aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ChangeLog7
-rw-r--r--math/s_catan_template.c143
-rw-r--r--math/s_catanh_template.c137
-rw-r--r--math/s_ctan_template.c129
-rw-r--r--math/s_ctanh_template.c129
5 files changed, 545 insertions, 0 deletions
diff --git a/ChangeLog b/ChangeLog
index 18ae1c3..4ae38e3 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,5 +1,12 @@
2016-08-19 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
+ * s_catan_template.c: Copy of s_catan.c.
+ * s_catanh_template.c: Copy of s_catanh.c.
+ * s_ctan_template.c: Copy of s_ctan.c.
+ * s_ctanh_template.c: Copy of s_ctanh.c.
+
+2016-08-19 Paul E. Murphy <murphyp@linux.vnet.ibm.com>
+
* math/Makefile (gen-libm-calls): Move
casin, casinh, csin, csinh here.
(libm-calls): Remove the above.
diff --git a/math/s_catan_template.c b/math/s_catan_template.c
new file mode 100644
index 0000000..5ab4c0d
--- /dev/null
+++ b/math/s_catan_template.c
@@ -0,0 +1,143 @@
+/* Return arc tangent of complex double value.
+ Copyright (C) 1997-2016 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <complex.h>
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+__complex__ double
+__catan (__complex__ double x)
+{
+ __complex__ double res;
+ int rcls = fpclassify (__real__ x);
+ int icls = fpclassify (__imag__ x);
+
+ if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
+ {
+ if (rcls == FP_INFINITE)
+ {
+ __real__ res = __copysign (M_PI_2, __real__ x);
+ __imag__ res = __copysign (0.0, __imag__ x);
+ }
+ else if (icls == FP_INFINITE)
+ {
+ if (rcls >= FP_ZERO)
+ __real__ res = __copysign (M_PI_2, __real__ x);
+ else
+ __real__ res = __nan ("");
+ __imag__ res = __copysign (0.0, __imag__ x);
+ }
+ else if (icls == FP_ZERO || icls == FP_INFINITE)
+ {
+ __real__ res = __nan ("");
+ __imag__ res = __copysign (0.0, __imag__ x);
+ }
+ else
+ {
+ __real__ res = __nan ("");
+ __imag__ res = __nan ("");
+ }
+ }
+ else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
+ {
+ res = x;
+ }
+ else
+ {
+ if (fabs (__real__ x) >= 16.0 / DBL_EPSILON
+ || fabs (__imag__ x) >= 16.0 / DBL_EPSILON)
+ {
+ __real__ res = __copysign (M_PI_2, __real__ x);
+ if (fabs (__real__ x) <= 1.0)
+ __imag__ res = 1.0 / __imag__ x;
+ else if (fabs (__imag__ x) <= 1.0)
+ __imag__ res = __imag__ x / __real__ x / __real__ x;
+ else
+ {
+ double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0);
+ __imag__ res = __imag__ x / h / h / 4.0;
+ }
+ }
+ else
+ {
+ double den, absx, absy;
+
+ absx = fabs (__real__ x);
+ absy = fabs (__imag__ x);
+ if (absx < absy)
+ {
+ double t = absx;
+ absx = absy;
+ absy = t;
+ }
+
+ if (absy < DBL_EPSILON / 2.0)
+ {
+ den = (1.0 - absx) * (1.0 + absx);
+ if (den == -0.0)
+ den = 0.0;
+ }
+ else if (absx >= 1.0)
+ den = (1.0 - absx) * (1.0 + absx) - absy * absy;
+ else if (absx >= 0.75 || absy >= 0.5)
+ den = -__x2y2m1 (absx, absy);
+ else
+ den = (1.0 - absx) * (1.0 + absx) - absy * absy;
+
+ __real__ res = 0.5 * __ieee754_atan2 (2.0 * __real__ x, den);
+
+ if (fabs (__imag__ x) == 1.0
+ && fabs (__real__ x) < DBL_EPSILON * DBL_EPSILON)
+ __imag__ res = (__copysign (0.5, __imag__ x)
+ * (M_LN2 - __ieee754_log (fabs (__real__ x))));
+ else
+ {
