diff options
author | Joe Ramsay <Joe.Ramsay@arm.com> | 2023-11-03 12:12:23 +0000 |
---|---|---|
committer | Szabolcs Nagy <szabolcs.nagy@arm.com> | 2023-11-10 17:07:43 +0000 |
commit | 3548a4f0872aefa1f0b636a2d89fde96e5b7d46f (patch) | |
tree | bddfae80edaa1bbbb4daeed167bda5952da616f6 /sysdeps/aarch64 | |
parent | b07038c5d304a7afc312516ce0ff886a57bf3163 (diff) | |
download | glibc-3548a4f0872aefa1f0b636a2d89fde96e5b7d46f.zip glibc-3548a4f0872aefa1f0b636a2d89fde96e5b7d46f.tar.gz glibc-3548a4f0872aefa1f0b636a2d89fde96e5b7d46f.tar.bz2 |
aarch64: Add vector implementations of log1p routines
May discard sign of zero.
Diffstat (limited to 'sysdeps/aarch64')
-rw-r--r-- | sysdeps/aarch64/fpu/Makefile | 1 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/Versions | 4 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/bits/math-vector.h | 4 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/log1p_advsimd.c | 129 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/log1p_sve.c | 118 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/log1pf_advsimd.c | 128 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/log1pf_sve.c | 100 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c | 1 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/test-double-sve-wrappers.c | 1 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c | 1 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/test-float-sve-wrappers.c | 1 | ||||
-rw-r--r-- | sysdeps/aarch64/libm-test-ulps | 8 |
12 files changed, 496 insertions, 0 deletions
diff --git a/sysdeps/aarch64/fpu/Makefile b/sysdeps/aarch64/fpu/Makefile index 364efbe..c77c709 100644 --- a/sysdeps/aarch64/fpu/Makefile +++ b/sysdeps/aarch64/fpu/Makefile @@ -8,6 +8,7 @@ libmvec-supported-funcs = acos \ exp2 \ log \ log10 \ + log1p \ log2 \ sin \ tan diff --git a/sysdeps/aarch64/fpu/Versions b/sysdeps/aarch64/fpu/Versions index 99492b3..2543649 100644 --- a/sysdeps/aarch64/fpu/Versions +++ b/sysdeps/aarch64/fpu/Versions @@ -46,6 +46,10 @@ libmvec { _ZGVnN2v_log10; _ZGVsMxv_log10f; _ZGVsMxv_log10; + _ZGVnN4v_log1pf; + _ZGVnN2v_log1p; + _ZGVsMxv_log1pf; + _ZGVsMxv_log1p; _ZGVnN4v_log2f; _ZGVnN2v_log2; _ZGVsMxv_log2f; diff --git a/sysdeps/aarch64/fpu/bits/math-vector.h b/sysdeps/aarch64/fpu/bits/math-vector.h index 7666c09..51915ce 100644 --- a/sysdeps/aarch64/fpu/bits/math-vector.h +++ b/sysdeps/aarch64/fpu/bits/math-vector.h @@ -59,6 +59,7 @@ __vpcs __f32x4_t _ZGVnN4v_exp10f (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_exp2f (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_logf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_log10f (__f32x4_t); +__vpcs __f32x4_t _ZGVnN4v_log1pf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_log2f (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_sinf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_tanf (__f32x4_t); @@ -73,6 +74,7 @@ __vpcs __f64x2_t _ZGVnN2v_exp10 (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_exp2 (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_log (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_log10 (__f64x2_t); +__vpcs __f64x2_t _ZGVnN2v_log1p (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_log2 (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_sin (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_tan (__f64x2_t); @@ -92,6 +94,7 @@ __sv_f32_t _ZGVsMxv_exp10f (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_exp2f (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_logf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_log10f (__sv_f32_t, __sv_bool_t); +__sv_f32_t _ZGVsMxv_log1pf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_log2f (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_sinf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_tanf (__sv_f32_t, __sv_bool_t); @@ -106,6 +109,7 @@ __sv_f64_t _ZGVsMxv_exp10 (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_exp2 (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_log (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_log10 (__sv_f64_t, __sv_bool_t); +__sv_f64_t _ZGVsMxv_log1p (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_log2 (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_sin (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_tan (__sv_f64_t, __sv_bool_t); diff --git a/sysdeps/aarch64/fpu/log1p_advsimd.c b/sysdeps/aarch64/fpu/log1p_advsimd.c new file mode 100644 index 0000000..a117e1b --- /dev/null +++ b/sysdeps/aarch64/fpu/log1p_advsimd.c @@ -0,0 +1,129 @@ +/* Double-precision AdvSIMD log1p + + Copyright (C) 2023 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <https://www.gnu.org/licenses/>. */ + +#include "v_math.h" +#include "poly_advsimd_f64.h" + +const static struct data +{ + float64x2_t poly[19], ln2[2]; + uint64x2_t hf_rt2_top, one_m_hf_rt2_top, umask, inf, minus_one; + int64x2_t one_top; +} data = { + /* Generated using Remez, deg=20, in [sqrt(2)/2-1, sqrt(2)-1]. */ + .poly = { V2 (-0x1.ffffffffffffbp-2), V2 (0x1.55555555551a9p-2), + V2 (-0x1.00000000008e3p-2), V2 (0x1.9999999a32797p-3), + V2 (-0x1.555555552fecfp-3), V2 (0x1.249248e071e5ap-3), + V2 (-0x1.ffffff8bf8482p-4), V2 (0x1.c71c8f07da57ap-4), + V2 (-0x1.9999ca4ccb617p-4), V2 (0x1.7459ad2e1dfa3p-4), + V2 (-0x1.554d2680a3ff2p-4), V2 (0x1.3b4c54d487455p-4), + V2 (-0x1.2548a9ffe80e6p-4), V2 (0x1.0f389a24b2e07p-4), + V2 (-0x1.eee4db15db335p-5), V2 (0x1.e95b494d4a5ddp-5), + V2 (-0x1.15fdf07cb7c73p-4), V2 (0x1.0310b70800fcfp-4), + V2 (-0x1.cfa7385bdb37ep-6) }, + .ln2 = { V2 (0x1.62e42fefa3800p-1), V2 (0x1.ef35793c76730p-45) }, + /* top32(asuint64(sqrt(2)/2)) << 32. */ + .hf_rt2_top = V2 (0x3fe6a09e00000000), + /* (top32(asuint64(1)) - top32(asuint64(sqrt(2)/2))) << 32. */ + .one_m_hf_rt2_top = V2 (0x00095f6200000000), + .umask = V2 (0x000fffff00000000), + .one_top = V2 (0x3ff), + .inf = V2 (0x7ff0000000000000), + .minus_one = V2 (0xbff0000000000000) +}; + +#define BottomMask v_u64 (0xffffffff) + +static float64x2_t VPCS_ATTR NOINLINE +special_case (float64x2_t x, float64x2_t y, uint64x2_t special) +{ + return v_call_f64 (log1p, x, y, special); +} + +/* Vector log1p approximation using polynomial on reduced interval. Routine is + a modification of the algorithm used in scalar log1p, with no shortcut for + k=0 and no narrowing for f and k. Maximum observed error is 2.45 ULP: + _ZGVnN2v_log1p(0x1.658f7035c4014p+11) got 0x1.fd61d0727429dp+2 + want 0x1.fd61d0727429fp+2 . */ +VPCS_ATTR float64x2_t V_NAME_D1 (log1p) (float64x2_t x) +{ + const struct data *d = ptr_barrier (&data); + uint64x2_t ix = vreinterpretq_u64_f64 (x); + uint64x2_t ia = vreinterpretq_u64_f64 (vabsq_f64 (x)); + uint64x2_t special = vcgeq_u64 (ia, d->inf); + +#if WANT_SIMD_EXCEPT + special = vorrq_u64 (special, + vcgeq_u64 (ix, vreinterpretq_u64_f64 (v_f64 (-1)))); + if (__glibc_unlikely (v_any_u64 (special))) + x = v_zerofy_f64 (x, special); +#else + special = vorrq_u64 (special, vcleq_f64 (x, v_f64 (-1))); +#endif + + /* With x + 1 = t * 2^k (where t = f + 1 and k is chosen such that f + is in [sqrt(2)/2, sqrt(2)]): + log1p(x) = k*log(2) + log1p(f). + + f may not be representable exactly, so we need a correction term: + let m = round(1 + x), c = (1 + x) - m. + c << m: at very small x, log1p(x) ~ x, hence: + log(1+x) - log(m) ~ c/m. + + We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m. */ + + /* Obtain correctly scaled k by manipulation in the exponent. + The scalar algorithm casts down to 32-bit at this point to calculate k and + u_red. We stay in double-width to obtain f and k, using the same constants + as the scalar algorithm but shifted left by 32. */ + float64x2_t m = vaddq_f64 (x, v_f64 (1)); + uint64x2_t mi = vreinterpretq_u64_f64 (m); + uint64x2_t u = vaddq_u64 (mi, d->one_m_hf_rt2_top); + + int64x2_t ki + = vsubq_s64 (vreinterpretq_s64_u64 (vshrq_n_u64 (u, 52)), d->one_top); + float64x2_t k = vcvtq_f64_s64 (ki); + + /* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */ + uint64x2_t utop = vaddq_u64 (vandq_u64 (u, d->umask), d->hf_rt2_top); + uint64x2_t u_red = vorrq_u64 (utop, vandq_u64 (mi, BottomMask)); + float64x2_t f = vsubq_f64 (vreinterpretq_f64_u64 (u_red), v_f64 (1)); + + /* Correction term c/m. */ + float64x2_t cm = vdivq_f64 (vsubq_f64 (x, vsubq_f64 (m, v_f64 (1))), m); + + /* Approximate log1p(x) on the reduced input using a polynomial. Because + log1p(0)=0 we choose an approximation of the form: + x + C0*x^2 + C1*x^3 + C2x^4 + ... + Hence approximation has the form f + f^2 * P(f) + where P(x) = C0 + C1*x + C2x^2 + ... + Assembling this all correctly is dealt with at the final step. */ + float64x2_t f2 = vmulq_f64 (f, f); + float64x2_t p = v_pw_horner_18_f64 (f, f2, d->poly); + + float64x2_t ylo = vfmaq_f64 (cm, k, d->ln2[1]); + float64x2_t yhi = vfmaq_f64 (f, k, d->ln2[0]); + float64x2_t y = vaddq_f64 (ylo, yhi); + + if (__glibc_unlikely (v_any_u64 (special))) + return special_case (vreinterpretq_f64_u64 (ix), vfmaq_f64 (y, f2, p), + special); + + return vfmaq_f64 (y, f2, p); +} diff --git a/sysdeps/aarch64/fpu/log1p_sve.c b/sysdeps/aarch64/fpu/log1p_sve.c new file mode 100644 index 0000000..1691567 --- /dev/null +++ b/sysdeps/aarch64/fpu/log1p_sve.c @@ -0,0 +1,118 @@ +/* Double-precision SVE log1p + + Copyright (C) 2023 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <https://www.gnu.org/licenses/>. */ + +#include "sv_math.h" +#include "poly_sve_f64.h" + +static const struct data +{ + double poly[19]; + double ln2_hi, ln2_lo; + uint64_t hfrt2_top, onemhfrt2_top, inf, mone; +} data = { + /* Generated using Remez in [ sqrt(2)/2 - 1, sqrt(2) - 1]. Order 20 + polynomial, however first 2 coefficients are 0 and 1 so are not stored. */ + .poly = { -0x1.ffffffffffffbp-2, 0x1.55555555551a9p-2, -0x1.00000000008e3p-2, + 0x1.9999999a32797p-3, -0x1.555555552fecfp-3, 0x1.249248e071e5ap-3, + -0x1.ffffff8bf8482p-4, 0x1.c71c8f07da57ap-4, -0x1.9999ca4ccb617p-4, + 0x1.7459ad2e1dfa3p-4, -0x1.554d2680a3ff2p-4, 0x1.3b4c54d487455p-4, + -0x1.2548a9ffe80e6p-4, 0x1.0f389a24b2e07p-4, -0x1.eee4db15db335p-5, + 0x1.e95b494d4a5ddp-5, -0x1.15fdf07cb7c73p-4, 0x1.0310b70800fcfp-4, + -0x1.cfa7385bdb37ep-6, }, + .ln2_hi = 0x1.62e42fefa3800p-1, + .ln2_lo = 0x1.ef35793c76730p-45, + /* top32(asuint64(sqrt(2)/2)) << 32. */ + .hfrt2_top = 0x3fe6a09e00000000, + /* (top32(asuint64(1)) - top32(asuint64(sqrt(2)/2))) << 32. */ + .onemhfrt2_top = 0x00095f6200000000, + .inf = 0x7ff0000000000000, + .mone = 0xbff0000000000000, +}; + +#define AbsMask 0x7fffffffffffffff +#define BottomMask 0xffffffff + +static svfloat64_t NOINLINE +special_case (svbool_t special, svfloat64_t x, svfloat64_t y) +{ + return sv_call_f64 (log1p, x, y, special); +} + +/* Vector approximation for log1p using polynomial on reduced interval. Maximum + observed error is 2.46 ULP: + _ZGVsMxv_log1p(0x1.654a1307242a4p+11) got 0x1.fd5565fb590f4p+2 + want 0x1.fd5565fb590f6p+2. */ +svfloat64_t SV_NAME_D1 (log1p) (svfloat64_t x, svbool_t pg) +{ + const struct data *d = ptr_barrier (&data); + svuint64_t ix = svreinterpret_u64 (x); + svuint64_t ax = svand_x (pg, ix, AbsMask); + svbool_t special + = svorr_z (pg, svcmpge (pg, ax, d->inf), svcmpge (pg, ix, d->mone)); + + /* With x + 1 = t * 2^k (where t = f + 1 and k is chosen such that f + is in [sqrt(2)/2, sqrt(2)]): + log1p(x) = k*log(2) + log1p(f). + + f may not be representable exactly, so we need a correction term: + let m = round(1 + x), c = (1 + x) - m. + c << m: at very small x, log1p(x) ~ x, hence: + log(1+x) - log(m) ~ c/m. + + We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m. */ + + /* Obtain correctly scaled k by manipulation in the exponent. + The scalar algorithm casts down to 32-bit at this point to calculate k and + u_red. We stay in double-width to obtain f and k, using the same constants + as the scalar algorithm but shifted left by 32. */ + svfloat64_t m = svadd_x (pg, x, 1); + svuint64_t mi = svreinterpret_u64 (m); + svuint64_t u = svadd_x (pg, mi, d->onemhfrt2_top); + + svint64_t ki = svsub_x (pg, svreinterpret_s64 (svlsr_x (pg, u, 52)), 0x3ff); + svfloat64_t k = svcvt_f64_x (pg, ki); + + /* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */ + svuint64_t utop + = svadd_x (pg, svand_x (pg, u, 0x000fffff00000000), d->hfrt2_top); + svuint64_t u_red = svorr_x (pg, utop, svand_x (pg, mi, BottomMask)); + svfloat64_t f = svsub_x (pg, svreinterpret_f64 (u_red), 1); + + /* Correction term c/m. */ + svfloat64_t cm = svdiv_x (pg, svsub_x (pg, x, svsub_x (pg, m, 1)), m); + + /* Approximate log1p(x) on the reduced input using a polynomial. Because + log1p(0)=0 we choose an approximation of the form: + x + C0*x^2 + C1*x^3 + C2x^4 + ... + Hence approximation has the form f + f^2 * P(f) + where P(x) = C0 + C1*x + C2x^2 + ... + Assembling this all correctly is dealt with at the final step. */ + svfloat64_t f2 = svmul_x (pg, f, f), f4 = svmul_x (pg, f2, f2), + f8 = svmul_x (pg, f4, f4), f16 = svmul_x (pg, f8, f8); + svfloat64_t p = sv_estrin_18_f64_x (pg, f, f2, f4, f8, f16, d->poly); + + svfloat64_t ylo = svmla_x (pg, cm, k, d->ln2_lo); + svfloat64_t yhi = svmla_x (pg, f, k, d->ln2_hi); + svfloat64_t y = svmla_x (pg, svadd_x (pg, ylo, yhi), f2, p); + + if (__glibc_unlikely (svptest_any (pg, special))) + return special_case (special, x, y); + + return y; +} diff --git a/sysdeps/aarch64/fpu/log1pf_advsimd.c b/sysdeps/aarch64/fpu/log1pf_advsimd.c new file mode 100644 index 0000000..3748830 --- /dev/null +++ b/sysdeps/aarch64/fpu/log1pf_advsimd.c @@ -0,0 +1,128 @@ +/* Single-precision AdvSIMD log1p + + Copyright (C) 2023 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <https://www.gnu.org/licenses/>. */ + +#include "v_math.h" +#include "poly_advsimd_f32.h" + +const static struct data +{ + float32x4_t poly[8], ln2; + uint32x4_t tiny_bound, minus_one, four, thresh; + int32x4_t three_quarters; +} data = { + .poly = { /* Generated using FPMinimax in [-0.25, 0.5]. First two coefficients + (1, -0.5) are not stored as they can be generated more + efficiently. */ + V4 (0x1.5555aap-2f), V4 (-0x1.000038p-2f), V4 (0x1.99675cp-3f), + V4 (-0x1.54ef78p-3f), V4 (0x1.28a1f4p-3f), V4 (-0x1.0da91p-3f), + V4 (0x1.abcb6p-4f), V4 (-0x1.6f0d5ep-5f) }, + .ln2 = V4 (0x1.62e43p-1f), + .tiny_bound = V4 (0x34000000), /* asuint32(0x1p-23). ulp=0.5 at 0x1p-23. */ + .thresh = V4 (0x4b800000), /* asuint32(INFINITY) - tiny_bound. */ + .minus_one = V4 (0xbf800000), + .four = V4 (0x40800000), + .three_quarters = V4 (0x3f400000) +}; + +static inline float32x4_t +eval_poly (float32x4_t m, const float32x4_t *p) +{ + /* Approximate log(1+m) on [-0.25, 0.5] using split Estrin scheme. */ + float32x4_t p_12 = vfmaq_f32 (v_f32 (-0.5), m, p[0]); + float32x4_t p_34 = vfmaq_f32 (p[1], m, p[2]); + float32x4_t p_56 = vfmaq_f32 (p[3], m, p[4]); + float32x4_t p_78 = vfmaq_f32 (p[5], m, p[6]); + + float32x4_t m2 = vmulq_f32 (m, m); + float32x4_t p_02 = vfmaq_f32 (m, m2, p_12); + float32x4_t p_36 = vfmaq_f32 (p_34, m2, p_56); + float32x4_t p_79 = vfmaq_f32 (p_78, m2, p[7]); + + float32x4_t m4 = vmulq_f32 (m2, m2); + float32x4_t p_06 = vfmaq_f32 (p_02, m4, p_36); + return vfmaq_f32 (p_06, m4, vmulq_f32 (m4, p_79)); +} + +static float32x4_t NOINLINE VPCS_ATTR +special_case (float32x4_t x, float32x4_t y, uint32x4_t special) +{ + return v_call_f32 (log1pf, x, y, special); +} + +/* Vector log1pf approximation using polynomial on reduced interval. Accuracy + is roughly 2.02 ULP: + log1pf(0x1.21e13ap-2) got 0x1.fe8028p-3 want 0x1.fe802cp-3. */ +VPCS_ATTR float32x4_t V_NAME_F1 (log1p) (float32x4_t x) +{ + const struct data *d = ptr_barrier (&data); + + uint32x4_t ix = vreinterpretq_u32_f32 (x); + uint32x4_t ia = vreinterpretq_u32_f32 (vabsq_f32 (x)); + uint32x4_t special_cases + = vorrq_u32 (vcgeq_u32 (vsubq_u32 (ia, d->tiny_bound), d->thresh), + vcgeq_u32 (ix, d->minus_one)); + float32x4_t special_arg = x; + +#if WANT_SIMD_EXCEPT + if (__glibc_unlikely (v_any_u32 (special_cases))) + /* Side-step special lanes so fenv exceptions are not triggered + inadvertently. */ + x = v_zerofy_f32 (x, special_cases); +#endif + + /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m + is in [-0.25, 0.5]): + log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2). + + We approximate log1p(m) with a polynomial, then scale by + k*log(2). Instead of doing this directly, we use an intermediate + scale factor s = 4*k*log(2) to ensure the scale is representable + as a normalised fp32 number. */ + + float32x4_t m = vaddq_f32 (x, v_f32 (1.0f)); + + /* Choose k to scale x to the range [-1/4, 1/2]. */ + int32x4_t k + = vandq_s32 (vsubq_s32 (vreinterpretq_s32_f32 (m), d->three_quarters), + v_s32 (0xff800000)); + uint32x4_t ku = vreinterpretq_u32_s32 (k); + + /* Scale x by exponent manipulation. */ + float32x4_t m_scale + = vreinterpretq_f32_u32 (vsubq_u32 (vreinterpretq_u32_f32 (x), ku)); + + /* Scale up to ensure that the scale factor is representable as normalised + fp32 number, and scale m down accordingly. */ + float32x4_t s = vreinterpretq_f32_u32 (vsubq_u32 (d->four, ku)); + m_scale = vaddq_f32 (m_scale, vfmaq_f32 (v_f32 (-1.0f), v_f32 (0.25f), s)); + + /* Evaluate polynomial on the reduced interval. */ + float32x4_t p = eval_poly (m_scale, d->poly); + + /* The scale factor to be applied back at the end - by multiplying float(k) + by 2^-23 we get the unbiased exponent of k. */ + float32x4_t scale_back = vcvtq_f32_s32 (vshrq_n_s32 (k, 23)); + + /* Apply the scaling back. */ + float32x4_t y = vfmaq_f32 (p, scale_back, d->ln2); + + if (__glibc_unlikely (v_any_u32 (special_cases))) + return special_case (special_arg, y, special_cases); + return y; +} diff --git a/sysdeps/aarch64/fpu/log1pf_sve.c b/sysdeps/aarch64/fpu/log1pf_sve.c new file mode 100644 index 0000000..712f62b --- /dev/null +++ b/sysdeps/aarch64/fpu/log1pf_sve.c @@ -0,0 +1,100 @@ +/* Single-precision SVE log1p + + Copyright (C) 2023 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <https://www.gnu.org/licenses/>. */ + +#include "sv_math.h" +#include "poly_sve_f32.h" + +static const struct