aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/sparc/divrem.m4
diff options
context:
space:
mode:
authorRoland McGrath <roland@gnu.org>1995-02-18 01:27:10 +0000
committerRoland McGrath <roland@gnu.org>1995-02-18 01:27:10 +0000
commit28f540f45bbacd939bfd07f213bcad2bf730b1bf (patch)
tree15f07c4c43d635959c6afee96bde71fb1b3614ee /sysdeps/sparc/divrem.m4
downloadglibc-28f540f45bbacd939bfd07f213bcad2bf730b1bf.zip
glibc-28f540f45bbacd939bfd07f213bcad2bf730b1bf.tar.gz
glibc-28f540f45bbacd939bfd07f213bcad2bf730b1bf.tar.bz2
initial import
Diffstat (limited to 'sysdeps/sparc/divrem.m4')
-rw-r--r--sysdeps/sparc/divrem.m4234
1 files changed, 234 insertions, 0 deletions
diff --git a/sysdeps/sparc/divrem.m4 b/sysdeps/sparc/divrem.m4
new file mode 100644
index 0000000..bde8a21
--- /dev/null
+++ b/sysdeps/sparc/divrem.m4
@@ -0,0 +1,234 @@
+/*
+ * Division and remainder, from Appendix E of the Sparc Version 8
+ * Architecture Manual, with fixes from Gordon Irlam.
+ */
+
+/*
+ * Input: dividend and divisor in %o0 and %o1 respectively.
+ *
+ * m4 parameters:
+ * NAME name of function to generate
+ * OP OP=div => %o0 / %o1; OP=rem => %o0 % %o1
+ * S S=true => signed; S=false => unsigned
+ *
+ * Algorithm parameters:
+ * N how many bits per iteration we try to get (4)
+ * WORDSIZE total number of bits (32)
+ *
+ * Derived constants:
+ * TOPBITS number of bits in the top `decade' of a number
+ *
+ * Important variables:
+ * Q the partial quotient under development (initially 0)
+ * R the remainder so far, initially the dividend
+ * ITER number of main division loop iterations required;
+ * equal to ceil(log2(quotient) / N). Note that this
+ * is the log base (2^N) of the quotient.
+ * V the current comparand, initially divisor*2^(ITER*N-1)
+ *
+ * Cost:
+ * Current estimate for non-large dividend is
+ * ceil(log2(quotient) / N) * (10 + 7N/2) + C
+ * A large dividend is one greater than 2^(31-TOPBITS) and takes a
+ * different path, as the upper bits of the quotient must be developed
+ * one bit at a time.
+ */
+
+define(N, `4')dnl
+define(WORDSIZE, `32')dnl
+define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))dnl
+dnl
+define(dividend, `%o0')dnl
+define(divisor, `%o1')dnl
+define(Q, `%o2')dnl
+define(R, `%o3')dnl
+define(ITER, `%o4')dnl
+define(V, `%o5')dnl
+dnl
+dnl m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d
+define(T, `%g1')dnl
+define(SC, `%g7')dnl
+ifelse(S, `true', `define(SIGN, `%g6')')dnl
+
+dnl
+dnl This is the recursive definition for developing quotient digits.
+dnl
+dnl Parameters:
+dnl $1 the current depth, 1 <= $1 <= N
+dnl $2 the current accumulation of quotient bits
+dnl N max depth
+dnl
+dnl We add a new bit to $2 and either recurse or insert the bits in
+dnl the quotient. R, Q, and V are inputs and outputs as defined above;
+dnl the condition codes are expected to reflect the input R, and are
+dnl modified to reflect the output R.
+dnl
+define(DEVELOP_QUOTIENT_BITS,
+` ! depth $1, accumulated bits $2
+ bl L.$1.eval(2**N+$2)
+ srl V,1,V
+ ! remainder is positive
+ subcc R,V,R
+ ifelse($1, N,
+ ` b 9f
+ add Q, ($2*2+1), Q
+ ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
+L.$1.eval(2**N+$2):
+ ! remainder is negative
+ addcc R,V,R
+ ifelse($1, N,
+ ` b 9f
+ add Q, ($2*2-1), Q
+ ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
+ ifelse($1, 1, `9:')')dnl
+
+#include "DEFS.h"
+#ifdef __svr4__
+#include <sys/trap.h>
+#else
+#include <machine/trap.h>
+#endif
+
+FUNC(NAME)
+ifelse(S, `true',
+` ! compute sign of result; if neither is negative, no problem
+ orcc divisor, dividend, %g0 ! either negative?