+ double r2 = 0.0, num, f;
+
+ if (fabs (__real__ x) >= DBL_EPSILON * DBL_EPSILON)
+ r2 = __real__ x * __real__ x;
+
+ num = __imag__ x + 1.0;
+ num = r2 + num * num;
+
+ den = __imag__ x - 1.0;
+ den = r2 + den * den;
+
+ f = num / den;
+ if (f < 0.5)
+ __imag__ res = 0.25 * __ieee754_log (f);
+ else
+ {
+ num = 4.0 * __imag__ x;
+ __imag__ res = 0.25 * __log1p (num / den);
+ }
+ }
+ }
+
+ math_check_force_underflow_complex (res);
+ }
+
+ return res;
+}
+weak_alias (__catan, catan)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__catan, __catanl)
+weak_alias (__catan, catanl)
+#endif
diff --git a/math/s_catanh_template.c b/math/s_catanh_template.c
new file mode 100644
index 0000000..11ea062
--- /dev/null
+++ b/math/s_catanh_template.c
@@ -0,0 +1,137 @@
+/* Return arc hyperbole tangent for double value.
+ Copyright (C) 1997-2016 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <complex.h>
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+__complex__ double
+__catanh (__complex__ double x)
+{
+ __complex__ double res;
+ int rcls = fpclassify (__real__ x);
+ int icls = fpclassify (__imag__ x);
+
+ if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
+ {
+ if (icls == FP_INFINITE)
+ {
+ __real__ res = __copysign (0.0, __real__ x);
+ __imag__ res = __copysign (M_PI_2, __imag__ x);
+ }
+ else if (rcls == FP_INFINITE || rcls == FP_ZERO)
+ {
+ __real__ res = __copysign (0.0, __real__ x);
+ if (icls >= FP_ZERO)
+ __imag__ res = __copysign (M_PI_2, __imag__ x);
+ else
+ __imag__ res = __nan ("");
+ }
+ else
+ {
+ __real__ res = __nan ("");
+ __imag__ res = __nan ("");
+ }
+ }
+ else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
+ {
+ res = x;
+ }
+ else
+ {
+ if (fabs (__real__ x) >= 16.0 / DBL_EPSILON
+ || fabs (__imag__ x) >= 16.0 / DBL_EPSILON)
+ {
+ __imag__ res = __copysign (M_PI_2, __imag__ x);
+ if (fabs (__imag__ x) <= 1.0)
+ __real__ res = 1.0 / __real__ x;
+ else if (fabs (__real__ x) <= 1.0)
+ __real__ res = __real__ x / __imag__ x / __imag__ x;
+ else
+ {
+ double h = __ieee754_hypot (__real__ x / 2.0, __imag__ x / 2.0);
+ __real__ res = __real__ x / h / h / 4.0;
+ }
+ }
+ else
+ {
+ if (fabs (__real__ x) == 1.0
+ && fabs (__imag__ x) < DBL_EPSILON * DBL_EPSILON)
+ __real__ res = (__copysign (0.5, __real__ x)
+ * (M_LN2 - __ieee754_log (fabs (__imag__ x))));
+ else
+ {
+ double i2 = 0.0;
+ if (fabs (__imag__ x) >= DBL_EPSILON * DBL_EPSILON)
+ i2 = __imag__ x * __imag__ x;
+
+ double num = 1.0 + __real__ x;
+ num = i2 + num * num;
+
+ double den = 1.0 - __real__ x;
+ den = i2 + den * den;
+
+ double f = num / den;
+ if (f < 0.5)
+ __real__ res = 0.25 * __ieee754_log (f);
+ else
+ {
+ num = 4.0 * __real__ x;
+ __real__ res = 0.25 * __log1p (num / den);
+ }
+ }
+
+ double absx, absy, den;
+
+ absx = fabs (__real__ x);
+ absy = fabs (__imag__ x);
+ if (absx < absy)
+ {
+ double t = absx;
+ absx = absy;
+ absy = t;
+ }
+
+ if (absy < DBL_EPSILON / 2.0)
+ {
+ den = (1.0 - absx) * (1.0 + absx);
+ if (den == -0.0)
+ den = 0.0;
+ }
+ else if (absx >= 1.0)
+ den = (1.0 - absx) * (1.0 + absx) - absy * absy;
+ else if (absx >= 0.75 || absy >= 0.5)
+ den = -__x2y2m1 (absx, absy);
+ else
+ den = (1.0 - absx) * (1.0 + absx) - absy * absy;
