aboutsummaryrefslogtreecommitdiff
path: root/posix/regexec.c
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2002-02-26 19:06:03 +0000
committerUlrich Drepper <drepper@redhat.com>2002-02-26 19:06:03 +0000
commit3b0bdc723579a7c6df2cace0115a6ca0977d73f9 (patch)
tree8b6d7f9ab35be46faadc9e778abc1ce632fe98d0 /posix/regexec.c
parent73f1b06797637163b8529f4c7fa4b02b90c0154c (diff)
downloadglibc-3b0bdc723579a7c6df2cace0115a6ca0977d73f9.zip
glibc-3b0bdc723579a7c6df2cace0115a6ca0977d73f9.tar.gz
glibc-3b0bdc723579a7c6df2cace0115a6ca0977d73f9.tar.bz2
Update.
* posix/Makefile (distribute): Add regcomp.c, regexec.c, regex_internal.c, and regex_internal.h. (CFLAGS-regex.c): Replace -DMBS_SUPPORT with -DRE_ENABLE_I18N. * posix/regex.c: Complete rewrite. * posix/regexec.c: New file. * posix/regcomp.c: New file. * posix/regex_internal.c: New file. * posix/regex_internal.h: New file. * posix/regex.h (RE_ICASE): New macro. Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
Diffstat (limited to 'posix/regexec.c')
-rw-r--r--posix/regexec.c2076
1 files changed, 2076 insertions, 0 deletions
diff --git a/posix/regexec.c b/posix/regexec.c
new file mode 100644
index 0000000..cf8f304
--- /dev/null
+++ b/posix/regexec.c
@@ -0,0 +1,2076 @@
+/* Extended regular expression matching and search library.
+ Copyright (C) 2002 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include <assert.h>
+#include <ctype.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <wchar.h>
+#include <wctype.h>
+
+#ifdef _LIBC
+# ifndef _RE_DEFINE_LOCALE_FUNCTIONS
+# define _RE_DEFINE_LOCALE_FUNCTIONS 1
+# include <locale/localeinfo.h>
+# include <locale/elem-hash.h>
+# include <locale/coll-lookup.h>
+# endif
+#endif
+
+#include "regex.h"
+#include "regex_internal.h"
+
+static void match_ctx_init (re_match_context_t *cache, int eflags, int n);
+static void match_ctx_free (re_match_context_t *cache);
+static void match_ctx_add_entry (re_match_context_t *cache, int node, int from,
+ int to);
+static int re_search_internal (const regex_t *preg, const char *string,
+ int length, int start, int range, size_t nmatch,
+ regmatch_t pmatch[], int eflags);
+static inline re_dfastate_t *acquire_init_state_context (const regex_t *preg,
+ const re_string_t *input, int idx, int eflags);
+static int check_matching (const regex_t *preg, re_string_t *input,
+ re_match_context_t *mctx, re_dfastate_t **state_log,
+ int start_idx, int fl_search, int fl_longest_match);
+static int check_halt_node_context (const re_dfa_t *dfa, int node,
+ unsigned int context);
+static int check_halt_state_context (const regex_t *preg,
+ const re_dfastate_t *state,
+ const re_string_t *input, int idx,
+ int eflags);
+static int proceed_next_node (const regex_t *preg,
+ re_dfastate_t **state_log,
+ const re_match_context_t *mctx,
+ const re_string_t *input,
+ int *pidx, int node, re_node_set *eps_via_nodes);
+static void set_regs (const regex_t *preg, re_dfastate_t **state_log,
+ const re_match_context_t *mctx, const re_string_t *input,
+ size_t nmatch, regmatch_t *pmatch, int last);
+static int sift_states_iter_mb (const regex_t *preg, re_dfastate_t **state_log,
+ const re_match_context_t *mctx,
+ const re_string_t *input, int node_idx,
+ int str_idx, int max_str_idx);
+static int sift_states_iter_bkref (const re_dfa_t *dfa,
+ re_dfastate_t **state_log,
+ struct re_backref_cache_entry *mctx_entry,
+ int node_idx, int idx, int match_first,
+ int match_last);
+static void sift_states_backward (const regex_t *preg,
+ re_dfastate_t **state_log,
+ const re_match_context_t *mctx,
+ const re_string_t *input, int last_node);
+static void add_epsilon_backreference (const re_dfa_t *dfa,
+ const re_match_context_t *mctx,
+ const re_node_set *plog, int idx,
+ re_node_set *state_buf);
+static re_dfastate_t *transit_state (const regex_t *preg, re_dfastate_t *state,
+ re_string_t *input, int fl_search,
+ re_dfastate_t **state_log,
+ re_match_context_t *mctx);
+static re_dfastate_t *transit_state_sb (const regex_t *preg,
+ re_dfastate_t *pstate,
+ re_string_t *input, int fl_search,
+ re_match_context_t *mctx);
+static void transit_state_mb (const regex_t *preg, re_dfastate_t *pstate,
+ const re_string_t *input,
+ re_dfastate_t **state_log,
+ re_match_context_t *mctx);
+static void transit_state_bkref (const regex_t *preg, re_dfastate_t *pstate,
+ const re_string_t *input,
+ re_dfastate_t **state_log,
+ re_match_context_t *mctx);
+static void transit_state_bkref_loop (const regex_t *preg,
+ const re_string_t *input,
+ re_node_set *nodes,
+ re_dfastate_t **work_state_log,
+ re_dfastate_t **state_log,
+ re_match_context_t *mctx);
+static re_dfastate_t **build_trtable (const regex_t *dfa,
+ const re_dfastate_t *state,
+ int fl_search);
+static int check_node_accept_bytes (const regex_t *preg, int node_idx,
+ const re_string_t *input, int idx);
+static unsigned int find_collation_sequence_value (const unsigned char *mbs,
+ size_t name_len);
+static int group_nodes_into_DFAstates (const regex_t *dfa,
+ const re_dfastate_t *state,
+ re_node_set *states_node,
+ bitset *states_ch);
+static int check_node_accept (const regex_t *preg, const re_token_t *node,
+ const re_string_t *input, int idx, int eflags);
+
+/* Entry point for POSIX code. */
+
+/* regexec searches for a given pattern, specified by PREG, in the
+ string STRING.
+
+ If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+ `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
+ least NMATCH elements, and we set them to the offsets of the
+ corresponding matched substrings.
+
+ EFLAGS specifies `execution flags' which affect matching: if
+ REG_NOTBOL is set, then ^ does not match at the beginning of the
+ string; if REG_NOTEOL is set, then $ does not match at the end.
