aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/slowpow.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/slowpow.c')
-rw-r--r--sysdeps/ieee754/dbl-64/slowpow.c73
1 files changed, 73 insertions, 0 deletions
diff --git a/sysdeps/ieee754/dbl-64/slowpow.c b/sysdeps/ieee754/dbl-64/slowpow.c
new file mode 100644
index 0000000..efb6072
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/slowpow.c
@@ -0,0 +1,73 @@
+
+/*
+ * IBM Accurate Mathematical Library
+ * Copyright (c) International Business Machines Corp., 2001
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+/*************************************************************************/
+/* MODULE_NAME:slowpow.c */
+/* */
+/* FUNCTION:slowpow */
+/* */
+/*FILES NEEDED:mpa.h */
+/* mpa.c mpexp.c mplog.c halfulp.c */
+/* */
+/* Given two IEEE double machine numbers y,x , routine computes the */
+/* correctly rounded (to nearest) value of x^y. Result calculated by */
+/* multiplication (in halfulp.c) or if result isn't accurate enough */
+/* then routine converts x and y into multi-precision doubles and */
+/* calls to mpexp routine */
+/*************************************************************************/
+
+#include "mpa.h"
+
+void mpexp(mp_no *x, mp_no *y, int p);
+void mplog(mp_no *x, mp_no *y, int p);
+double ulog(double);
+double halfulp(double x,double y);
+
+double slowpow(double x, double y, double z) {
+ double res,res1;
+ mp_no mpx, mpy, mpz,mpw,mpp,mpr,mpr1;
+ static const mp_no eps = {-3,1.0,4.0};
+ int p;
+
+ res = halfulp(x,y); /* halfulp() returns -10 or x^y */
+ if (res >= 0) return res; /* if result was really computed by halfulp */
+ /* else, if result was not really computed by halfulp */
+ p = 10; /* p=precision */
+ dbl_mp(x,&mpx,p);
+ dbl_mp(y,&mpy,p);
+ dbl_mp(z,&mpz,p);
+ mplog(&mpx, &mpz, p); /* log(x) = z */
+ mul(&mpy,&mpz,&mpw,p); /* y * z =w */
+ mpexp(&mpw, &mpp, p); /* e^w =pp */
+ add(&mpp,&eps,&mpr,p); /* pp+eps =r */
+ mp_dbl(&mpr, &res, p);
+ sub(&mpp,&eps,&mpr1,p); /* pp -eps =r1 */
+ mp_dbl(&mpr1, &res1, p); /* converting into double precision */
+ if (res == res1) return res;
+
+ p = 32; /* if we get here result wasn't calculated exactly, continue */
+ dbl_mp(x,&mpx,p); /* for more exact calculation */
+ dbl_mp(y,&mpy,p);
+ dbl_mp(z,&mpz,p);
+ mplog(&mpx, &mpz, p); /* log(c)=z */
+ mul(&mpy,&mpz,&mpw,p); /* y*z =w */
+ mpexp(&mpw, &mpp, p); /* e^w=pp */
+ mp_dbl(&mpp, &res, p); /* converting into double precision */
+ return res;
+}