)

typedef int spinlock_t[4];

#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }

static inline void resetlock (spinlock_t *p)
{
    (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
}

#else

typedef int spinlock_t;

#define SPIN_LOCK_UNLOCKED 0

static inline void resetlock (spinlock_t *p)
{
    *p = SPIN_LOCK_UNLOCKED;
}

#endif

#if defined(__powerpc__)
static inline int testandset (int *p)
{
    int ret;
    __asm__ __volatile__ (
                          "0:    lwarx %0,0,%1\n"
                          "      xor. %0,%3,%0\n"
                          "      bne 1f\n"
                          "      stwcx. %2,0,%1\n"
                          "      bne- 0b\n"
                          "1:    "
                          : "=&r" (ret)
                          : "r" (p), "r" (1), "r" (0)
                          : "cr0", "memory");
    return ret;
}
#elif defined(__i386__)
static inline int testandset (int *p)
{
    long int readval = 0;

    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
                          : "+m" (*p), "+a" (readval)
                          : "r" (1)
                          : "cc");
    return readval;
}
#elif defined(__x86_64__)
static inline int testandset (int *p)
{
    long int readval = 0;

    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
                          : "+m" (*p), "+a" (readval)
                          : "r" (1)
                          : "cc");
    return readval;
}
#elif defined(__s390__)
static inline int testandset (int *p)
{
    int ret;

    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
			  "   jl    0b"
			  : "=&d" (ret)
			  : "r" (1), "a" (p), "0" (*p)
			  : "cc", "memory" );
    return ret;
}
#elif defined(__alpha__)
static inline int testandset (int *p)
{
    int ret;
    unsigned long one;

    __asm__ __volatile__ ("0:	mov 1,%2\n"
			  "	ldl_l %0,%1\n"
			  "	stl_c %2,%1\n"
			  "	beq %2,1f\n"
			  ".subsection 2\n"
			  "1:	br 0b\n"
			  ".previous"
			  : "=r" (ret), "=m" (*p), "=r" (one)
			  : "m" (*p));
    return ret;
}
#elif defined(__sparc__)
static inline int testandset (int *p)
{
	int ret;

	__asm__ __volatile__("ldstub	[%1], %0"
			     : "=r" (ret)
			     : "r" (p)
			     : "memory");

	return (ret ? 1 : 0);
}
#elif defined(__arm__)
static inline int testandset (int *spinlock)
{
    register unsigned int ret;
    __asm__ __volatile__("swp %0, %1, [%2]"
                         : "=r"(ret)
                         : "0"(1), "r"(spinlock));

    return ret;
}
#elif defined(__mc68000)
static inline int testandset (int *p)
{
    char ret;
    __asm__ __volatile__("tas %1; sne %0"
                         : "=r" (ret)
                         : "m" (p)
                         : "cc","memory");
    return ret;
}
#elif defined(__hppa__)

/* Because malloc only guarantees 8-byte alignment for malloc'd data,
   and GCC only guarantees 8-byte alignment for stack locals, we can't
   be assured of 16-byte alignment for atomic lock data even if we
   specify "__attribute ((aligned(16)))" in the type declaration.  So,
   we use a struct containing an array of four ints for the atomic lock
   type and dynamically select the 16-byte aligned int from the array
   for the semaphore.  */
#define __PA_LDCW_ALIGNMENT 16
static inline void *ldcw_align (void *p) {
    unsigned long a = (unsigned long)p;
    a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
    return (void *)a;
}

static inline int testandset (spinlock_t *p)
{
    unsigned int ret;
    p = ldcw_align(p);
    __asm__ __volatile__("ldcw 0(%1),%0"
                         : "=r" (ret)
                         : "r" (p)
                         : "memory" );
    return !ret;
}

#elif defined(__ia64)

#include <ia64intrin.h>

static inline int testandset (int *p)
{
    return __sync_lock_test_and_set (p, 1);
}
#elif defined(__mips__)
static inline int testandset (int *p)
{
    int ret;

    __asm__ __volatile__ (
	"	.set push		\n"
	"	.set noat		\n"
	"	.set mips2		\n"
	"1:	li	$1, 1		\n"
	"	ll	%0, %1		\n"
	"	sc	$1, %1		\n"
	"	beqz	$1, 1b		\n"
	"	.set pop		"
	: "=r" (ret), "+R" (*p)
	:
	: "memory");

    return ret;
}
#else
#error unimplemented CPU support
#endif

#if defined(CONFIG_USER_ONLY)
static inline void spin_lock(spinlock_t *lock)
{
    while (testandset(lock));
}

static inline void spin_unlock(spinlock_t *lock)
{
    resetlock(lock);
}

static inline int spin_trylock(spinlock_t *lock)
{
    return !testandset(lock);
}
#else
static inline void spin_lock(spinlock_t *lock)
{
}

static inline void spin_unlock(spinlock_t *lock)
{
}

static inline int spin_trylock(spinlock_t *lock)
{
    return 1;
}
#endif

extern spinlock_t tb_lock;

extern int tb_invalidated_flag;

#if !defined(CONFIG_USER_ONLY)

void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
              void *retaddr);

#define ACCESS_TYPE (NB_MMU_MODES + 1)
#define MEMSUFFIX _code
#define env cpu_single_env

#define DATA_SIZE 1
#include "softmmu_header.h"

#define DATA_SIZE 2
#include "softmmu_header.h"

#define DATA_SIZE 4
#include "softmmu_header.h"

#define DATA_SIZE 8
#include "softmmu_header.h"

#undef ACCESS_TYPE
#undef MEMSUFFIX
#undef env

#endif

#if defined(CONFIG_USER_ONLY)
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
{
    return addr;
}
#else
/* NOTE: this function can trigger an exception */
/* NOTE2: the returned address is not exactly the physical address: it
   is the offset relative to phys_ram_base */
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
{
    int mmu_idx, index, pd;

    index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    mmu_idx = cpu_mmu_index(env);
    if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
                         (addr & TARGET_PAGE_MASK), 0)) {
        ldub_code(addr);
    }
    pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
        do_unassigned_access(addr, 0, 1, 0);
#else
        cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
#endif
    }
    return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
}
#endif

#ifdef USE_KQEMU
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))

int kqemu_init(CPUState *env);
int kqemu_cpu_exec(CPUState *env);
void kqemu_flush_page(CPUState *env, target_ulong addr);
void kqemu_flush(CPUState *env, int global);
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
void kqemu_cpu_interrupt(CPUState *env);
void kqemu_record_dump(void);

static inline int kqemu_is_ok(CPUState *env)
{
    return(env->kqemu_enabled &&
           (env->cr[0] & CR0_PE_MASK) &&
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
           (env->eflags & IF_MASK) &&
           !(env->eflags & VM_MASK) &&
           (env->kqemu_enabled == 2 ||
            ((env->hflags & HF_CPL_MASK) == 3 &&
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
}

#endif