+ bge 2f ! no, go do the divide
+ifelse(OP, `div',
+` xor divisor, dividend, SIGN ! compute sign in any case',
+` mov dividend, SIGN ! sign of remainder matches dividend')
+ tst divisor
+ bge 1f
+ tst dividend
+ ! divisor is definitely negative; dividend might also be negative
+ bge 2f ! if dividend not negative...
+ sub %g0, divisor, divisor ! in any case, make divisor nonneg
+1: ! dividend is negative, divisor is nonnegative
+ sub %g0, dividend, dividend ! make dividend nonnegative
+2:
+')
+ ! Ready to divide. Compute size of quotient; scale comparand.
+ orcc divisor, %g0, V
+ bne 1f
+ mov dividend, R
+
+ ! Divide by zero trap. If it returns, return 0 (about as
+ ! wrong as possible, but that is what SunOS does...).
+ ta ST_DIV0
+ retl
+ clr %o0
+
+1:
+ cmp R, V ! if divisor exceeds dividend, done
+ blu Lgot_result ! (and algorithm fails otherwise)
+ clr Q
+ sethi %hi(1 << (WORDSIZE - TOPBITS - 1)), T
+ cmp R, T
+ blu Lnot_really_big
+ clr ITER
+
+ ! `Here the dividend is >= 2**(31-N) or so. We must be careful here,
+ ! as our usual N-at-a-shot divide step will cause overflow and havoc.
+ ! The number of bits in the result here is N*ITER+SC, where SC <= N.
+ ! Compute ITER in an unorthodox manner: know we need to shift V into
+ ! the top decade: so do not even bother to compare to R.'
+ 1:
+ cmp V, T
+ bgeu 3f
+ mov 1, SC
+ sll V, N, V
+ b 1b
+ add ITER, 1, ITER
+
+ ! Now compute SC.
+ 2: addcc V, V, V
+ bcc Lnot_too_big
+ add SC, 1, SC
+
+ ! We get here if the divisor overflowed while shifting.
+ ! This means that R has the high-order bit set.
+ ! Restore V and subtract from R.
+ sll T, TOPBITS, T ! high order bit
+ srl V, 1, V ! rest of V
+ add V, T, V
+ b Ldo_single_div
+ sub SC, 1, SC
+
+ Lnot_too_big:
+ 3: cmp V, R
+ blu 2b
+ nop
+ be Ldo_single_div
+ nop
+ /* NB: these are commented out in the V8-Sparc manual as well */
+ /* (I do not understand this) */
+ ! V > R: went too far: back up 1 step
+ ! srl V, 1, V
+ ! dec SC
+ ! do single-bit divide steps
+ !
+ ! We have to be careful here. We know that R >= V, so we can do the
+ ! first divide step without thinking. BUT, the others are conditional,
+ ! and are only done if R >= 0. Because both R and V may have the high-
+ ! order bit set in the first step, just falling into the regular
+ ! division loop will mess up the first time around.
+ ! So we unroll slightly...
+ Ldo_single_div:
+ subcc SC, 1, SC
+ bl Lend_regular_divide
+ nop
+ sub R, V, R
+ mov 1, Q
+ b Lend_single_divloop
+ nop
+ Lsingle_divloop:
+ sll Q, 1, Q
+ bl 1f
+ srl V, 1, V
+ ! R >= 0
+ sub R, V, R
+ b 2f
+ add Q, 1, Q
+ 1: ! R < 0
+ add R, V, R
+ sub Q, 1, Q
+ 2:
+ Lend_single_divloop:
+ subcc SC, 1, SC
+ bge Lsingle_divloop
+ tst R
+ b,a Lend_regular_divide
+
+Lnot_really_big:
+1:
+ sll V, N, V
+ cmp V, R
+ bleu 1b
+ addcc ITER, 1, ITER
+ be Lgot_result
+ sub ITER, 1, ITER
+
+ tst R ! set up for initial iteration
+Ldivloop:
+ sll Q, N, Q
+ DEVELOP_QUOTIENT_BITS(1, 0)
+Lend_regular_divide:
+ subcc ITER, 1, ITER
+ bge Ldivloop
+ tst R
+ bl,a Lgot_result
+ ! non-restoring fixup here (one instruction only!)
+ifelse(OP, `div',
+` sub Q, 1, Q
+', ` add R, divisor, R
+')
+
+Lgot_result:
+ifelse(S, `true',
+` ! check to see if answer should be < 0
+ tst SIGN
+ bl,a 1f
+ ifelse(OP, `div', `sub %g0, Q, Q', `sub %g0, R, R')
+1:')
+ retl
+ ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')