aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ChangeLog7
-rw-r--r--manual/probes.texi17
-rw-r--r--sysdeps/ieee754/dbl-64/e_log.c127
-rw-r--r--sysdeps/ieee754/dbl-64/ulog.h94
4 files changed, 23 insertions, 222 deletions
diff --git a/ChangeLog b/ChangeLog
index 290d474..d823e3a 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,10 @@
+2018-02-07 Wilco Dijkstra <wdijkstr@arm.com>
+
+ * manual/probes.texi (slowlog): Delete documentation of removed probe.
+ (slowlog_inexact): Likewise
+ * sysdeps/ieee754/dbl-64/e_log.c (__ieee754_log): Remove slow paths.
+ * sysdeps/ieee754/dbl-64/ulog.h: Remove unused declarations.
+
2018-02-07 Igor Gnatenko <ignatenko@redhat.com>
[BZ #22797]
diff --git a/manual/probes.texi b/manual/probes.texi
index 8ab6756..e99b7f3 100644
--- a/manual/probes.texi
+++ b/manual/probes.texi
@@ -288,23 +288,6 @@ input that results in multiple precision computation with precision
and @code{$arg4} is the final accurate value.
@end deftp
-@deftp Probe slowlog (int @var{$arg1}, double @var{$arg2}, double @var{$arg3})
-This probe is triggered when the @code{log} function is called with an
-input that results in multiple precision computation. Argument
-@var{$arg1} is the precision with which the computation succeeded.
-Argument @var{$arg2} is the input and @var{$arg3} is the computed
-output.
-@end deftp
-
-@deftp Probe slowlog_inexact (int @var{$arg1}, double @var{$arg2}, double @var{$arg3})
-This probe is triggered when the @code{log} function is called with an
-input that results in multiple precision computation and none of the
-multiple precision computations result in an accurate result.
-Argument @var{$arg1} is the maximum precision with which computations
-were performed. Argument @var{$arg2} is the input and @var{$arg3} is
-the computed output.
-@end deftp
-
@deftp Probe slowatan2 (int @var{$arg1}, double @var{$arg2}, double @var{$arg3}, double @var{$arg4})
This probe is triggered when the @code{atan2} function is called with
an input that results in multiple precision computation. Argument
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c
index 6a18ebb..2483dd8 100644
--- a/sysdeps/ieee754/dbl-64/e_log.c
+++ b/sysdeps/ieee754/dbl-64/e_log.c
@@ -23,11 +23,10 @@
/* FUNCTION:ulog */
/* */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */
-/* mpexp.c mplog.c mpa.c */
/* ulog.tbl */
/* */
/* An ultimate log routine. Given an IEEE double machine number x */
-/* it computes the correctly rounded (to nearest) value of log(x). */
+/* it computes the rounded (to nearest) value of log(x). */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
@@ -40,34 +39,26 @@
#include "MathLib.h"
#include <math.h>
#include <math_private.h>
-#include <stap-probe.h>
#ifndef SECTION
# define SECTION
#endif
-void __mplog (mp_no *, mp_no *, int);
-
/*********************************************************************/
-/* An ultimate log routine. Given an IEEE double machine number x */
-/* it computes the correctly rounded (to nearest) value of log(x). */
+/* An ultimate log routine. Given an IEEE double machine number x */
+/* it computes the rounded (to nearest) value of log(x). */
/*********************************************************************/
double
SECTION
__ieee754_log (double x)
{
-#define M 4
- static const int pr[M] = { 8, 10, 18, 32 };
- int i, j, n, ux, dx, p;
+ int i, j, n, ux, dx;
double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj,
- sij, ssij, ttij, A, B, B0, y, y1, y2, polI, polII, sa, sb,
- t1, t2, t7, t8, t, ra, rb, ww,
- a0, aa0, s1, s2, ss2, s3, ss3, a1, aa1, a, aa, b, bb, c;
+ sij, ssij, ttij, A, B, B0, polI, polII, t8, a, aa, b, bb, c;
#ifndef DLA_FMS
- double t3, t4, t5, t6;
+ double t1, t2, t3, t4, t5;
#endif
number num;
- mp_no mpx, mpy, mpy1, mpy2, mperr;
#include "ulog.tbl"
#include "ulog.h"
@@ -101,7 +92,7 @@ __ieee754_log (double x)
if (w == 0.0)
return 0.0;
- /*--- Stage I, the case abs(x-1) < 0.03 */
+ /*--- The case abs(x-1) < 0.03 */
t8 = MHALF * w;
EMULV (t8, w, a, aa, t1, t2, t3, t4, t5);
@@ -118,50 +109,12 @@ __ieee754_log (double x)
polII *= w * w * w;
c = (aa + bb) + polII;
- /* End stage I, case abs(x-1) < 0.03 */
- if ((y = b + (c + b * E2)) == b + (c - b * E2))
- return y;
-
- /*--- Stage II, the case abs(x-1) < 0.03 */
-
- a = d19.d + w * d20.d;
- a = d18.d + w * a;
- a = d17.d + w * a;
- a = d16.d + w * a;
- a = d15.d + w * a;
- a = d14.d + w * a;
- a = d13.d + w * a;
- a = d12.d + w * a;
- a = d11.d + w * a;
-
- EMULV (w, a, s2, ss2, t1, t2, t3, t4, t5);
- ADD2 (d10.d, dd10.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d9.d, dd9.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d8.d, dd8.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d7.d, dd7.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d6.d, dd6.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d5.d, dd5.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d4.d, dd4.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d3.d, dd3.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d2.d, dd2.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- MUL2 (w, 0, s2, ss2, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (w, 0, s3, ss3, b, bb, t1, t2);
+ /* Here b contains the high part of the result, and c the low part.