data +{ + float poly[8]; + float ln2, exp_bias; + uint32_t four, three_quarters; +} data = {.poly = {/* Do not store first term of polynomial, which is -0.5, as + this can be fmov-ed directly instead of including it in + the main load-and-mla polynomial schedule. */ + 0x1.5555aap-2f, -0x1.000038p-2f, 0x1.99675cp-3f, + -0x1.54ef78p-3f, 0x1.28a1f4p-3f, -0x1.0da91p-3f, + 0x1.abcb6p-4f, -0x1.6f0d5ep-5f}, + .ln2 = 0x1.62e43p-1f, + .exp_bias = 0x1p-23f, + .four = 0x40800000, + .three_quarters = 0x3f400000}; + +#define SignExponentMask 0xff800000 + +static svfloat32_t NOINLINE +special_case (svfloat32_t x, svfloat32_t y, svbool_t special) +{ + return sv_call_f32 (log1pf, x, y, special); +} + +/* Vector log1pf approximation using polynomial on reduced interval. Worst-case + error is 1.27 ULP very close to 0.5. + _ZGVsMxv_log1pf(0x1.fffffep-2) got 0x1.9f324p-2 + want 0x1.9f323ep-2. */ +svfloat32_t SV_NAME_F1 (log1p) (svfloat32_t x, svbool_t pg) +{ + const struct data *d = ptr_barrier (&data); + /* x < -1, Inf/Nan. */ + svbool_t special = svcmpeq (pg, svreinterpret_u32 (x), 0x7f800000); + special = svorn_z (pg, special, svcmpge (pg, x, -1)); + + /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m + is in [-0.25, 0.5]): + log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2). + + We approximate log1p(m) with a polynomial, then scale by + k*log(2). Instead of doing this directly, we use an intermediate + scale factor s = 4*k*log(2) to ensure the scale is representable + as a normalised fp32 number. */ + svfloat32_t m = svadd_x (pg, x, 1); + + /* Choose k to scale x to the range [-1/4, 1/2]. */ + svint32_t k + = svand_x (pg, svsub_x (pg, svreinterpret_s32 (m), d->three_quarters), + sv_s32 (SignExponentMask)); + + /* Scale x by exponent manipulation. */ + svfloat32_t m_scale = svreinterpret_f32 ( + svsub_x (pg, svreinterpret_u32 (x), svreinterpret_u32 (k))); + + /* Scale up to ensure that the scale factor is representable as normalised + fp32 number, and scale m down accordingly. */ + svfloat32_t s = svreinterpret_f32 (svsubr_x (pg, k, d->four)); + m_scale = svadd_x (pg, m_scale, svmla_x (pg, sv_f32 (-1), s, 0.25)); + + /* Evaluate polynomial on reduced interval. */ + svfloat32_t ms2 = svmul_x (pg, m_scale, m_scale), + ms4 = svmul_x (pg, ms2, ms2); + svfloat32_t p = sv_estrin_7_f32_x (pg, m_scale, ms2, ms4, d->poly); + p = svmad_x (pg, m_scale, p, -0.5); + p = svmla_x (pg, m_scale, m_scale, svmul_x (pg, m_scale, p)); + + /* The scale factor to be applied back at the end - by multiplying float(k) + by 2^-23 we get the unbiased exponent of k. */ + svfloat32_t scale_back = svmul_x (pg, svcvt_f32_x (pg, k), d->exp_bias); + + /* Apply the scaling back. */ + svfloat32_t y = svmla_x (pg, p, scale_back, d->ln2); + + if (__glibc_unlikely (svptest_any (pg, special))) + return special_case (x, y, special); + + return y; +} diff --git a/sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c b/sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c