+
+ We return 0 if we find a match and REG_NOMATCH if not. */
+
+int
+regexec (preg, string, nmatch, pmatch, eflags)
+ const regex_t *preg;
+ const char *string;
+ size_t nmatch;
+ regmatch_t pmatch[];
+ int eflags;
+{
+ int length = strlen (string);
+ if (preg->no_sub)
+ return re_search_internal (preg, string, length, 0, length, 0,
+ NULL, eflags);
+ else
+ return re_search_internal (preg, string, length, 0, length, nmatch,
+ pmatch, eflags);
+}
+#ifdef _LIBC
+weak_alias (__regexec, regexec)
+#endif
+
+/* Entry points for GNU code. */
+
+/* re_match is like re_match_2 except it takes only a single string. */
+
+int
+re_match (buffer, string, length, start, regs)
+ struct re_pattern_buffer *buffer;
+ const char *string;
+ int length, start;
+ struct re_registers *regs;
+{
+ int i, nregs, result, rval, eflags = 0;
+ regmatch_t *pmatch;
+
+ eflags |= (buffer->not_bol) ? REG_NOTBOL : 0;
+ eflags |= (buffer->not_eol) ? REG_NOTEOL : 0;
+
+ /* We need at least 1 register. */
+ nregs = ((regs == NULL) ? 1
+ : ((regs->num_regs > buffer->re_nsub) ? buffer->re_nsub + 1
+ : regs->num_regs + 1));
+ pmatch = re_malloc (regmatch_t, nregs);
+ if (pmatch == NULL)
+ return -2;
+ result = re_search_internal (buffer, string, length, start, 0,
+ nregs, pmatch, eflags);
+
+ /* If caller wants register contents data back, do it. */
+ if (regs && !buffer->no_sub)
+ {
+ /* Have the register data arrays been allocated? */
+ if (buffer->regs_allocated == REGS_UNALLOCATED)
+ { /* No. So allocate them with malloc. We need one
+ extra element beyond `num_regs' for the `-1' marker
+ GNU code uses. */
+ regs->num_regs = ((RE_NREGS > buffer->re_nsub + 1) ? RE_NREGS
+ : buffer->re_nsub + 1);
+ regs->start = re_malloc (regoff_t, regs->num_regs);
+ regs->end = re_malloc (regoff_t, regs->num_regs);
+ if (regs->start == NULL || regs->end == NULL)
+ {
+ re_free (pmatch);
+ return -2;
+ }
+ buffer->regs_allocated = REGS_REALLOCATE;
+ }
+ else if (buffer->regs_allocated == REGS_REALLOCATE)
+ { /* Yes. If we need more elements than were already
+ allocated, reallocate them. If we need fewer, just
+ leave it alone. */
+ if (regs->num_regs < buffer->re_nsub + 1)
+ {
+ regs->num_regs = buffer->re_nsub + 1;
+ regs->start = re_realloc (regs->start, regoff_t, regs->num_regs);
+ regs->end = re_realloc (regs->end, regoff_t, regs->num_regs);
+ if (regs->start == NULL || regs->end == NULL)
+ {
+ re_free (pmatch);
+ return -2;
+ }
+ }
+ }
+ else
+ {
+ /* These braces fend off a "empty body in an else-statement"
+ warning under GCC when assert expands to nothing. */
+ assert (buffer->regs_allocated == REGS_FIXED);
+ }
+ }
+
+ /* Restore registers. */
+ if (regs != NULL)
+ {
+ for (i = 0; i <= nregs; ++i)
+ {
+ regs->start[i] = pmatch[i].rm_so;
+ regs->end[i] = pmatch[i].rm_eo;
+ }
+ for ( ; i < regs->num_regs; ++i)
+ {
+ regs->start[i] = -1;
+ regs->end[i] = -1;
+ }
+ }
+ /* Return value is -1 if not match, the length of mathing otherwise. */
+ rval = (result) ? -1 : pmatch[0].rm_eo - pmatch[0].rm_so;
+ re_free (pmatch);
+ return rval;
+}
+#ifdef _LIBC
+weak_alias (__re_match, re_match)
+#endif
+
+/* re_match_2 matches the compiled pattern in BUFP against the
+ the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+ and SIZE2, respectively). We start matching at POS, and stop
+ matching at STOP.
+
+ If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+ store offsets for the substring each group matched in REGS. See the
+ documentation for exactly how many groups we fill.
+
+ We return -1 if no match, -2 if an internal error.
+ Otherwise, we return the length of the matched substring. */
+
+int
+re_match_2 (buffer, string1, length1, string2, length2, start, regs, stop)
+ struct re_pattern_buffer *buffer;
+ const char *string1, *string2;
+ int length1, length2, start, stop;
+ struct re_registers *regs;
+{
+ int len, ret;
+ char *str = re_malloc (char, length1 + length2);
+ if (str == NULL)
+ return -2;
+ memcpy (str, string1, length1);
+ memcpy (str + length1, string2, length2);
+ len = (length1 + length2 < stop) ? length1 + length2 : stop;
+ ret = re_match (buffer, str, len, start, regs);
+ re_free (str);
+ return ret;
+}
+#ifdef _LIBC
+weak_alias (__re_match_2, re_match_2)
+#endif
+
+/* Like re_search_2, below, but only one string is specified, and
+ doesn't let you say where to stop matching. */
+
+int
+re_search (bufp, string, size, startpos, range, regs)
+ struct re_pattern_buffer *bufp;
+ const char *string;
+ int size, startpos, range;
+ struct re_registers *regs;
+{
+ int i, nregs, result, real_range, rval, eflags = 0;
+ regmatch_t *pmatch;
+
+ eflags |= (bufp->not_bol) ? REG_NOTBOL : 0;
+ eflags |= (bufp->not_eol) ? REG_NOTEOL : 0;
+
+ /* Check for out-of-range. */
+ if (startpos < 0 || startpos > size)
+ return -1;
+
+ /* We need at least 1 register. */
+ nregs = ((regs == NULL) ? 1
+ : ((regs->num_regs > bufp->re_nsub) ? bufp->re_nsub + 1
+ : regs->num_regs + 1));
+ pmatch = re_malloc (regmatch_t, nregs);
+
+ /* Correct range if we need. */
+ real_range = ((startpos + range > size) ? size - startpos
+ : ((startpos + range < 0) ? -startpos : range));
+
+ /* Compile fastmap if we haven't yet. */
+ if (bufp->fastmap != NULL && !bufp->fastmap_accurate)
+ re_compile_fastmap (bufp);
+
+ result = re_search_internal (bufp, string, size, startpos, real_range,
+ nregs, pmatch, eflags);
+
+ /* If caller wants register contents data back, do it. */
+ if (regs && !bufp->no_sub)
+ {
+ /* Have the register data arrays been allocated? */
+ if (bufp->regs_allocated == REGS_UNALLOCATED)
+ { /* No. So allocate them with malloc. We need one
+ extra element beyond `num_regs' for the `-1' marker
+ GNU code uses. */
+ regs->num_regs = ((RE_NREGS > bufp->re_nsub + 1) ? RE_NREGS
+ : bufp->re_nsub + 1);
+ regs->start = re_malloc (regoff_t, regs->num_regs);
+ regs->end = re_malloc (regoff_t, regs->num_regs);
+ if (regs->start == NULL || regs->end == NULL)
+ {
+ re_free (pmatch);
+ return -2;
+ }
+ bufp->regs_allocated = REGS_REALLOCATE;
+ }
+ else if (bufp->regs_allocated == REGS_REALLOCATE)
+ { /* Yes. If we need more elements than were already
+ allocated, reallocate them. If we need fewer, just
+ leave it alone. */
+ if (regs->num_regs < bufp->re_nsub + 1)
+ {
+ regs->num_regs = bufp->re_nsub + 1;
+ regs->start = re_realloc (regs->start, regoff_t, regs->num_regs);
+ regs->end = re_realloc (regs->end, regoff_t, regs->num_regs);
+ if (regs->start == NULL || regs->end == NULL)
+ {
+ re_free (pmatch);
+ return -2;
+ }
+ }
+ }
+ else
+ {
+ /* These braces fend off a "empty body in an else-statement"
+ warning under GCC when assert expands to nothing. */
+ assert (bufp->regs_allocated == REGS_FIXED);
+ }
+ }
+
+ /* Restore registers. */
+ if (regs != NULL)
+ {
+ for (i = 0; i <= bufp->re_nsub; ++i)
+ {
+ regs->start[i] = pmatch[i].rm_so;
+ regs->end[i] = pmatch[i].rm_eo;
+ }
+ for ( ; i < regs->num_regs; ++i)
+ {
+ regs->start[i] = -1;
+ regs->end[i] = -1;
+ }
+ }
+ /* Return value is -1 if not match, the position where the mathing starts
+ otherwise. */
+ rval = (result) ? -1 : pmatch[0].rm_so;
+ re_free (pmatch);
+ return rval;
+}
+#ifdef _LIBC
+weak_alias (__re_search, re_search)
+#endif
+
+/* Using the compiled pattern in BUFP, first tries to match the virtual
+ concatenation of STRING1 and STRING2, starting first at index
+ STARTPOS, then at STARTPOS + 1, and so on.