+
+ __imag__ res = 0.5 * __ieee754_atan2 (2.0 * __imag__ x, den);
+ }
+
+ math_check_force_underflow_complex (res);
+ }
+
+ return res;
+}
+weak_alias (__catanh, catanh)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__catanh, __catanhl)
+weak_alias (__catanh, catanhl)
+#endif
diff --git a/math/s_ctan_template.c b/math/s_ctan_template.c
new file mode 100644
index 0000000..8e8bf2e
--- /dev/null
+++ b/math/s_ctan_template.c
@@ -0,0 +1,129 @@
+/* Complex tangent function for double.
+ Copyright (C) 1997-2016 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <complex.h>
+#include <fenv.h>
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+__complex__ double
+__ctan (__complex__ double x)
+{
+ __complex__ double res;
+
+ if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
+ {
+ if (isinf (__imag__ x))
+ {
+ if (isfinite (__real__ x) && fabs (__real__ x) > 1.0)
+ {
+ double sinrx, cosrx;
+ __sincos (__real__ x, &sinrx, &cosrx);
+ __real__ res = __copysign (0.0, sinrx * cosrx);
+ }
+ else
+ __real__ res = __copysign (0.0, __real__ x);
+ __imag__ res = __copysign (1.0, __imag__ x);
+ }
+ else if (__real__ x == 0.0)
+ {
+ res = x;
+ }
+ else
+ {
+ __real__ res = __nan ("");
+ __imag__ res = __nan ("");
+
+ if (isinf (__real__ x))
+ feraiseexcept (FE_INVALID);
+ }
+ }
+ else
+ {
+ double sinrx, cosrx;
+ double den;
+ const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
+
+ /* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
+ = (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
+
+ if (__glibc_likely (fabs (__real__ x) > DBL_MIN))
+ {
+ __sincos (__real__ x, &sinrx, &cosrx);
+ }
+ else
+ {
+ sinrx = __real__ x;
+ cosrx = 1.0;
+ }
+
+ if (fabs (__imag__ x) > t)
+ {
+ /* Avoid intermediate overflow when the real part of the
+ result may be subnormal. Ignoring negligible terms, the
+ imaginary part is +/- 1, the real part is
+ sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
+ double exp_2t = __ieee754_exp (2 * t);
+
+ __imag__ res = __copysign (1.0, __imag__ x);
+ __real__ res = 4 * sinrx * cosrx;
+ __imag__ x = fabs (__imag__ x);
+ __imag__ x -= t;
+ __real__ res /= exp_2t;
+ if (__imag__ x > t)
+ {
+ /* Underflow (original imaginary part of x has absolute
+ value > 2t). */
+ __real__ res /= exp_2t;
+ }
+ else
+ __real__ res /= __ieee754_exp (2 * __imag__ x);
+ }
+ else
+ {
+ double sinhix, coshix;
+ if (fabs (__imag__ x) > DBL_MIN)
+ {
+ sinhix = __ieee754_sinh (__imag__ x);
+ coshix = __ieee754_cosh (__imag__ x);
+ }
+ else
+ {
+ sinhix = __imag__ x;
+ coshix = 1.0;
+ }
+
+ if (fabs (sinhix) > fabs (cosrx) * DBL_EPSILON)
+ den = cosrx * cosrx + sinhix * sinhix;
+ else
+ den = cosrx * cosrx;
+ __real__ res = sinrx * cosrx / den;
+ __imag__ res = sinhix * coshix / den;
+ }
+ math_check_force_underflow_complex (res);
+ }
+
+ return res;
+}
+weak_alias (__ctan, ctan)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__ctan, __ctanl)
+weak_alias (__ctan, ctanl)
+#endif
diff --git a/math/s_ctanh_template.c b/math/s_ctanh_template.c
new file mode 100644
index 0000000..2d18875
--- /dev/null
+++ b/math/s_ctanh_template.c
@@ -0,0 +1,129 @@
+/* Complex hyperbole tangent for double.
