diff options
author | Adhemerval Zanella Netto <adhemerval.zanella@linaro.org> | 2023-03-20 13:01:17 -0300 |
---|---|---|
committer | Adhemerval Zanella <adhemerval.zanella@linaro.org> | 2023-04-03 16:45:18 -0300 |
commit | cf9cf33199fdd6550920ad43f19ad8b2435fc0c6 (patch) | |
tree | e03b3fb7d42424e4b7095a01b334e8db8296c1e8 /sysdeps | |
parent | 34b9f8bc170810c44184ad57ecf1800587e752a6 (diff) | |
download | glibc-cf9cf33199fdd6550920ad43f19ad8b2435fc0c6.zip glibc-cf9cf33199fdd6550920ad43f19ad8b2435fc0c6.tar.gz glibc-cf9cf33199fdd6550920ad43f19ad8b2435fc0c6.tar.bz2 |
math: Improve fmodf
This uses a new algorithm similar to already proposed earlier [1].
With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers),
the simplest implementation is:
mx * 2^ex == 2 * mx * 2^(ex - 1)
while (ex > ey)
{
mx *= 2;
--ex;
mx %= my;
}
With mx/my being mantissa of double floating pointer, on each step the
argument reduction can be improved 8 (which is sizeof of uint32_t minus
MANTISSA_WIDTH plus the signal bit):
while (ex > ey)
{
mx << 8;
ex -= 8;
mx %= my;
} */
The implementation uses builtin clz and ctz, along with shifts to
convert hx/hy back to doubles. Different than the original patch,
this path assume modulo/divide operation is slow, so use multiplication
with invert values.
I see the following performance improvements using fmod benchtests
(result only show the 'mean' result):
Architecture | Input | master | patch
-----------------|-----------------|----------|--------
x86_64 (Ryzen 9) | subnormals | 17.2549 | 12.0318
x86_64 (Ryzen 9) | normal | 85.4096 | 49.9641
x86_64 (Ryzen 9) | close-exponents | 19.1072 | 15.8224
aarch64 (N1) | subnormal | 10.2182 | 6.81778
aarch64 (N1) | normal | 60.0616 | 20.3667
aarch64 (N1) | close-exponents | 11.5256 | 8.39685
I also see similar improvements on arm-linux-gnueabihf when running on
the N1 aarch64 chips, where it a lot of soft-fp implementation (for
modulo, and multiplication):
Architecture | Input | master | patch
-----------------|-----------------|----------|--------
armhf (N1) | subnormal | 11.6662 | 10.8955
armhf (N1) | normal | 69.2759 | 34.1524
armhf (N1) | close-exponents | 13.6472 | 18.2131
Instead of using the math_private.h definitions, I used the
math_config.h instead which is used on newer math implementations.
Co-authored-by: kirill <kirill.okhotnikov@gmail.com>
[1] https://sourceware.org/pipermail/libc-alpha/2020-November/119794.html
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
Diffstat (limited to 'sysdeps')
-rw-r--r-- | sysdeps/ieee754/flt-32/e_fmodf.c | 239 | ||||
-rw-r--r-- | sysdeps/ieee754/flt-32/math_config.h | 41 |
2 files changed, 187 insertions, 93 deletions
diff --git a/sysdeps/ieee754/flt-32/e_fmodf.c b/sysdeps/ieee754/flt-32/e_fmodf.c index b71c4f7..4482b8c 100644 --- a/sysdeps/ieee754/flt-32/e_fmodf.c +++ b/sysdeps/ieee754/flt-32/e_fmodf.c @@ -1,102 +1,155 @@ -/* e_fmodf.c -- float version of e_fmod.c. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __ieee754_fmodf(x,y) - * Return x mod y in exact arithmetic - * Method: shift and subtract - */ +/* Floating-point remainder function. + Copyright (C) 2023 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <https://www.gnu.org/licenses/>. */ -#include <math.h> -#include <math_private.h> #include <libm-alias-finite.h> +#include <math.h> +#include "math_config.h" + +/* With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers), the + simplest implementation is: + + mx * 2^ex == 2 * mx * 2^(ex - 1) + + or -static const float one = 1.0, Zero[] = {0.0, -0.0,}; + while (ex > ey) + { + mx *= 2; + --ex; + mx %= my; + } + + With the mathematical equivalence of: + + r == x % y == (x % (N * y)) % y + + And with mx/my being mantissa of double floating point number (which uses + less bits than the storage type), on each step the argument reduction can + be improved by 8 (which is the size of uint32_t minus MANTISSA_WIDTH plus + the signal bit): + + mx * 2^ex == 2^8 * mx * 2^(ex - 8) + + or + + while (ex > ey) + { + mx << 8; + ex -= 8; + mx %= my; + } */ float __ieee754_fmodf (float x, float y) { - int32_t n,hx,hy,hz,ix,iy,sx,i; - - GET_FLOAT_WORD(hx,x); - GET_FLOAT_WORD(hy,y); - sx = hx&0x80000000; /* sign of x */ - hx ^=sx; /* |x| */ - hy &= 0x7fffffff; /* |y| */ - - /* purge off exception values */ - if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */ - (hy>0x7f800000)) /* or y is NaN */ - return (x*y)/(x*y); - if(hx<hy) return x; /* |x|<|y| return x */ - if(hx==hy) - return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/ - - /* determine ix = ilogb(x) */ - if(hx<0x00800000) { /* subnormal x */ - for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1; - } else ix = (hx>>23)-127; - - /* determine iy = ilogb(y) */ - if(hy<0x00800000) { /* subnormal y */ - for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1; - } else iy = (hy>>23)-127; - - /* set up {hx,lx}, {hy,ly} and align y to x */ - if(ix >= -126) - hx = 0x00800000|(0x007fffff&hx); - else { /* subnormal x, shift x to normal */ - n = -126-ix; - hx = hx<<n; - } - if(iy >= -126) - hy = 0x00800000|(0x007fffff&hy); - else { /* subnormal y, shift y to normal */ - n = -126-iy; - hy = hy<<n; - } - - /* fix point fmod */ - n = ix - iy; - while(n--) { - hz=hx-hy; - if(hz<0){hx = hx+hx;} - else { - if(hz==0) /* return sign(x)*0 */ - return Zero[(uint32_t)sx>>31]; - hx = hz+hz; - } - } - hz=hx-hy; - if(hz>=0) {hx=hz;} - - /* convert back to floating value and restore the sign */ - if(hx==0) /* return sign(x)*0 */ - return Zero[(uint32_t)sx>>31]; - while(hx<0x00800000) { /* normalize x */ - hx = hx+hx; - iy -= 1; - } - if(iy>= -126) { /* normalize output */ - hx = ((hx-0x00800000)|((iy+127)<<23)); - SET_FLOAT_WORD(x,hx|sx); - } else { /* subnormal output */ - n = -126 - iy; - hx >>= n; - SET_FLOAT_WORD(x,hx|sx); - x *= one; /* create necessary signal */ - } - return x; /* exact output */ + uint32_t hx = asuint (x); + uint32_t hy = asuint (y); + + uint32_t sx = hx & SIGN_MASK; + /* Get |x| and |y|. */ + hx ^= sx; + hy &= ~SIGN_MASK; + + /* Special cases: + - If x or y is a Nan, NaN is returned. + - If x is an inifinity, a NaN is returned. + - If y is zero, Nan is returned. + - If x is +0/-0, and y is not zero, +0/-0 is returned. */ + if (__glibc_unlikely (hy == 0 || hx >= EXPONENT_MASK || hy > EXPONENT_MASK)) + return (x * y) / (x * y); + + if (__glibc_unlikely (hx <= hy)) + { + if (hx < hy) + return x; + return asfloat (sx); + } + + int ex = hx >> MANTISSA_WIDTH; + int ey = hy >> MANTISSA_WIDTH; + + /* Common