+
+ STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+
+ RANGE is how far to scan while trying to match. RANGE = 0 means try
+ only at STARTPOS; in general, the last start tried is STARTPOS +
+ RANGE.
+
+ In REGS, return the indices of the virtual concatenation of STRING1
+ and STRING2 that matched the entire BUFP->buffer and its contained
+ subexpressions.
+
+ Do not consider matching one past the index STOP in the virtual
+ concatenation of STRING1 and STRING2.
+
+ We return either the position in the strings at which the match was
+ found, -1 if no match, or -2 if error. */
+
+int
+re_search_2 (bufp, string1, length1, string2, length2, start, range, regs,
+ stop)
+ struct re_pattern_buffer *bufp;
+ const char *string1, *string2;
+ int length1, length2, start, range, stop;
+ struct re_registers *regs;
+{
+ int len, ret;
+ char *str = re_malloc (char, length1 + length2);
+ memcpy (str, string1, length1);
+ memcpy (str + length1, string2, length2);
+ len = (length1 + length2 < stop) ? length1 + length2 : stop;
+ ret = re_search (bufp, str, len, start, range, regs);
+ re_free (str);
+ return ret;
+}
+#ifdef _LIBC
+weak_alias (__re_search_2, re_search_2)
+#endif
+
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+ ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
+ this memory for recording register information. STARTS and ENDS
+ must be allocated using the malloc library routine, and must each
+ be at least NUM_REGS * sizeof (regoff_t) bytes long.
+
+ If NUM_REGS == 0, then subsequent matches should allocate their own
+ register data.
+
+ Unless this function is called, the first search or match using
+ PATTERN_BUFFER will allocate its own register data, without
+ freeing the old data. */
+
+void
+re_set_registers (bufp, regs, num_regs, starts, ends)
+ struct re_pattern_buffer *bufp;
+ struct re_registers *regs;
+ unsigned num_regs;
+ regoff_t *starts, *ends;
+{
+ if (num_regs)
+ {
+ bufp->regs_allocated = REGS_REALLOCATE;
+ regs->num_regs = num_regs;
+ regs->start = starts;
+ regs->end = ends;
+ }
+ else
+ {
+ bufp->regs_allocated = REGS_UNALLOCATED;
+ regs->num_regs = 0;
+ regs->start = regs->end = (regoff_t *) 0;
+ }
+}
+#ifdef _LIBC
+weak_alias (__re_set_registers, re_set_registers)
+#endif
+
+/* Entry points compatible with 4.2 BSD regex library. We don't define
+ them unless specifically requested. */
+
+#if defined _REGEX_RE_COMP || defined _LIBC
+int
+# ifdef _LIBC
+weak_function
+# endif
+re_exec (s)
+ const char *s;
+{
+ return 0 == regexec (&re_comp_buf, s, 0, NULL, 0);
+}
+#endif /* _REGEX_RE_COMP */
+
+static re_node_set empty_set;
+
+/* Internal entry point. */
+
+/* Searches for a compiled pattern PREG in the string STRING, whose
+ length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same
+ mingings with regexec. START, and RANGE have the same meanings
+ with re_search.
+ Return 0 if we find a match and REG_NOMATCH if not.
+ Note: We assume front end functions already check ranges.
