aboutsummaryrefslogtreecommitdiff
path: root/stdlib
diff options
context:
space:
mode:
Diffstat (limited to 'stdlib')
-rw-r--r--stdlib/msort.c408
1 files changed, 356 insertions, 52 deletions
diff --git a/stdlib/msort.c b/stdlib/msort.c
index 3668370..7d21c10 100644
--- a/stdlib/msort.c
+++ b/stdlib/msort.c
@@ -1,7 +1,9 @@
/* An alternative to qsort, with an identical interface.
This file is part of the GNU C Library.
- Copyright (C) 1992, 1995-1997, 1999, 2000, 2001 Free Software Foundation, Inc.
- Written by Mike Haertel, September 1988.
+ Copyright (C) 1992, 1995-1997, 1999, 2000, 2001, 2002
+ Free Software Foundation, Inc.
+ Original Implementation by Mike Haertel, September 1988.
+ Towers of Hanoi Mergesort by Roger Sayle, January 2002.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -19,70 +21,372 @@
02111-1307 USA. */
#include <alloca.h>
+#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <memcopy.h>
#include <errno.h>
+
+/* Check whether pointer P is aligned for access by type T. */
+#define TYPE_ALIGNED(P,T) (((char *) (P) - (char *) 0) % __alignof__ (T) == 0)
+
+
+static int hanoi_sort (char *b, size_t n, size_t s,
+ __compar_fn_t cmp, char *t);
+static int hanoi_sort_int (int *b, size_t n,
+ __compar_fn_t cmp, int *t);
+#if INT_MAX != LONG_MAX
+static int hanoi_sort_long (long int *b, size_t n,
+ __compar_fn_t cmp, long int *t);
+#endif
static void msort_with_tmp (void *b, size_t n, size_t s,
- __compar_fn_t cmp, char *t);
+ __compar_fn_t cmp, void *t);
-static void
-msort_with_tmp (void *b, size_t n, size_t s, __compar_fn_t cmp,
- char *t)
+
+/* This routine implements "Towers of Hanoi Mergesort". The algorithm
+ sorts the n elements of size s pointed to by array b using comparison
+ function cmp. The argument t points to a suitable temporary buffer.
+ If the return value is zero, the sorted array is returned in b, and
+ for non-zero return values the sorted array is returned in t. */
+static int
+hanoi_sort (char *b, size_t n, size_t s, __compar_fn_t cmp, char *t)
{
- char *tmp;
- char *b1, *b2;
size_t n1, n2;
+ char *b1,*b2;
+ char *t1,*t2;
+ char *s1,*s2;
+ size_t size;
+ int result;
+ char *ptr;
if (n <= 1)
- return;
+ return 0;
- n1 = n / 2;
+ if (n == 2)
+ {
+ b2 = b + s;
+ if ((*cmp) (b, b2) <= 0)
+ return 0;
+ memcpy (__mempcpy (t, b2, s), b, s);
+ return 1;
+ }
+
+ n1 = n/2;
n2 = n - n1;
+ /* n1 < n2! */
+
+ size = n1 * s;
b1 = b;
- b2 = (char *) b + (n1 * s);
-
- msort_with_tmp (b1, n1, s, cmp, t);
- msort_with_tmp (b2, n2, s, cmp, t);
-
- tmp = t;
-
- if (s == OPSIZ && (b1 - (char *) 0) % OPSIZ == 0)
- /* We are operating on aligned words. Use direct word stores. */
- while (n1 > 0 && n2 > 0)
- {
- if ((*cmp) (b1, b2) <= 0)
- {
- --n1;
- *((op_t *) tmp)++ = *((op_t *) b1)++;
- }
- else
- {
- --n2;
- *((op_t *) tmp)++ = *((op_t *) b2)++;
- }
- }
+ b2 = b + size;
+
+ t1 = t;
+ t2 = t + size;
+
+ /* Recursively call hanoi_sort to sort the two halves of the array.
