diff options
author | Ulrich Drepper <drepper@redhat.com> | 1999-07-14 00:54:57 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 1999-07-14 00:54:57 +0000 |
commit | abfbdde177c3a7155070dda1b2cdc8292054cc26 (patch) | |
tree | e021306b596381fbf8311d2b7eb294e918ff17c8 /sysdeps/libm-i387/s_cexpl.S | |
parent | 86421aa57ecfd70963ae66848bd6a6dd3b8e0fe6 (diff) | |
download | glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.zip glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.gz glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.bz2 |
Update.
Diffstat (limited to 'sysdeps/libm-i387/s_cexpl.S')
-rw-r--r-- | sysdeps/libm-i387/s_cexpl.S | 262 |
1 files changed, 0 insertions, 262 deletions
diff --git a/sysdeps/libm-i387/s_cexpl.S b/sysdeps/libm-i387/s_cexpl.S deleted file mode 100644 index 203a7ee..0000000 --- a/sysdeps/libm-i387/s_cexpl.S +++ /dev/null @@ -1,262 +0,0 @@ -/* ix87 specific implementation of complex exponential function for double. - Copyright (C) 1997 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Library General Public License as - published by the Free Software Foundation; either version 2 of the - License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Library General Public License for more details. - - You should have received a copy of the GNU Library General Public - License along with the GNU C Library; see the file COPYING.LIB. If not, - write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ - -#include <sysdep.h> - -#ifdef __ELF__ - .section .rodata -#else - .text -#endif - .align ALIGNARG(4) - ASM_TYPE_DIRECTIVE(huge_nan_null_null,@object) -huge_nan_null_null: - .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f - .byte 0, 0, 0, 0, 0, 0, 0xff, 0x7f - .double 0.0 -zero: .double 0.0 -infinity: - .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f - .byte 0, 0, 0, 0, 0, 0, 0xff, 0x7f - .double 0.0 - .byte 0, 0, 0, 0, 0, 0, 0, 0x80 - ASM_SIZE_DIRECTIVE(huge_nan_null_null) - - ASM_TYPE_DIRECTIVE(twopi,@object) -twopi: - .byte 0x35, 0xc2, 0x68, 0x21, 0xa2, 0xda, 0xf, 0xc9, 0x1, 0x40 - .byte 0, 0, 0, 0, 0, 0 - ASM_SIZE_DIRECTIVE(twopi) - - ASM_TYPE_DIRECTIVE(l2e,@object) -l2e: - .byte 0xbc, 0xf0, 0x17, 0x5c, 0x29, 0x3b, 0xaa, 0xb8, 0xff, 0x3f - .byte 0, 0, 0, 0, 0, 0 - ASM_SIZE_DIRECTIVE(l2e) - - ASM_TYPE_DIRECTIVE(one,@object) -one: .double 1.0 - ASM_SIZE_DIRECTIVE(one) - - -#ifdef PIC -#define MO(op) op##@GOTOFF(%ecx) -#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f) -#else -#define MO(op) op -#define MOX(op,x,f) op(,x,f) -#endif - - .text -ENTRY(__cexpl) - fldt 8(%esp) /* x */ - fxam - fnstsw - fldt 20(%esp) /* y : x */ -#ifdef PIC - call 1f -1: popl %ecx - addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx -#endif - movb %ah, %dh - andb $0x45, %ah - cmpb $0x05, %ah - je 1f /* Jump if real part is +-Inf */ - cmpb $0x01, %ah - je 2f /* Jump if real part is NaN */ - - fxam /* y : x */ - fnstsw - /* If the imaginary part is not finite we return NaN+i NaN, as - for the case when the real part is NaN. A test for +-Inf and - NaN would be necessary. But since we know the stack register - we applied `fxam' to is not empty we can simply use one test. - Check your FPU manual for more information. */ - andb $0x01, %ah - cmpb $0x01, %ah - je 20f - - /* We have finite numbers in the real and imaginary part. Do - the real work now. */ - fxch /* x : y */ - fldt MO(l2e) /* log2(e) : x : y */ - fmulp /* x * log2(e) : y */ - fld %st /* x * log2(e) : x * log2(e) : y */ - frndint /* int(x * log2(e)) : x * log2(e) : y */ - fsubr %st, %st(1) /* int(x * log2(e)) : frac(x * log2(e)) : y */ - fxch /* frac(x * log2(e)) : int(x * log2(e)) : y */ - f2xm1 /* 2^frac(x * log2(e))-1 : int(x * log2(e)) : y */ - faddl MO(one) /* 2^frac(x * log2(e)) : int(x * log2(e)) : y */ - fscale /* e^x : int(x * log2(e)) : y */ - fst %st(1) /* e^x : e^x : y */ - fxch %st(2) /* y : e^x : e^x */ - fsincos /* cos(y) : sin(y) : e^x : e^x */ - fnstsw - testl $0x400, %eax - jnz 7f - fmulp %st, %st(3) /* sin(y) : e^x : e^x * cos(y) */ - fmulp %st, %st(1) /* e^x * sin(y) : e^x * cos(y) */ - movl 4(%esp), %eax /* Pointer to memory for result. */ - fstpt 12(%eax) - fstpt (%eax) - ret $4 - - /* We have to reduce the argument to fsincos. */ - .align ALIGNARG(4) -7: fldt MO(twopi) /* 2*pi : y : e^x : e^x */ - fxch /* y : 2*pi : e^x : e^x */ -8: fprem1 /* y%(2*pi) : 2*pi : e^x : e^x */ - fnstsw - testl $0x400, %eax - jnz 8b - fstp %st(1) /* y%(2*pi) : e^x : e^x */ - fsincos /* cos(y) : sin(y) : e^x : e^x */ - fmulp %st, %st(3) - fmulp %st, %st(1) - movl 4(%esp), %eax /* Pointer to memory for result. */ - fstpt 12(%eax) - fstpt (%eax) - ret $4 - - /* The real part is +-inf. We must make further differences. */ - .align ALIGNARG(4) -1: fxam /* y : x */ - fnstsw - movb %ah, %dl - testb $0x01, %ah /* See above why 0x01 is usable here. */ - jne 3f - - - /* The real part is +-Inf and the imaginary part is finite. */ - andl $0x245, %edx - cmpb $0x40, %dl /* Imaginary part == 0? */ - je 4f /* Yes -> */ - - fxch /* x : y */ - shrl $5, %edx - fstp %st(0) /* y */ /* Drop the real part. */ - andl $16, %edx /* This puts the sign bit of the real part - in bit 4. So we can use it to index a - small array to select 0 or Inf. */ - fsincos /* cos(y) : sin(y) */ - fnstsw - testl $0x0400, %eax - jnz 5f - fldl MOX(huge_nan_null_null,%edx,1) - movl 4(%esp), %edx /* Pointer to memory for result. */ - fld %st - fstpt 12(%edx) - fstpt (%edx) - ftst - fnstsw - shll $7, %eax - andl $0x8000, %eax - orl %eax, 8(%edx) - fstp %st(0) - ftst - fnstsw - shll $7, %eax - andl $0x8000, %eax - orl %eax, 20(%edx) - fstp %st(0) - ret $4 - /* We must reduce the argument to fsincos. */ - .align ALIGNARG(4) -5: fldt MO(twopi) - fxch -6: fprem1 - fnstsw - testl $0x400, %eax - jnz 6b - fstp %st(1) - fsincos - fldl MOX(huge_nan_null_null,%edx,1) - movl 4(%esp), %edx /* Pointer to memory for result. */ - fld %st - fstpt 12(%edx) - fstpt (%edx) - ftst - fnstsw - shll $7, %eax - andl $0x8000, %eax - orl %eax, 8(%edx) - fstp %st(0) - ftst - fnstsw - shll $7, %eax - andl $0x8000, %eax - orl %eax, 20(%edx) - fstp %st(0) - ret $4 - - /* The real part is +-Inf and the imaginary part is +-0. So return - +-Inf+-0i. */ - .align ALIGNARG(4) -4: movl 4(%esp), %eax /* Pointer to memory for result. */ - fstpt 12(%eax) - shrl $5, %edx - fstp %st(0) - andl $16, %edx - fldl MOX(huge_nan_null_null,%edx,1) - fstpt (%eax) - ret $4 - - /* The real part is +-Inf, the imaginary is also is not finite. */ - .align ALIGNARG(4) -3: fstp %st(0) - fstp %st(0) /* <empty> */ - andb $0x45, %ah - andb $0x47, %dh - xorb %dh, %ah - jnz 30f - fldl MO(infinity) /* Raise invalid exception. */ - fmull MO(zero) - fstp %st(0) -30: movl %edx, %eax - shrl $5, %edx - shll $4, %eax - andl $16, %edx - andl $32, %eax - orl %eax, %edx - movl 4(%esp), %eax /* Pointer to memory for result. */ - - fldl MOX(huge_nan_null_null,%edx,1) - fldl MOX(huge_nan_null_null+8,%edx,1) - fxch - fstpt (%eax) - fstpt 12(%eax) - ret $4 - - /* The real part is NaN. */ - .align ALIGNARG(4) -20: fldl MO(infinity) /* Raise invalid exception. */ - fmull MO(zero) - fstp %st(0) -2: fstp %st(0) - fstp %st(0) - movl 4(%esp), %eax /* Pointer to memory for result. */ - fldl MO(huge_nan_null_null+8) - fld %st(0) - fstpt (%eax) - fstpt 12(%eax) - ret $4 - -END(__cexpl) -weak_alias (__cexpl, cexpl) |