+ (START + RANGE >= 0 && START + RANGE <= LENGTH) */
+
+static int
+re_search_internal (preg, string, length, start, range, nmatch, pmatch, eflags)
+ const regex_t *preg;
+ const char *string;
+ int length, start, range, eflags;
+ size_t nmatch;
+ regmatch_t pmatch[];
+{
+ re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
+ re_string_t input;
+ re_dfastate_t **state_log;
+ int fl_longest_match, match_first, match_last = -1;
+ re_match_context_t mctx;
+ char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate)
+ ? preg->fastmap : NULL);
+
+ /* Check if the DFA haven't been compiled. */
+ if (preg->used == 0 || dfa->init_state == NULL
+ || dfa->init_state_word == NULL || dfa->init_state_nl == NULL
+ || dfa->init_state_begbuf == NULL)
+ return 1;
+
+ re_node_set_init_empty (&empty_set);
+
+ /* We must check the longest matching, if nmatch > 0. */
+ fl_longest_match = (nmatch != 0);
+
+ /* We will log all the DFA states through which the dfa pass,
+ if nmatch > 1, or this dfa has "multibyte node", which is a
+ back-reference or a node which can accept multibyte character or
+ multi character collating element. */
+ if (nmatch > 1 || dfa->has_mb_node)
+ state_log = re_malloc (re_dfastate_t *, length + 1);
+ else
+ state_log = NULL;
+
+ if (preg->syntax & RE_ICASE)
+ re_string_construct_toupper (&input, string, length, preg->translate);
+ else
+ re_string_construct (&input, string, length, preg->translate);
+
+ match_ctx_init (&mctx, eflags, dfa->nbackref * 2);
+
+#ifdef DEBUG
+ /* We assume front-end functions already check them. */
+ assert (start + range >= 0 && start + range <= length);
+#endif
+
+ /* Check incrementally whether of not the input string match. */
+ for (match_first = start; ;)
+ {
+ if ((match_first < length
+ && (fastmap == NULL
+ || fastmap[re_string_byte_at (&input, match_first)]))
+ || preg->can_be_null)
+ {
+#ifdef RE_ENABLE_I18N
+ if (MB_CUR_MAX == 1 || re_string_first_byte (&input, match_first))
+#endif
+ {
+ /* We assume that the matching starts from `match_first'. */
+ re_string_set_index (&input, match_first);
+ mctx.match_first = mctx.state_log_top = match_first;
+ mctx.nbkref_ents = mctx.max_bkref_len = 0;
+ match_last = check_matching (preg, &input, &mctx, state_log,
+ match_first, 0, fl_longest_match);
+ if (match_last != -1)
+ break;
+ }
+ }
+ /* Update counter. */
+ if (range < 0)
+ {
+ --match_first;
+ if (match_first < start + range)
+ break;
+ }
+ else
+ {
+ ++match_first;
+ if (match_first > start + range)
+ break;
+ }
+ }
+
+ /* Set pmatch[] if we need. */
+ if (match_last != -1 && nmatch > 0)
+ {
+ int reg_idx;
+
+ /* Initialize registers. */
+ for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
+ pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1;
+
+ /* Set the points where matching start/end. */
+ pmatch[0].rm_so = mctx.match_first;
+ mctx.match_last = pmatch[0].rm_eo = match_last;
+
+ if (!preg->no_sub && nmatch > 1)
+ {
+ /* We need the ranges of all the subexpressions. */
+ int halt_node;
+ re_dfastate_t *pstate = state_log[match_last];
+#ifdef DEBUG
+ assert (state_log != NULL);
+#endif
+ halt_node = check_halt_state_context (preg, pstate, &input,
+ match_last, eflags);
+ sift_states_backward (preg, state_log, &mctx, &input, halt_node);
+ set_regs (preg, state_log, &mctx, &input, nmatch, pmatch, halt_node);
+ }
+ }
+
+ re_free (state_log);
+ if (dfa->nbackref)
+ match_ctx_free (&mctx);
+ re_string_destruct (&input);
+ return match_last == -1;
+}
+
+/* Acquire an initial state.
+ We must select appropriate initial state depending on the context,
+ since initial states may have constraints like "\<", "^", etc.. */
+
+static inline re_dfastate_t *
+acquire_init_state_context (preg, input, idx, eflags)
+ const regex_t *preg;
+ const re_string_t *input;
+ int idx, eflags;
+{
+ re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+
+ if (dfa->init_state->has_constraint)
+ {
+ unsigned int context;
+ context = re_string_context_at (input, idx - 1, eflags,
+ preg->newline_anchor);
+ if (IS_WORD_CONTEXT (context))
+ return dfa->init_state_word;
+ else if (IS_ORDINARY_CONTEXT (context))
+ return dfa->init_state;
+ else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context))
+ return dfa->init_state_begbuf;
+ else if (IS_NEWLINE_CONTEXT (context))
+ return dfa->init_state_nl;
+ else if (IS_BEGBUF_CONTEXT (context))
+ /* It is relatively rare case, then calculate on demand. */
+ return re_acquire_state_context (dfa, dfa->init_state->entrance_nodes,
+ context);
+ else
+ /* Must not happen? */
+ return dfa->init_state;
+ }
+ else
+ return dfa->init_state;
+}
+
+/* Check whether the regular expression match input string INPUT or not,
+ and return the index where the matching end, or return -1 if not match.
+ FL_SEARCH means we must search where the matching starts,
+ FL_LONGEST_MATCH means we want the POSIX longest matching. */
+
+static int
+check_matching (preg, input, mctx, state_log, start_idx, fl_search,
+ fl_longest_match)
+ const regex_t *preg;
+ re_string_t *input;
+ re_match_context_t *mctx;
+ re_dfastate_t **state_log;
+ int start_idx, fl_search, fl_longest_match;
+{
+ int match = 0, match_last = -1;
+ re_dfastate_t *cur_state;
+
+ cur_state = acquire_init_state_context (preg, input, start_idx,
+ mctx->eflags);
+ if (state_log != NULL)
+ state_log[start_idx] = cur_state;
+ /* If the RE accepts NULL string. */
+ if (cur_state->halt)
+ {
+ if (!cur_state->has_constraint
+ || check_halt_state_context (preg, cur_state, input, start_idx,
+ mctx->eflags))
+ {
+ if (!fl_longest_match)
+ return start_idx;
+ else
+ {
+ match_last = start_idx;
+ match = 1;
+ }
+ }
+ }
+
+ while (!re_string_eoi (input))
+ {
+ cur_state = transit_state (preg, cur_state, input, fl_search && !match,
+ state_log, mctx);
+ if (cur_state == NULL) /* Reached at the invalid state. */
+ {
+ int cur_str_idx = re_string_cur_idx (input);
+ if (fl_search && !match)
+ {
+ /* Restart from initial state, since we are searching
+ the point from where matching start. */
+#ifdef RE_ENABLE_I18N
+ if (MB_CUR_MAX == 1 || re_string_first_byte (input, cur_str_idx))
+#endif /* RE_ENABLE_I18N */
+ cur_state = acquire_init_state_context (preg, input,
+ cur_str_idx,
+ mctx->eflags);
+ if (state_log != NULL)
+ state_log[cur_str_idx] = cur_state;
+ }
+ else if (!fl_longest_match && match)
+ break;
+ else /* (fl_longest_match && match) || (!fl_search && !match) */
+ {
+ if (state_log == NULL)
+ break;
+ else
+ {
+ int max = mctx->state_log_top;
+ for (; cur_str_idx <= max; ++cur_str_idx)
+ if (state_log[cur_str_idx] != NULL)
+ break;
+ if (cur_str_idx > max)
+ break;
+ }
+ }
+ }
+
+ if (cur_state != NULL && cur_state->halt)
+ {
+ /* Reached at a halt state.
+ Check the halt state can satisfy the current context. */
+ if (!cur_state->has_constraint
+ || check_halt_state_context (preg, cur_state, input,
+ re_string_cur_idx (input),
+ mctx->eflags))
+ {
+ /* We found an appropriate halt state. */
+ match_last = re_string_cur_idx (input);
+ match = 1;
+ if (!fl_longest_match)
+ break;
+ }
+ }
+ }
+ return match_last;
+}
+
+/* Check NODE match the current context. */
+
+static int check_halt_node_context (dfa, node, context)
+ const re_dfa_t *dfa;
+ int node;
+ unsigned int context;
+{
+ int entity;
+ re_token_type_t type = dfa->nodes[node].type;
+ if (type == END_OF_RE)
+ return 1;
+ if (type != OP_CONTEXT_NODE)
+ return 0;
+ entity = dfa->nodes[node].opr.ctx_info->entity;
+ if (dfa->nodes[entity].type != END_OF_RE
+ || NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[node].constraint, context))
+ return 0;
+ return 1;
+}
+
+/* Check the halt state STATE match the current context.
