diff options
author | Roland McGrath <roland@gnu.org> | 1996-03-05 21:41:30 +0000 |
---|---|---|
committer | Roland McGrath <roland@gnu.org> | 1996-03-05 21:41:30 +0000 |
commit | f7eac6eb504f4baf13dbb4d26717942df050ebe6 (patch) | |
tree | 95ff129c06c7f6f246a5e2bfa489ba6382659d19 /sysdeps/libm-ieee754/e_j1.c | |
parent | 1521668f2afae1dc2ef5d7ffaeb84353b36874dd (diff) | |
download | glibc-f7eac6eb504f4baf13dbb4d26717942df050ebe6.zip glibc-f7eac6eb504f4baf13dbb4d26717942df050ebe6.tar.gz glibc-f7eac6eb504f4baf13dbb4d26717942df050ebe6.tar.bz2 |
Mon Mar 4 20:54:40 1996 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
* Makeconfig ($(common-objpfx)config.make): Depend on config.h.in.
Mon Mar 4 17:35:09 1996 Roland McGrath <roland@charlie-brown.gnu.ai.mit.edu>
* hurd/catch-signal.c (hurd_safe_memmove): New function.
(hurd_safe_copyin, hurd_safe_copyout): New functions.
* hurd/hurd/sigpreempt.h: Declare them.
Sun Mar 3 08:43:44 1996 Roland McGrath <roland@charlie-brown.gnu.ai.mit.edu>
Replace math code with fdlibm from Sun as modified for netbsd by
JT Conklin and Ian Taylor, including x86 FPU support.
* sysdeps/libm-ieee754, sysdeps/libm-i387: New directories.
* math/math_private.h: New file.
* sysdeps/i386/fpu/Implies: New file.
* sysdeps/ieee754/Implies: New file.
* math/machine/asm.h, math/machine/endian.h: New files.
* math/Makefile, math/math.h: Rewritten.
* mathcalls.h, math/mathcalls.h: New file, broken out of math.h.
* math/finite.c: File removed.
* sysdeps/generic/Makefile [$(subdir)=math]: Frobnication removed.
* math/test-math.c: Include errno.h and string.h.
* sysdeps/unix/bsd/dirstream.h: File removed.
* sysdeps/unix/bsd/readdir.c: File removed.
Diffstat (limited to 'sysdeps/libm-ieee754/e_j1.c')
-rw-r--r-- | sysdeps/libm-ieee754/e_j1.c | 486 |
1 files changed, 486 insertions, 0 deletions
diff --git a/sysdeps/libm-ieee754/e_j1.c b/sysdeps/libm-ieee754/e_j1.c new file mode 100644 index 0000000..cdc18dd --- /dev/null +++ b/sysdeps/libm-ieee754/e_j1.c @@ -0,0 +1,486 @@ +/* @(#)e_j1.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $"; +#endif + +/* __ieee754_j1(x), __ieee754_y1(x) + * Bessel function of the first and second kinds of order zero. + * Method -- j1(x): + * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... + * 2. Reduce x to |x| since j1(x)=-j1(-x), and + * for x in (0,2) + * j1(x) = x/2 + x*z*R0/S0, where z = x*x; + * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) + * for x in (2,inf) + * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) + * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) + * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) + * as follow: + * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) + * = 1/sqrt(2) * (sin(x) - cos(x)) + * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) + * = -1/sqrt(2) * (sin(x) + cos(x)) + * (To avoid cancellation, use + * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) + * to compute the worse one.) + * + * 3 Special cases + * j1(nan)= nan + * j1(0) = 0 + * j1(inf) = 0 + * + * Method -- y1(x): + * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN + * 2. For x<2. + * Since + * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) + * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. + * We use the following function to approximate y1, + * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 + * where for x in [0,2] (abs err less than 2**-65.89) + * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4 + * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5 + * Note: For tiny x, 1/x dominate y1 and hence + * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) + * 3. For x>=2. + * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) + * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) + * by method mentioned above. + */ + +#include "math.h" +#include "math_private.h" + +#ifdef __STDC__ +static double pone(double), qone(double); +#else +static double pone(), qone(); +#endif + +#ifdef __STDC__ +static const double +#else +static double +#endif +huge = 1e300, +one = 1.0, +invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ +tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ + /* R0/S0 on [0,2] */ +r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */ +r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */ +r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */ +r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */ +s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */ +s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */ +s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */ +s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */ +s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */ + +#ifdef __STDC__ +static const double zero = 0.0; +#else +static double zero = 0.0; +#endif + +#ifdef __STDC__ + double __ieee754_j1(double x) +#else + double __ieee754_j1(x) + double x; +#endif +{ + double z, s,c,ss,cc,r,u,v,y; + int32_t hx,ix; + + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x7ff00000) return one/x; + y = fabs(x); + if(ix >= 0x40000000) { /* |x| >= 2.0 */ + s = __sin(y); + c = __cos(y); + ss = -s-c; + cc = s-c; + if(ix<0x7fe00000) { /* make sure y+y not overflow */ + z = __cos(y+y); + if ((s*c)>zero) cc = z/ss; + else ss = z/cc; + } + /* + * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) + * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) + */ + if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(y); + else { + u = pone(y); v = qone(y); + z = invsqrtpi*(u*cc-v*ss)/__sqrt(y); + } + if(hx<0) return -z; + else return z; + } + if(ix<0x3e400000) { /* |x|<2**-27 */ + if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */ + } + z = x*x; + r = z*(r00+z*(r01+z*(r02+z*r03))); + s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); + r *= x; + return(x*0.5+r/s); +} + +#ifdef __STDC__ +static const double U0[5] = { +#else +static double U0[5] = { +#endif + -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */ + 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ + -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */ + 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ + -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */ +}; +#ifdef __STDC__ +static const double V0[5] = { +#else +static double V0[5] = { +#endif + 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */ + 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */ + 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */ + 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */ + 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */ +}; + +#ifdef __STDC__ + double __ieee754_y1(double x) +#else + double __ieee754_y1(x) + double x; +#endif +{ + double z, s,c,ss,cc,u,v; + int32_t hx,ix,lx; + + EXTRACT_WORDS(hx,lx,x); + ix = 0x7fffffff&hx; + /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ + if(ix>=0x7ff00000) return one/(x+x*x); + if((ix|lx)==0) return -one/zero; + if(hx<0) return zero/zero; + if(ix >= 0x40000000) { /* |x| >= 2.0 */ + s = __sin(x); + c = __cos(x); + ss = -s-c; + cc = s-c; + if(ix<0x7fe00000) { /* make sure x+x not overflow */ + z = __cos(x+x); + if ((s*c)>zero) cc = z/ss; + else ss = z/cc; + } + /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) + * where x0 = x-3pi/4 + * Better formula: + * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) + * = 1/sqrt(2) * (sin(x) - cos(x)) + * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) + * = -1/sqrt(2) * (cos(x) + sin(x)) + * To avoid cancellation, use + * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) + * to compute the worse one. + */ + if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x); + else { + u = pone(x); v = qone(x); + z = invsqrtpi*(u*ss+v*cc)/__sqrt(x); + } + return z; + } + if(ix<=0x3c900000) { /* x < 2**-54 */ + return(-tpi/x); + } + z = x*x; + u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); + v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); + return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x)); +} + +/* For x >= 8, the asymptotic expansions of pone is + * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. + * We approximate pone by + * pone(x) = 1 + (R/S) + * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 + * S = 1 + ps0*s^2 + ... + ps4*s^10 + * and + * | pone(x)-1-R/S | <= 2 ** ( -60.06) + */ + +#ifdef __STDC__ +static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ +#else +static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ +#endif + 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ + 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */ + 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */ + 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */ + 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */ + 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */ +}; +#ifdef __STDC__ +static const double ps8[5] = { +#else +static double ps8[5] = { +#endif + 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */ + 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */ + 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */ + 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */ + 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */ +}; + +#ifdef __STDC__ +static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ +#else +static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ +#endif + 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */ + 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */ + 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */ + 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */ + 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */ + 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */ +}; +#ifdef __STDC__ +static const double ps5[5] = { +#else +static double ps5[5] = { +#endif + 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */ + 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */ + 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */ + 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */ + 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */ +}; + +#ifdef __STDC__ +static const double pr3[6] = { +#else +static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ +#endif + 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */ + 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */ + 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */ + 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */ + 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */ + 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */ +}; +#ifdef __STDC__ +static const double ps3[5] = { +#else +static double ps3[5] = { +#endif + 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */ + 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */ + 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */ + 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */ + 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */ +}; + +#ifdef __STDC__ +static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ +#else +static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ +#endif + 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */ + 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */ + 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */ + 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */ + 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */ + 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */ +}; +#ifdef __STDC__ +static const double ps2[5] = { +#else +static double ps2[5] = { +#endif + 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */ + 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */ + 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */ + 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */ + 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */ +}; + +#ifdef __STDC__ + static double pone(double x) +#else + static double pone(x) + double x; +#endif +{ +#ifdef __STDC__ + const double *p,*q; +#else + double *p,*q; +#endif + double z,r,s; + int32_t ix; + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; + if(ix>=0x40200000) {p = pr8; q= ps8;} + else if(ix>=0x40122E8B){p = pr5; q= ps5;} + else if(ix>=0x4006DB6D){p = pr3; q= ps3;} + else if(ix>=0x40000000){p = pr2; q= ps2;} + z = one/(x*x); + r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); + s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); + return one+ r/s; +} + + +/* For x >= 8, the asymptotic expansions of qone is + * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. + * We approximate pone by + * qone(x) = s*(0.375 + (R/S)) + * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 + * S = 1 + qs1*s^2 + ... + qs6*s^12 + * and + * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) + */ + +#ifdef __STDC__ +static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ +#else +static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ +#endif + 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ + -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ + -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ + -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */ + -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ + -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */ +}; +#ifdef __STDC__ +static const double qs8[6] = { +#else +static double qs8[6] = { +#endif + 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */ + 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */ + 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */ + 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */ + 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */ + -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */ +}; + +#ifdef __STDC__ +static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ +#else +static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ +#endif + -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ + -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ + -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ + -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */ + -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ + -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */ +}; +#ifdef __STDC__ +static const double qs5[6] = { +#else +static double qs5[6] = { +#endif + 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */ + 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */ + 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */ + 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */ + 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */ + -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */ +}; + +#ifdef __STDC__ +static const double qr3[6] = { +#else +static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ +#endif + -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ + -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ + -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ + -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */ + -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ + -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */ +}; +#ifdef __STDC__ +static const double qs3[6] = { +#else +static double qs3[6] = { +#endif + 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */ + 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */ + 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */ + 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */ + 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */ + -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */ +}; + +#ifdef __STDC__ +static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ +#else +static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ +#endif + -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ + -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ + -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ + -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */ + -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ + -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */ +}; +#ifdef __STDC__ +static const double qs2[6] = { +#else +static double qs2[6] = { +#endif + 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */ + 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */ + 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */ + 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */ + 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */ + -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */ +}; + +#ifdef __STDC__ + static double qone(double x) +#else + static double qone(x) + double x; +#endif +{ +#ifdef __STDC__ + const double *p,*q; +#else + double *p,*q; +#endif + double s,r,z; + int32_t ix; + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; + if(ix>=0x40200000) {p = qr8; q= qs8;} + else if(ix>=0x40122E8B){p = qr5; q= qs5;} + else if(ix>=0x4006DB6D){p = qr3; q= qs3;} + else if(ix>=0x40000000){p = qr2; q= qs2;} + z = one/(x*x); + r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); + s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); + return (.375 + r/s)/x; +} |