index 0ac0240..fc9e7ae 100644 --- a/sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c +++ b/sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c @@ -33,6 +33,7 @@ VPCS_VECTOR_WRAPPER (exp10_advsimd, _ZGVnN2v_exp10) VPCS_VECTOR_WRAPPER (exp2_advsimd, _ZGVnN2v_exp2) VPCS_VECTOR_WRAPPER (log_advsimd, _ZGVnN2v_log) VPCS_VECTOR_WRAPPER (log10_advsimd, _ZGVnN2v_log10) +VPCS_VECTOR_WRAPPER (log1p_advsimd, _ZGVnN2v_log1p) VPCS_VECTOR_WRAPPER (log2_advsimd, _ZGVnN2v_log2) VPCS_VECTOR_WRAPPER (sin_advsimd, _ZGVnN2v_sin) VPCS_VECTOR_WRAPPER (tan_advsimd, _ZGVnN2v_tan) diff --git a/sysdeps/aarch64/fpu/test-double-sve-wrappers.c b/sysdeps/aarch64/fpu/test-double-sve-wrappers.c index 5bbc4d5..aea589d 100644 --- a/sysdeps/aarch64/fpu/test-double-sve-wrappers.c +++ b/sysdeps/aarch64/fpu/test-double-sve-wrappers.c @@ -52,6 +52,7 @@ SVE_VECTOR_WRAPPER (exp10_sve, _ZGVsMxv_exp10) SVE_VECTOR_WRAPPER (exp2_sve, _ZGVsMxv_exp2) SVE_VECTOR_WRAPPER (log_sve, _ZGVsMxv_log) SVE_VECTOR_WRAPPER (log10_sve, _ZGVsMxv_log10) +SVE_VECTOR_WRAPPER (log1p_sve, _ZGVsMxv_log1p) SVE_VECTOR_WRAPPER (log2_sve, _ZGVsMxv_log2) SVE_VECTOR_WRAPPER (sin_sve, _ZGVsMxv_sin) SVE_VECTOR_WRAPPER (tan_sve, _ZGVsMxv_tan) diff --git a/sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c b/sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c index a557bfc..446fd7f 100644 --- a/sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c +++ b/sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c @@ -33,6 +33,7 @@ VPCS_VECTOR_WRAPPER (exp10f_advsimd, _ZGVnN4v_exp10f) VPCS_VECTOR_WRAPPER (exp2f_advsimd, _ZGVnN4v_exp2f) VPCS_VECTOR_WRAPPER (logf_advsimd, _ZGVnN4v_logf) VPCS_VECTOR_WRAPPER (log10f_advsimd, _ZGVnN4v_log10f) +VPCS_VECTOR_WRAPPER (log1pf_advsimd, _ZGVnN4v_log1pf) VPCS_VECTOR_WRAPPER (log2f_advsimd, _ZGVnN4v_log2f) VPCS_VECTOR_WRAPPER (sinf_advsimd, _ZGVnN4v_sinf) VPCS_VECTOR_WRAPPER (tanf_advsimd, _ZGVnN4v_tanf) diff --git a/sysdeps/aarch64/fpu/test-float-sve-wrappers.c b/sysdeps/aarch64/fpu/test-float-sve-wrappers.c index f36939e..ac17f60 100644 --- a/sysdeps/aarch64/fpu/test-float-sve-wrappers.c +++ b/sysdeps/aarch64/fpu/test-float-sve-wrappers.c @@ -52,6 +52,7 @@ SVE_VECTOR_WRAPPER (exp10f_sve, _ZGVsMxv_exp10f) SVE_VECTOR_WRAPPER (exp2f_sve, _ZGVsMxv_exp2f) SVE_VECTOR_WRAPPER (logf_sve, _ZGVsMxv_logf) SVE_VECTOR_WRAPPER (log10f_sve, _ZGVsMxv_log10f) +SVE_VECTOR_WRAPPER (log1pf_sve, _ZGVsMxv_log1pf) SVE_VECTOR_WRAPPER (log2f_sve, _ZGVsMxv_log2f) SVE_VECTOR_WRAPPER (sinf_sve, _ZGVsMxv_sinf) SVE_VECTOR_WRAPPER (tanf_sve, _ZGVsMxv_tanf) diff --git a/sysdeps/aarch64/libm-test-ulps b/sysdeps/aarch64/libm-test-ulps index e0699c4..a6b2f29 100644 --- a/sysdeps/aarch64/libm-test-ulps +++ b/sysdeps/aarch64/libm-test-ulps @@ -1248,11 +1248,19 @@ double: 1 float: 1 ldouble: 3 +Function: "log1p_advsimd": +double: 1 +float: 1 + Function: "log1p_downward": double: 1 float: 2 ldouble: 3 +Function: "log1p_sve": +double: 1 +float: 1 + Function: "log1p_towardzero": double: 2 float: 2 |