+ Return 0 if not match, if the node, STATE has, is a halt node and
+ match the context, return the node. */
+
+static int
+check_halt_state_context (preg, state, input, idx, eflags)
+ const regex_t *preg;
+ const re_dfastate_t *state;
+ const re_string_t *input;
+ int idx, eflags;
+{
+ re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ int i;
+ unsigned int context;
+#ifdef DEBUG
+ assert (state->halt);
+#endif
+ context = re_string_context_at (input, idx, eflags, preg->newline_anchor);
+ for (i = 0; i < state->nodes.nelem; ++i)
+ if (check_halt_node_context (dfa, state->nodes.elems[i], context))
+ return state->nodes.elems[i];
+ return 0;
+}
+
+/* Compute the next node to which "NFA" transit from NODE.
+ Return the destination node, and update EPS_VIA_NODES.
+ ("NFA" is a NFA corresponding to the DFA. */
+
+static int
+proceed_next_node (preg, state_log, mctx, input, pidx, node, eps_via_nodes)
+ const regex_t *preg;
+ re_dfastate_t **state_log;
+ const re_match_context_t *mctx;
+ const re_string_t *input;
+ int *pidx, node;
+ re_node_set *eps_via_nodes;
+{
+ re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
+ int i, dest_node = -1;
+ if (IS_EPSILON_NODE (dfa->nodes[node].type))
+ {
+ re_node_set_insert (eps_via_nodes, node);
+ for (i = 0; i < state_log[*pidx]->nodes.nelem; ++i)
+ {
+ int candidate = state_log[*pidx]->nodes.elems[i];
+ if (!re_node_set_contains (dfa->edests + node, candidate)
+ && !(dfa->nodes[candidate].type == OP_CONTEXT_NODE
+ && re_node_set_contains (dfa->edests + node,
+ dfa->nodes[candidate].opr.ctx_info->entity)))
+ continue;
+ dest_node = candidate;
+ /* In order to avoid infinite loop like "(a*)*". */
+ if (!re_node_set_contains (eps_via_nodes, dest_node))
+ break;
+ }
+#ifdef DEBUG
+ assert (dest_node != -1);
+#endif
+ return dest_node;
+ }
+ else
+ {
+ int naccepted = 0, entity = node;
+ re_token_type_t type = dfa->nodes[node].type;
+ if (type == OP_CONTEXT_NODE)
+ {
+ entity = dfa->nodes[node].opr.ctx_info->entity;
+ type = dfa->nodes[entity].type;
+ }
+
+ if (ACCEPT_MB_NODE (type))
+ naccepted = check_node_accept_bytes (preg, entity, input, *pidx);
+ else if (type == OP_BACK_REF)
+ {
+ for (i = 0; i < mctx->nbkref_ents; ++i)
+ {
+ if (mctx->bkref_ents[i].node == node
+ && mctx->bkref_ents[i].from == *pidx)
+ naccepted = mctx->bkref_ents[i].to - *pidx;
+ }
+ if (naccepted == 0)
+ {
+ re_node_set_insert (eps_via_nodes, node);
+ dest_node = dfa->nexts[node];
+ if (re_node_set_contains (&state_log[*pidx]->nodes, dest_node))
+ return dest_node;
+ for (i = 0; i < state_log[*pidx]->nodes.nelem; ++i)
+ {
+ dest_node = state_log[*pidx]->nodes.elems[i];
+ if ((dfa->nodes[dest_node].type == OP_CONTEXT_NODE
+ && (dfa->nexts[node]
+ == dfa->nodes[dest_node].opr.ctx_info->entity)))
+ return dest_node;
+ }
+ }
+ }
+
+ if (naccepted != 0
+ || check_node_accept (preg, dfa->nodes + node, input, *pidx,
+ mctx->eflags))
+ {
+ dest_node = dfa->nexts[node];
+ *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted;
+#ifdef DEBUG
+ assert (state_log[*pidx] != NULL);
+#endif
+ re_node_set_empty (eps_via_nodes);
+ return dest_node;
+ }
+ }
+ /* Must not reach here. */
+#ifdef DEBUG
+ assert (0);
+#endif
+ return 0;
+}
+
+/* Set the positions where the subexpressions are starts/ends to registers
+ PMATCH.
+ Note: We assume that pmatch[0] is already set, and
+ pmatch[i].rm_so == pmatch[i].rm_eo == -1 (i > 1). */
+
+static void
+set_regs (preg, state_log, mctx, input, nmatch, pmatch, last_node)
+ const regex_t *preg;
+ re_dfastate_t **state_log;
+ const re_match_context_t *mctx;
+ const re_string_t *input;
+ size_t nmatch;
+ regmatch_t *pmatch;
+ int last_node;
+{
+ re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
+ int idx, cur_node, node_entity, real_nmatch;
+ re_node_set eps_via_nodes;
+ int i;
+#ifdef DEBUG
+ assert (nmatch > 1);
+ assert (state_log != NULL);
+#endif
+ cur_node = dfa->init_node;
+ real_nmatch = (nmatch <= preg->re_nsub) ? nmatch : preg->re_nsub + 1;
+ re_node_set_init_empty (&eps_via_nodes);
+ for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;)
+ {
+ node_entity = ((dfa->nodes[cur_node].type == OP_CONTEXT_NODE)
+ ? dfa->nodes[cur_node].opr.ctx_info->entity : cur_node);
+ for (i = 1; i < real_nmatch; ++i)
+ {
+ if (dfa->subexps[i - 1].start == dfa->subexps[i - 1].end)
+ {
+ /* In case of the null subexpression like '()'. */
+ if (dfa->subexps[i - 1].start == node_entity)
+ {
+ pmatch[i].rm_so = idx;
+ pmatch[i].rm_eo = idx;
+ }
+ }
+ else if (dfa->subexps[i - 1].start <= node_entity
+ && node_entity < dfa->subexps[i - 1].end)
+ {
+ if (pmatch[i].rm_so == -1 || pmatch[i].rm_eo != -1)
+ /* We are at the first node of this sub expression. */
+ {
+ pmatch[i].rm_so = idx;
+ pmatch[i].rm_eo = -1;
+ }
+ }
+ else
+ {
+ if (pmatch[i].rm_so != -1 && pmatch[i].rm_eo == -1)
+ /* We are at the last node of this sub expression. */
+ pmatch[i].rm_eo = idx;
+ }
+ }
+ if (idx == pmatch[0].rm_eo && cur_node == last_node)
+ break;
+
+ /* Proceed to next node. */
+ cur_node = proceed_next_node (preg, state_log, mctx, input, &idx,
+ cur_node, &eps_via_nodes);
+ }
+ re_node_set_free (&eps_via_nodes);
+ return;
+}
+
+#define NUMBER_OF_STATE 1
+
+/* This function checks the STATE_LOG from the MCTX->match_last
+ to MCTX->match_first and sift the nodes in each states according to
+ the following rules. Updated state_log will be wrote to STATE_LOG.