+ Maximum error is b * 2.334e-19, so accuracy is >61 bits.
+ Therefore max ULP error of b + c is ~0.502. */
+ return b + c;
- /* End stage II, case abs(x-1) < 0.03 */
- if ((y = b + (bb + b * E4)) == b + (bb - b * E4))
- return y;
- goto stage_n;
-
- /*--- Stage I, the case abs(x-1) > 0.03 */
+ /*--- The case abs(x-1) > 0.03 */
case_03:
/* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */
@@ -203,58 +156,10 @@ case_03:
B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B;
B = polI + B0;
- /* End stage I, case abs(x-1) >= 0.03 */
- if ((y = A + (B + E1)) == A + (B - E1))
- return y;
-
-
- /*--- Stage II, the case abs(x-1) > 0.03 */
-
- /* Improve the accuracy of r0 */
- EMULV (p0, r0, sa, sb, t1, t2, t3, t4, t5);
- t = r0 * ((1 - sa) - sb);
- EADD (r0, t, ra, rb);
-
- /* Compute w */
- MUL2 (q, 0, ra, rb, w, ww, t1, t2, t3, t4, t5, t6, t7, t8);
-
- EADD (A, B0, a0, aa0);
-
- /* Evaluate polynomial III */
- s1 = (c3.d + (c4.d + c5.d * w) * w) * w;
- EADD (c2.d, s1, s2, ss2);
- MUL2 (s2, ss2, w, ww, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
- MUL2 (s3, ss3, w, ww, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (s2, ss2, w, ww, s3, ss3, t1, t2);
- ADD2 (s3, ss3, a0, aa0, a1, aa1, t1, t2);
-
- /* End stage II, case abs(x-1) >= 0.03 */
- if ((y = a1 + (aa1 + E3)) == a1 + (aa1 - E3))
- return y;
-
-
- /* Final stages. Use multi-precision arithmetic. */
-stage_n:
-
- for (i = 0; i < M; i++)
- {
- p = pr[i];
- __dbl_mp (x, &mpx, p);
- __dbl_mp (y, &mpy, p);
- __mplog (&mpx, &mpy, p);
- __dbl_mp (e[i].d, &mperr, p);
- __add (&mpy, &mperr, &mpy1, p);
- __sub (&mpy, &mperr, &mpy2, p);
- __mp_dbl (&mpy1, &y1, p);
- __mp_dbl (&mpy2, &y2, p);
- if (y1 == y2)
- {
- LIBC_PROBE (slowlog, 3, &p, &x, &y1);
- return y1;
- }
- }
- LIBC_PROBE (slowlog_inexact, 3, &p, &x, &y1);
- return y1;
+ /* Here A contains the high part of the result, and B the low part.
+ Maximum abs error is 6.095e-21 and min log (x) is 0.0295 since x > 1.03.