case where exponents are close: ey >= -103 and |x/y| < 2^8, */ + if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH)) + { + uint64_t mx = (hx & MANTISSA_MASK) | (MANTISSA_MASK + 1); + uint64_t my = (hy & MANTISSA_MASK) | (MANTISSA_MASK + 1); + + uint32_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my; + return make_float (d, ey - 1, sx); + } + + /* Special case, both x and y are subnormal. */ + if (__glibc_unlikely (ex == 0 && ey == 0)) + return asfloat (sx | hx % hy); + + /* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'. Assume that hx is + not subnormal by conditions above. */ + uint32_t mx = get_mantissa (hx) | (MANTISSA_MASK + 1); + ex--; + + uint32_t my = get_mantissa (hy) | (MANTISSA_MASK + 1); + int lead_zeros_my = EXPONENT_WIDTH; + if (__glibc_likely (ey > 0)) + ey--; + else + { + my = hy; + lead_zeros_my = __builtin_clz (my); + } + + int tail_zeros_my = __builtin_ctz (my); + int sides_zeroes = lead_zeros_my + tail_zeros_my; + int exp_diff = ex - ey; + + int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my; + my >>= right_shift; + exp_diff -= right_shift; + ey += right_shift; + + int left_shift = exp_diff < EXPONENT_WIDTH ? exp_diff : EXPONENT_WIDTH; + mx <<= left_shift; + exp_diff -= left_shift; + + mx %= my; + + if (__glibc_unlikely (mx == 0)) + return asfloat (sx); + + if (exp_diff == 0) + return make_float (mx, ey, sx); + + /* Assume modulo/divide operation is slow, so use multiplication with invert + values. */ + uint32_t inv_hy = UINT32_MAX / my; + while (exp_diff > sides_zeroes) { + exp_diff -= sides_zeroes; + uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - sides_zeroes); + mx <<= sides_zeroes; + mx -= hd * my; + while (__glibc_unlikely (mx > my)) + mx -= my; + } + uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - exp_diff); + mx <<= exp_diff; + mx -= hd * my; + while (__glibc_unlikely (mx > my)) + mx -= my; + + return make_float (mx, ey, sx); } libm_alias_finite (__ieee754_fmodf, __fmodf) diff --git a/sysdeps/ieee754/flt-32/math_config.h b/sysdeps/ieee754/flt-32/math_config.h index 23045f5..829430e 100644 --- a/sysdeps/ieee754/flt-32/math_config.h +++ b/sysdeps/ieee754/flt-32/math_config.h @@ -110,6 +110,47 @@ issignalingf_inline (float x) return 2 * (ix ^ 0x00400000) > 2 * 0x7fc00000UL; } +#define BIT_WIDTH 32 +#define MANTISSA_WIDTH 23 +#define EXPONENT_WIDTH 8 +#define MANTISSA_MASK 0x007fffff +#define EXPONENT_MASK 0x7f800000 +#define EXP_MANT_MASK 0x7fffffff +#define QUIET_NAN_MASK 0x00400000 +#define SIGN_MASK 0x80000000 + +static inline bool +is_nan (uint32_t x) +{ + return (x & EXP_MANT_MASK) > EXPONENT_MASK; +} + +static inline uint32_t +get_mantissa (uint32_t x) +{ + return x & MANTISSA_MASK; +} + +/* Convert integer number X, unbiased exponent EP, and sign S to double: + + result = X * 2^(EP+1 - exponent_bias) + + NB: zero is not supported. */ +static inline double +make_float (uint32_t x, int ep, uint32_t s) +{ + int lz = __builtin_clz (x) - EXPONENT_WIDTH; + x <<= lz; + ep -= lz; + + if (__glibc_unlikely (ep < 0 || x == 0)) + { + x >>= -ep; + ep = 0; + } + return asfloat (s + x + (ep << MANTISSA_WIDTH)); +} + #define NOINLINE __attribute__ ((noinline)) attribute_hidden float __math_oflowf (uint32_t); |