+
+ Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if...
+ 1. When STR_IDX == MATCH_LAST(the last index in the state_log):
+ If `a' isn't the LAST_NODE and `a' can't epsilon transit to
+ the LAST_NODE, we throw away the node `a'.
+ 2. When MATCH_FIRST <= STR_IDX < MATCH_LAST and `a' accepts
+ string `s' and transit to `b':
+ i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw
+ away the node `a'.
+ ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is
+ throwed away, we throw away the node `a'.
+ 3. When 0 <= STR_IDX < n and 'a' epsilon transit to 'b':
+ i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the
+ node `a'.
+ ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is throwed away,
+ we throw away the node `a'. */
+
+#define STATE_NODE_CONTAINS(state,node) \
+ ((state) != NULL && re_node_set_contains (&(state)->nodes, node))
+
+static void
+sift_states_backward (preg, state_log, mctx, input, last_node)
+ const regex_t *preg;
+ re_dfastate_t **state_log;
+ const re_match_context_t *mctx;
+ const re_string_t *input;
+ int last_node;
+{
+ re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
+ re_node_set state_buf;
+ int str_idx = mctx->match_last;
+ re_node_set *plog; /* Points the state_log[str_idx]->nodes */
+
+#ifdef DEBUG
+ assert (state_log != NULL && state_log[str_idx] != NULL);
+#endif
+ re_node_set_alloc (&state_buf, NUMBER_OF_STATE);
+ plog = &state_log[str_idx]->nodes;
+
+ /* Build sifted state_log[str_idx]. It has the nodes which can epsilon
+ transit to the last_node and the last_node itself. */
+ re_node_set_intersect (&state_buf, plog, dfa->inveclosures + last_node);
+
+ if (state_log[str_idx] != NULL && state_log[str_idx]->has_backref)
+ add_epsilon_backreference (dfa, mctx, plog, str_idx, &state_buf);
+
+ /* Update state log. */
+ state_log[str_idx] = re_acquire_state (dfa, &state_buf);
+
+ /* Then check each states in the state_log. */
+ while (str_idx > mctx->match_first)
+ {
+ int i, j;
+ /* Update counters. */
+ re_node_set_empty (&state_buf);
+ --str_idx;
+ plog = ((state_log[str_idx] == NULL) ? &empty_set
+ : &state_log[str_idx]->nodes);
+
+ /* Then build the next sifted state.
+ We build the next sifted state on `state_buf', and update
+ `state_log[str_idx]' with `state_buf'.
+ Note:
+ `state_buf' is the sifted state from `state_log[str_idx + 1]'.
+ `plog' points the node_set of the old `state_log[str_idx]'. */
+ for (i = 0; i < plog->nelem; i++)
+ {
+ int prev_node = plog->elems[i];
+ int entity = prev_node;
+ int naccepted = 0;
+ re_token_type_t type = dfa->nodes[prev_node].type;
+ if (type == OP_CONTEXT_NODE)
+ {
+ entity = dfa->nodes[prev_node].opr.ctx_info->entity;
+ type = dfa->nodes[entity].type;
+ }
+
+ /* If the node may accept `multi byte'. */
+ if (ACCEPT_MB_NODE (type))
+ naccepted = sift_states_iter_mb (preg, state_log, mctx, input,
+ entity, str_idx,
+ mctx->match_last);
+
+ /* If the node is a back reference. */
+ else if (type == OP_BACK_REF)
+ for (j = 0; j < mctx->nbkref_ents; ++j)
+ {
+ naccepted = sift_states_iter_bkref (dfa, state_log,
+ mctx->bkref_ents + j,
+ prev_node, str_idx,
+ mctx->match_first,
+ mctx->match_last);
+ if (naccepted)
+ break;
+ }
+
+ if (!naccepted
+ && check_node_accept (preg, dfa->nodes + prev_node, input,
+ str_idx, mctx->eflags)
+ && STATE_NODE_CONTAINS (state_log[str_idx + 1],
+ dfa->nexts[prev_node]))
+ naccepted = 1;
+
+ if (naccepted == 0)
+ continue;
+
+ /* `prev_node' may point the entity of the OP_CONTEXT_NODE,
+ then we use plog->elems[i] instead. */
+ re_node_set_add_intersect (&state_buf, plog,
+ dfa->inveclosures + prev_node);
+ }
+ if (state_log[str_idx] != NULL && state_log[str_idx]->has_backref)
+ add_epsilon_backreference (dfa, mctx, plog, str_idx, &state_buf);
+
+ /* Update state_log. */
+ state_log[str_idx] = re_acquire_state (dfa, &state_buf);
+ }
+
+ re_node_set_free (&state_buf);
+}
+
+/* Helper functions. */
+
+static inline void
+clean_state_log_if_need (state_log, mctx, next_state_log_idx)
+ re_dfastate_t **state_log;
+ re_match_context_t *mctx;
+ int next_state_log_idx;
+{
+ int top = mctx->state_log_top;
+ if (top < next_state_log_idx)
+ {
+ memset (state_log + top + 1, '\0',
+ sizeof (re_dfastate_t *) * (next_state_log_idx - top));
+ mctx->state_log_top = next_state_log_idx;
+ }
+}
+
+static int
+sift_states_iter_mb (preg, state_log, mctx, input, node_idx, str_idx,
+ max_str_idx)
+ const regex_t *preg;
+ re_dfastate_t **state_log;
+ const re_match_context_t *mctx;
+ const re_string_t *input;
+ int node_idx, str_idx, max_str_idx;
+{
+ re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ int naccepted;
+ /* Check the node can accept `multi byte'. */
+ naccepted = check_node_accept_bytes (preg, node_idx, input, str_idx);
+ if (naccepted > 0 && str_idx + naccepted <= max_str_idx &&
+ !STATE_NODE_CONTAINS (state_log[str_idx + naccepted],
+ dfa->nexts[node_idx]))
+ /* The node can't accept the `multi byte', or the
+ destination was already throwed away, then the node
+ could't accept the current input `multi byte'. */
+ naccepted = 0;
+ /* Otherwise, it is sure that the node could accept
+ `naccepted' bytes input. */
+ return naccepted;
+}
+
+static int
+sift_states_iter_bkref (dfa, state_log, mctx_entry, node_idx, idx, match_first,
+ match_last)
+ const re_dfa_t *dfa;
+ re_dfastate_t **state_log;
+ struct re_backref_cache_entry *mctx_entry;
+ int node_idx, idx, match_first, match_last;
+{
+ int naccepted = 0;
+ int from_idx, to_idx;
+ from_idx = mctx_entry->from;
+ to_idx = mctx_entry->to;
+ if (mctx_entry->node == node_idx
+ && from_idx == idx && to_idx <= match_last
+ && STATE_NODE_CONTAINS (state_log[to_idx], dfa->nexts[node_idx]))
+ naccepted = to_idx - from_idx;
+ return naccepted;
+}
+
+static void
+add_epsilon_backreference (dfa, mctx, plog, idx, state_buf)
+ const re_dfa_t *dfa;
+ const re_match_context_t *mctx;
+ const re_node_set *plog;
+ int idx;
+ re_node_set *state_buf;
+{
+ int i, j;
+ for (i = 0; i < plog->nelem; ++i)
+ {
+ int node_idx = plog->elems[i];
+ re_token_type_t type = dfa->nodes[node_idx].type;
+ if (type == OP_CONTEXT_NODE)
+ type = dfa->nodes[dfa->nodes[node_idx].opr.ctx_info->entity].type;
+
+ if (type == OP_BACK_REF &&
+ !re_node_set_contains (state_buf, node_idx))
+ {
+ for (j = 0; j < mctx->nbkref_ents; ++j)
+ {
+ struct re_backref_cache_entry *entry;
+ entry = mctx->bkref_ents + j;
+ if (entry->from == entry->to && entry->from == idx)
+ break;
+ }
+ if (j < mctx->nbkref_ents || idx == mctx->match_first)
+ {
+ re_node_set_add_intersect (state_buf, plog,
+ dfa->inveclosures + node_idx);
+ i = 0;
+ }
+ }
+ }
+}
+
+/* Functions for state transition. */
+
+/* Return the next state to which the current state STATE will transit by
+ accepting the current input byte, and update STATE_LOG if necessary.