+ Depending upon the return values, determine the values s1 and s2
+ the locations of the two sorted subarrays, ptr, the location to
+ contain the sorted array and result, the return value for this
+ function. Note that "ptr = result? t : b". */
+ if (hanoi_sort (b1, n1, s, cmp, t1))
+ {
+ if (hanoi_sort (b2, n2, s, cmp, t2))
+ {
+ result = 0;
+ ptr = b;
+ s1 = t1;
+ s2 = t2;
+ }
+ else
+ {
+ result = 0;
+ ptr = b;
+ s1 = t1;
+ s2 = b2;
+ }
+ }
else
- while (n1 > 0 && n2 > 0)
- {
- if ((*cmp) (b1, b2) <= 0)
- {
- tmp = (char *) __mempcpy (tmp, b1, s);
- b1 += s;
- --n1;
- }
- else
- {
- tmp = (char *) __mempcpy (tmp, b2, s);
- b2 += s;
- --n2;
- }
- }
- if (n1 > 0)
- memcpy (tmp, b1, n1 * s);
- memcpy (b, t, (n - n2) * s);
+ {
+ if (hanoi_sort (b2, n2, s, cmp, t2))
+ {
+ result = 1;
+ ptr = t;
+ s1 = b1;
+ s2 = t2;
+ }
+ else
+ {
+ result = 1;
+ ptr = t;
+ s1 = b1;
+ s2 = b2;
+ }
+ }
+
+ /* Merge the two sorted arrays s1 and s2 of n1 and n2 elements
+ respectively, placing the result in ptr. On entry, n1 > 0
+ && n2 > 0, and with each iteration either n1 or n2 is decreased
+ until either reaches zero, and the loop terminates via return. */
+ for (;;)
+ {
+ if ((*cmp) (s1, s2) <= 0)
+ {
+ ptr = (char *) __mempcpy (ptr, s1, s);
+ s1 += s;
+ --n1;
+ if (n1 == 0)
+ {
+ if (ptr != s2)
+ memcpy (ptr, s2, n2 * s);
+ return result;
+ }
+ }
+ else
+ {
+ ptr = (char *) __mempcpy (ptr, s2, s);
+ s2 += s;
+ --n2;
+ if (n2 == 0)
+ {
+ memcpy (ptr, s1, n1 * s);
+ return result;
+ }
+ }
+ }
+}
+
+
+/* This routine is a variant of hanoi_sort that is optimized for the
+ case where items to be sorted are the size of ints, and both b and
+ t are suitably aligned. The parameter s in not needed as it is
+ known to be sizeof(int). */
+static int
+hanoi_sort_int (int *b, size_t n, __compar_fn_t cmp, int *t)
+{
+ size_t n1, n2;
+ int *b1,*b2;
+ int *t1,*t2;
+ int *s1,*s2;
+ int result;
+ int *ptr;
+
+ if (n <= 1)
+ return 0;
+
+ if (n == 2)
+ {
+ if ((*cmp) (b, b + 1) <= 0)
+ return 0;
+ t[0] = b[1];
+ t[1] = b[0];
+ return 1;
+ }
+
+ n1 = n/2;
+ n2 = n - n1;
+ /* n1 < n2! */
+
+ b1 = b;
+ b2 = b + n1;
+
+ t1 = t;
+ t2 = t + n1;
+
+ /* Recursively call hanoi_sort_int to sort the two halves. */
+ if (hanoi_sort_int (b1, n1, cmp, t1))
+ {
+ if (hanoi_sort_int (b2, n2, cmp, t2))
+ {
+ result = 0;
+ ptr = b;
+ s1 = t1;
+ s2 = t2;
+ }
+ else
+ {
+ result = 0;
+ ptr = b;
+ s1 = t1;
+ s2 = b2;
+ }
+ }
+ else
+ {
+ if (hanoi_sort_int (b2, n2, cmp, t2))
+ {
+ result = 1;
+ ptr = t;
+ s1 = b1;
+ s2 = t2;
+ }
+ else
+ {
+ result = 1;
+ ptr = t;
+ s1 = b1;
+ s2 = b2;
+ }
+ }
+
+ /* Merge n1 elements from s1 and n2 elements from s2 into ptr. */
+ for (;;)
+ {
+ if ((*cmp) (s1, s2) <= 0)
+ {
+ *ptr++ = *s1++;
+ --n1;
+ if (n1 == 0)
+ {
+ if (ptr != s2)
+ memcpy (ptr, s2, n2 * sizeof (int));
+ return result;
+ }
+ }
+ else
+ {
+ *ptr++ = *s2++;
+ --n2;
+ if (n2 == 0)
+ {