+ Therefore max ULP error of A + B is ~0.502. */
+ return A + B;
}
#ifndef __ieee754_log
diff --git a/sysdeps/ieee754/dbl-64/ulog.h b/sysdeps/ieee754/dbl-64/ulog.h
index 36a3113..087b76e 100644
--- a/sysdeps/ieee754/dbl-64/ulog.h
+++ b/sysdeps/ieee754/dbl-64/ulog.h
@@ -42,43 +42,6 @@
/**/ b6 = {{0x3fbc71c5, 0x25db58ac} }, /* 0.111... */
/**/ b7 = {{0xbfb9a4ac, 0x11a2a61c} }, /* -0.100... */
/**/ b8 = {{0x3fb75077, 0x0df2b591} }, /* 0.091... */
- /* polynomial III */
-#if 0
-/**/ c1 = {{0x3ff00000, 0x00000000} }, /* 1 */
-#endif
-/**/ c2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */
-/**/ c3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */
-/**/ c4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */
-/**/ c5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
- /* polynomial IV */
-/**/ d2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */
-/**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */
-/**/ d3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */
-/**/ dd3 = {{0x3c755555, 0x55555555} }, /* 1/3-d3 */
-/**/ d4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */
-/**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */
-/**/ d5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
-/**/ dd5 = {{0xbc699999, 0x9999999a} }, /* 1/5-d5 */
-/**/ d6 = {{0xbfc55555, 0x55555555} }, /* -1/6 */
-/**/ dd6 = {{0xbc655555, 0x55555555} }, /* -1/6-d6 */
-/**/ d7 = {{0x3fc24924, 0x92492492} }, /* 1/7 */
-/**/ dd7 = {{0x3c624924, 0x92492492} }, /* 1/7-d7 */
-/**/ d8 = {{0xbfc00000, 0x00000000} }, /* -1/8 */
-/**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */
-/**/ d9 = {{0x3fbc71c7, 0x1c71c71c} }, /* 1/9 */
-/**/ dd9 = {{0x3c5c71c7, 0x1c71c71c} }, /* 1/9-d9 */
-/**/ d10 = {{0xbfb99999, 0x9999999a} }, /* -1/10 */
-/**/ dd10 = {{0x3c599999, 0x9999999a} }, /* -1/10-d10 */
-/**/ d11 = {{0x3fb745d1, 0x745d1746} }, /* 1/11 */
-/**/ d12 = {{0xbfb55555, 0x55555555} }, /* -1/12 */
-/**/ d13 = {{0x3fb3b13b, 0x13b13b14} }, /* 1/13 */
-/**/ d14 = {{0xbfb24924, 0x92492492} }, /* -1/14 */
-/**/ d15 = {{0x3fb11111, 0x11111111} }, /* 1/15 */
-/**/ d16 = {{0xbfb00000, 0x00000000} }, /* -1/16 */
-/**/ d17 = {{0x3fae1e1e, 0x1e1e1e1e} }, /* 1/17 */
-/**/ d18 = {{0xbfac71c7, 0x1c71c71c} }, /* -1/18 */
-/**/ d19 = {{0x3faaf286, 0xbca1af28} }, /* 1/19 */
-/**/ d20 = {{0xbfa99999, 0x9999999a} }, /* -1/20 */
/* constants */
/**/ sqrt_2 = {{0x3ff6a09e, 0x667f3bcc} }, /* sqrt(2) */
/**/ h1 = {{0x3fd2e000, 0x00000000} }, /* 151/2**9 */
@@ -87,14 +50,6 @@
/**/ delv = {{0x3ef00000, 0x00000000} }, /* 1/2**16 */
/**/ ln2a = {{0x3fe62e42, 0xfefa3800} }, /* ln(2) 43 bits */
/**/ ln2b = {{0x3d2ef357, 0x93c76730} }, /* ln(2)-ln2a */
-/**/ e1 = {{0x3bbcc868, 0x00000000} }, /* 6.095e-21 */
-/**/ e2 = {{0x3c1138ce, 0x00000000} }, /* 2.334e-19 */
-/**/ e3 = {{0x3aa1565d, 0x00000000} }, /* 2.801e-26 */
-/**/ e4 = {{0x39809d88, 0x00000000} }, /* 1.024e-31 */
-/**/ e[M] ={{{0x37da223a, 0x00000000} }, /* 1.2e-39 */
-/**/ {{0x35c851c4, 0x00000000} }, /* 1.3e-49 */
-/**/ {{0x2ab85e51, 0x00000000} }, /* 6.8e-103 */
-/**/ {{0x17383827, 0x00000000} }},/* 8.1e-197 */
/**/ two54 = {{0x43500000, 0x00000000} }, /* 2**54 */