+ If STATE can accept a multibyte char/collating element/back reference
+ update the destination of STATE_LOG. */
+
+static re_dfastate_t *
+transit_state (preg, state, input, fl_search, state_log, mctx)
+ const regex_t *preg;
+ re_dfastate_t *state, **state_log;
+ re_string_t *input;
+ int fl_search;
+ re_match_context_t *mctx;
+{
+ re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ re_dfastate_t **trtable, *next_state;
+ unsigned char ch;
+
+ if (state == NULL)
+ {
+ next_state = state;
+ re_string_skip_bytes (input, 1);
+ }
+ else
+ {
+ /* If the current state can accept multibyte. */
+ if (state->accept_mb)
+ transit_state_mb (preg, state, input, state_log, mctx);
+
+ /* Then decide the next state with the single byte. */
+ if (1)
+ {
+ /* Use transition table */
+ ch = re_string_fetch_byte (input);
+ trtable = fl_search ? state->trtable_search : state->trtable;
+ if (trtable == NULL)
+ {
+ trtable = build_trtable (preg, state, fl_search);
+ if (fl_search)
+ state->trtable_search = trtable;
+ else
+ state->trtable = trtable;
+ }
+ next_state = trtable[ch];
+ }
+ else
+ {
+ /* don't use transition table */
+ next_state = transit_state_sb (preg, state, input, fl_search, mctx);
+ }
+ }
+
+ /* Update the state_log if we need. */
+ if (state_log != NULL)
+ {
+ int cur_idx = re_string_cur_idx (input);
+ if (cur_idx > mctx->state_log_top)
+ {
+ state_log[cur_idx] = next_state;
+ mctx->state_log_top = cur_idx;
+ }
+ else if (state_log[cur_idx] == 0)
+ {
+ state_log[cur_idx] = next_state;
+ }
+ else
+ {
+ re_dfastate_t *pstate;
+ unsigned int context;
+ re_node_set next_nodes, *log_nodes, *table_nodes = NULL;
+ /* If (state_log[cur_idx] != 0), it implies that cur_idx is
+ the destination of a multibyte char/collating element/
+ back reference. Then the next state is the union set of
+ these destinations and the results of the transition table. */
+ pstate = state_log[cur_idx];
+ log_nodes = pstate->entrance_nodes;
+ if (next_state != NULL)
+ {
+ table_nodes = next_state->entrance_nodes;
+ re_node_set_init_union (&next_nodes, table_nodes, log_nodes);
+ }
+ else
+ next_nodes = *log_nodes;
+ /* Note: We already add the nodes of the initial state,
+ then we don't need to add them here. */
+
+ context = re_string_context_at (input, re_string_cur_idx (input) - 1,
+ mctx->eflags, preg->newline_anchor);
+ next_state = state_log[cur_idx]
+ = re_acquire_state_context (dfa, &next_nodes, context);
+ if (table_nodes != NULL)
+ re_node_set_free (&next_nodes);
+ }
+ /* If the next state has back references. */
+ if (next_state != NULL && next_state->has_backref)
+ {
+ transit_state_bkref (preg, next_state, input, state_log, mctx);
+ next_state = state_log[cur_idx];
+ }
+ }
+ return next_state;
+}
+
+/* Helper functions for transit_state. */
+
+/* Return the next state to which the current state STATE will transit by
+ accepting the current input byte. */
+
+static re_dfastate_t *
+transit_state_sb (preg, state, input, fl_search, mctx)
+ const regex_t *preg;
+ re_dfastate_t *state;
+ re_string_t *input;
+ int fl_search;
+ re_match_context_t *mctx;
+{
+ re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ re_node_set next_nodes;
+ re_dfastate_t *next_state;
+ int node_cnt, cur_str_idx = re_string_cur_idx (input);
+ unsigned int context;
+
+ re_node_set_alloc (&next_nodes, state->nodes.nelem + 1);
+ for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt)
+ {
+ int cur_node = state->nodes.elems[node_cnt];
+ if (check_node_accept (preg, dfa->nodes + cur_node, input,
+ cur_str_idx, mctx->eflags))
+ re_node_set_merge (&next_nodes,
+ dfa->eclosures + dfa->nexts[cur_node]);
+ }
+ if (fl_search)
+ {
+#ifdef RE_ENABLE_I18N
+ int not_initial = 0;
+ if (MB_CUR_MAX > 1)
+ for (node_cnt = 0; node_cnt < next_nodes.nelem; ++node_cnt)
+ if (dfa->nodes[next_nodes.elems[node_cnt]].type == CHARACTER)
+ {
+ not_initial = dfa->nodes[next_nodes.elems[node_cnt]].mb_partial;
+ break;
+ }
+ if (!not_initial)
+#endif
+ re_node_set_merge (&next_nodes, dfa->init_state->entrance_nodes);
+ }
+ context = re_string_context_at (input, cur_str_idx, mctx->eflags,
+ preg->newline_anchor);
+ next_state = re_acquire_state_context (dfa, &next_nodes, context);
+ re_node_set_free (&next_nodes);
+ re_string_skip_bytes (input, 1);
+ return next_state;
+}
+
+static void
+transit_state_mb (preg, pstate, input, state_log, mctx)
+ const regex_t *preg;
+ re_dfastate_t *pstate, **state_log;
+ const re_string_t *input;
+ re_match_context_t *mctx;
+{
+ re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ int i;
+
+ for (i = 0; i < pstate->nodes.nelem; ++i)
+ {
+ re_node_set dest_nodes, *new_nodes;
+ int cur_node_idx = pstate->nodes.elems[i];
+ int naccepted = 0, dest_idx;
+ unsigned int context;
+ re_dfastate_t *dest_state;
+
+ if (dfa->nodes[cur_node_idx].type == OP_CONTEXT_NODE)
+ {
+ context = re_string_context_at (input, re_string_cur_idx (input),
+ mctx->eflags, preg->newline_anchor);