+ Copyright (C) 1997-2016 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <complex.h>
+#include <fenv.h>
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+__complex__ double
+__ctanh (__complex__ double x)
+{
+ __complex__ double res;
+
+ if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
+ {
+ if (isinf (__real__ x))
+ {
+ __real__ res = __copysign (1.0, __real__ x);
+ if (isfinite (__imag__ x) && fabs (__imag__ x) > 1.0)
+ {
+ double sinix, cosix;
+ __sincos (__imag__ x, &sinix, &cosix);
+ __imag__ res = __copysign (0.0, sinix * cosix);
+ }
+ else
+ __imag__ res = __copysign (0.0, __imag__ x);
+ }
+ else if (__imag__ x == 0.0)
+ {
+ res = x;
+ }
+ else
+ {
+ __real__ res = __nan ("");
+ __imag__ res = __nan ("");
+
+ if (isinf (__imag__ x))
+ feraiseexcept (FE_INVALID);
+ }
+ }
+ else
+ {
+ double sinix, cosix;
+ double den;
+ const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
+
+ /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
+ = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */
+
+ if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
+ {
+ __sincos (__imag__ x, &sinix, &cosix);
+ }
+ else
+ {
+ sinix = __imag__ x;
+ cosix = 1.0;
+ }
+
+ if (fabs (__real__ x) > t)
+ {
+ /* Avoid intermediate overflow when the imaginary part of
+ the result may be subnormal. Ignoring negligible terms,
+ the real part is +/- 1, the imaginary part is
+ sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */
+ double exp_2t = __ieee754_exp (2 * t);
+
+ __real__ res = __copysign (1.0, __real__ x);
+ __imag__ res = 4 * sinix * cosix;
+ __real__ x = fabs (__real__ x);
+ __real__ x -= t;
+ __imag__ res /= exp_2t;
+ if (__real__ x > t)
+ {
+ /* Underflow (original real part of x has absolute value
+ > 2t). */
+ __imag__ res /= exp_2t;
+ }
+ else
+ __imag__ res /= __ieee754_exp (2 * __real__ x);
+ }
+ else
+ {
+ double sinhrx, coshrx;
+ if (fabs (__real__ x) > DBL_MIN)
+ {
+ sinhrx = __ieee754_sinh (__real__ x);
+ coshrx = __ieee754_cosh (__real__ x);
+ }
+ else
+ {
+ sinhrx = __real__ x;
+ coshrx = 1.0;
+ }
+
+ if (fabs (sinhrx) > fabs (cosix) * DBL_EPSILON)
+ den = sinhrx * sinhrx + cosix * cosix;
+ else
+ den = cosix * cosix;
+ __real__ res = sinhrx * coshrx / den;
+ __imag__ res = sinix * cosix / den;
+ }
+ math_check_force_underflow_complex (res);
+ }
+
+ return res;
+}
+weak_alias (__ctanh, ctanh)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__ctanh, __ctanhl)
+weak_alias (__ctanh, ctanhl)
+#endif