+ memcpy (ptr, s1, n1 * sizeof (int));
+ return result;
+ }
+ }
+ }
+}
+
+
+#if INT_MAX != LONG_MAX
+/* This routine is a variant of hanoi_sort that is optimized for the
+ case where items to be sorted are the size of longs, and both b and
+ t are suitably aligned. The parameter s in not needed as it is
+ known to be sizeof(long). In case sizeof(int)== sizeof(long) we
+ do not need this code since it would be the same as hanoi_sort_int. */
+static int
+hanoi_sort_long (long int *b, size_t n, __compar_fn_t cmp, long int *t)
+{
+ size_t n1, n2;
+ long int *b1,*b2;
+ long int *t1,*t2;
+ long int *s1,*s2;
+ int result;
+ long int *ptr;
+
+ if (n <= 1)
+ return 0;
+
+ if (n == 2)
+ {
+ if ((*cmp) (b, b + 1) <= 0)
+ return 0;
+ t[0] = b[1];
+ t[1] = b[0];
+ return 1;
+ }
+
+ n1 = n/2;
+ n2 = n - n1;
+ /* n1 < n2! */
+
+ b1 = b;
+ b2 = b + n1;
+
+ t1 = t;
+ t2 = t + n1;
+
+ /* Recursively call hanoi_sort_long to sort the two halves. */
+ if (hanoi_sort_long (b1, n1, cmp, t1))
+ {
+ if (hanoi_sort_long (b2, n2, cmp, t2))
+ {
+ result = 0;
+ ptr = b;
+ s1 = t1;
+ s2 = t2;
+ }
+ else
+ {
+ result = 0;
+ ptr = b;
+ s1 = t1;
+ s2 = b2;
+ }
+ }
+ else
+ {
+ if (hanoi_sort_long (b2, n2, cmp, t2))
+ {
+ result = 1;
+ ptr = t;
+ s1 = b1;
+ s2 = t2;
+ }
+ else
+ {
+ result = 1;
+ ptr = t;
+ s1 = b1;
+ s2 = b2;
+ }
+ }
+
+ /* Merge n1 elements from s1 and n2 elements from s2 into ptr. */
+ for (;;)
+ {
+ if ((*cmp) (s1, s2) <= 0)
+ {
+ *ptr++ = *s1++;
+ --n1;
+ if (n1 == 0)
+ {
+ if (ptr != s2)
+ memcpy (ptr, s2, n2 * sizeof (long));
+ return result;
+ }
+ }
+ else
+ {
+ *ptr++ = *s2++;
+ --n2;
+ if (n2 == 0)
+ {
+ memcpy (ptr, s1, n1 * sizeof (long));
+ return result;
+ }
+ }
+ }
+}
+#endif
+
+
+/* This routine preserves the original interface to msort_with_tmp and
+ determines which variant of hanoi_sort to call, based upon item size
+ and alignment. */
+
+static void
+msort_with_tmp (void *b, size_t n, size_t s, __compar_fn_t cmp, void *t)
+{
+ const size_t size = n * s;
+
+ if (s == sizeof (int) && TYPE_ALIGNED (b, int))
+ {
+ if (hanoi_sort_int (b, n, cmp, t))
+ memcpy (b, t, size);
+ }
+#if INT_MAX != LONG_MAX
+ else if (s == sizeof (long int) && TYPE_ALIGNED (b, long int))
+ {
+ if (hanoi_sort_long (b, n, cmp, t))
+ memcpy (b, t, size);
+ }
+#endif
+ else
+ {
+ /* Call the generic implementation. */
+ if (hanoi_sort (b, n, s, cmp, t))
+ memcpy (b, t, size);
+ }
}
void
@@ -93,7 +397,7 @@ qsort (void *b, size_t n, size_t s, __compar_fn_t cmp)
if (size < 1024)
{
void *buf = __alloca (size);
-
+
/* The temporary array is small, so put it on the stack. */
msort_with_tmp (b, n, s, cmp, buf);
}
@@ -130,7 +434,7 @@ qsort (void *b, size_t n, size_t s, __compar_fn_t cmp)
measured in bytes. */
/* If the memory requirements are too high don't allocate memory. */
- if (size / pagesize > phys_pages)
+ if ((long int) (size / pagesize) > phys_pages)
_quicksort (b, n, s, cmp);
else
{