/**/ u03 = {{0x3f9eb851, 0xeb851eb8} }; /* 0.03 */
@@ -114,43 +69,6 @@
/**/ b6 = {{0x25db58ac, 0x3fbc71c5} }, /* 0.111... */
/**/ b7 = {{0x11a2a61c, 0xbfb9a4ac} }, /* -0.100... */
/**/ b8 = {{0x0df2b591, 0x3fb75077} }, /* 0.091... */
- /* polynomial III */
-#if 0
-/**/ c1 = {{0x00000000, 0x3ff00000} }, /* 1 */
-#endif
-/**/ c2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */
-/**/ c3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */
-/**/ c4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */
-/**/ c5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
- /* polynomial IV */
-/**/ d2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */
-/**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */
-/**/ d3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */
-/**/ dd3 = {{0x55555555, 0x3c755555} }, /* 1/3-d3 */
-/**/ d4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */
-/**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */
-/**/ d5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
-/**/ dd5 = {{0x9999999a, 0xbc699999} }, /* 1/5-d5 */
-/**/ d6 = {{0x55555555, 0xbfc55555} }, /* -1/6 */
-/**/ dd6 = {{0x55555555, 0xbc655555} }, /* -1/6-d6 */
-/**/ d7 = {{0x92492492, 0x3fc24924} }, /* 1/7 */
-/**/ dd7 = {{0x92492492, 0x3c624924} }, /* 1/7-d7 */
-/**/ d8 = {{0x00000000, 0xbfc00000} }, /* -1/8 */
-/**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */
-/**/ d9 = {{0x1c71c71c, 0x3fbc71c7} }, /* 1/9 */
-/**/ dd9 = {{0x1c71c71c, 0x3c5c71c7} }, /* 1/9-d9 */
-/**/ d10 = {{0x9999999a, 0xbfb99999} }, /* -1/10 */
-/**/ dd10 = {{0x9999999a, 0x3c599999} }, /* -1/10-d10 */
-/**/ d11 = {{0x745d1746, 0x3fb745d1} }, /* 1/11 */
-/**/ d12 = {{0x55555555, 0xbfb55555} }, /* -1/12 */
-/**/ d13 = {{0x13b13b14, 0x3fb3b13b} }, /* 1/13 */
-/**/ d14 = {{0x92492492, 0xbfb24924} }, /* -1/14 */
-/**/ d15 = {{0x11111111, 0x3fb11111} }, /* 1/15 */
-/**/ d16 = {{0x00000000, 0xbfb00000} }, /* -1/16 */
-/**/ d17 = {{0x1e1e1e1e, 0x3fae1e1e} }, /* 1/17 */
-/**/ d18 = {{0x1c71c71c, 0xbfac71c7} }, /* -1/18 */
-/**/ d19 = {{0xbca1af28, 0x3faaf286} }, /* 1/19 */
-/**/ d20 = {{0x9999999a, 0xbfa99999} }, /* -1/20 */
/* constants */
/**/ sqrt_2 = {{0x667f3bcc, 0x3ff6a09e} }, /* sqrt(2) */
/**/ h1 = {{0x00000000, 0x3fd2e000} }, /* 151/2**9 */
@@ -159,14 +77,6 @@
/**/ delv = {{0x00000000, 0x3ef00000} }, /* 1/2**16 */
/**/ ln2a = {{0xfefa3800, 0x3fe62e42} }, /* ln(2) 43 bits */
/**/ ln2b = {{0x93c76730, 0x3d2ef357} }, /* ln(2)-ln2a */
-/**/ e1 = {{0x00000000, 0x3bbcc868} }, /* 6.095e-21 */
-/**/ e2 = {{0x00000000, 0x3c1138ce} }, /* 2.334e-19 */
-/**/ e3 = {{0x00000000, 0x3aa1565d} }, /* 2.801e-26 */
-/**/ e4 = {{0x00000000, 0x39809d88} }, /* 1.024e-31 */
-/**/ e[M] ={{{0x00000000, 0x37da223a} }, /* 1.2e-39 */
-/**/ {{0x00000000, 0x35c851c4} }, /* 1.3e-49 */
-/**/ {{0x00000000, 0x2ab85e51} }, /* 6.8e-103 */
-/**/ {{0x00000000, 0x17383827} }},/* 8.1e-197 */
/**/ two54 = {{0x00000000, 0x43500000} }, /* 2**54 */
/**/ u03 = {{0xeb851eb8, 0x3f9eb851} }; /* 0.03 */
@@ -178,10 +88,6 @@
#define DEL_V delv.d
#define LN2A ln2a.d
#define LN2B ln2b.d
-#define E1 e1.d
-#define E2 e2.d
-#define E3 e3.d
-#define E4 e4.d
#define U03 u03.d
#endif