+ if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint,
+ context))
+ continue;
+ cur_node_idx = dfa->nodes[cur_node_idx].opr.ctx_info->entity;
+ }
+
+ /* How many bytes the node can accepts? */
+ if (ACCEPT_MB_NODE (dfa->nodes[cur_node_idx].type))
+ naccepted = check_node_accept_bytes (preg, cur_node_idx, input,
+ re_string_cur_idx (input));
+ if (naccepted == 0)
+ continue;
+
+ /* The node can accepts `naccepted' bytes. */
+ dest_idx = re_string_cur_idx (input) + naccepted;
+ clean_state_log_if_need (state_log, mctx, dest_idx);
+#ifdef DEBUG
+ assert (dfa->nexts[cur_node_idx] != -1);
+#endif
+ /* `cur_node_idx' may point the entity of the OP_CONTEXT_NODE,
+ then we use pstate->nodes.elems[i] instead. */
+ new_nodes = dfa->eclosures + dfa->nexts[pstate->nodes.elems[i]];
+
+ dest_state = state_log[dest_idx];
+ if (dest_state == NULL)
+ dest_nodes = *new_nodes;
+ else
+ re_node_set_init_union (&dest_nodes, dest_state->entrance_nodes,
+ new_nodes);
+ context = re_string_context_at (input, dest_idx - 1, mctx->eflags,
+ preg->newline_anchor);
+ state_log[dest_idx] = re_acquire_state_context (dfa, &dest_nodes, context);
+ if (dest_state != NULL)
+ re_node_set_free (&dest_nodes);
+ }
+}
+
+static void
+transit_state_bkref (preg, pstate, input, state_log, mctx)
+ const regex_t *preg;
+ re_dfastate_t *pstate, **state_log;
+ const re_string_t *input;
+ re_match_context_t *mctx;
+{
+ re_dfastate_t **work_state_log;
+
+#ifdef DEBUG
+ assert (mctx->match_first != -1);
+#endif
+ work_state_log = re_malloc (re_dfastate_t *, re_string_cur_idx (input) + 1);
+
+ transit_state_bkref_loop (preg, input, &pstate->nodes, work_state_log,
+ state_log, mctx);
+
+ re_free (work_state_log);
+}
+
+/* Caller must allocate `work_state_log'. */
+
+static void
+transit_state_bkref_loop (preg, input, nodes, work_state_log, state_log, mctx)
+ const regex_t *preg;
+ const re_string_t *input;
+ re_node_set *nodes;
+ re_dfastate_t **work_state_log, **state_log;
+ re_match_context_t *mctx;
+{
+ re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ int i, j;
+ regmatch_t *cur_regs = re_malloc (regmatch_t, preg->re_nsub + 1);
+ int cur_str_idx = re_string_cur_idx (input);
+
+ for (i = 0; i < nodes->nelem; ++i)
+ {
+ int dest_str_idx, subexp_idx, prev_nelem, subexp_len;
+ int node_idx = nodes->elems[i];
+ unsigned int context;
+ re_token_t *node = dfa->nodes + node_idx;
+ re_dfastate_t *dest_state;
+ re_node_set *new_dest_nodes;
+
+ /* Check whether `node' is a backreference or not. */
+ if (node->type == OP_BACK_REF)
+ subexp_idx = node->opr.idx;
+ else if (node->type == OP_CONTEXT_NODE &&
+ dfa->nodes[node->opr.ctx_info->entity].type == OP_BACK_REF)
+ {
+ context = re_string_context_at (input, cur_str_idx, mctx->eflags,
+ preg->newline_anchor);
+ if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
+ continue;
+ subexp_idx = dfa->nodes[node->opr.ctx_info->entity].opr.idx;
+ }
+ else
+ continue;
+
+ /* `node' is a backreference.
+ At first, set registers to check the backreference. */
+ cur_regs[0].rm_so = mctx->match_first;
+ cur_regs[0].rm_eo = cur_str_idx;
+ memcpy (work_state_log + mctx->match_first,
+ state_log + mctx->match_first,
+ sizeof (re_dfastate_t *)
+ * (cur_str_idx - mctx->match_first + 1));
+ mctx->match_last = cur_str_idx;
+ sift_states_backward (preg, work_state_log, mctx, input, node_idx);
+ if (!STATE_NODE_CONTAINS (work_state_log[mctx->match_first],
+ dfa->init_node))
+ continue;
+ for (j = 1; j <= preg->re_nsub; ++j)
+ cur_regs[j].rm_so = cur_regs[j].rm_eo = -1;
+ set_regs (preg, work_state_log, mctx, input,
+ subexp_idx + 1, cur_regs, node_idx);
+
+ /* Then check that the backreference can match the input string. */
+ subexp_len = cur_regs[subexp_idx].rm_eo - cur_regs[subexp_idx].rm_so;
+ if (subexp_len < 0
+ || (strncmp ((re_string_get_buffer (input)
+ + cur_regs[subexp_idx].rm_so),
+ re_string_get_buffer (input) + cur_str_idx, subexp_len)
+ != 0))
+ continue;
+
+ /* Successfully matched, add a new cache entry. */
+ dest_str_idx = cur_str_idx + subexp_len;
+ match_ctx_add_entry (mctx, node_idx, cur_str_idx, dest_str_idx);
+ clean_state_log_if_need (state_log, mctx, dest_str_idx);
+
+ /* And add the epsilon closures (which is `new_dest_nodes') of
+ the backreference to appropriate state_log. */
+#ifdef DEBUG
+ assert (dfa->nexts[node_idx] != -1);
+#endif
+ if (node->type == OP_CONTEXT_NODE && subexp_len == 0)
+ new_dest_nodes = dfa->nodes[node_idx].opr.ctx_info->bkref_eclosure;
+ else
+ new_dest_nodes = dfa->eclosures + dfa->nexts[node_idx];
+ context = (IS_WORD_CHAR (re_string_byte_at (input, dest_str_idx - 1))
+ ? CONTEXT_WORD : 0);
+ dest_state = state_log[dest_str_idx];
+
+ prev_nelem = ((state_log[cur_str_idx] == NULL) ? 0
+ : state_log[cur_str_idx]->nodes.nelem);
+ /* Add `new_dest_node' to state_log. */
+ if (dest_state == NULL)
+ state_log[dest_str_idx] = re_acquire_state_context (dfa,
+ new_dest_nodes,
+ context);
+ else
+ {
+ re_node_set dest_nodes;
+ re_node_set_init_union (&dest_nodes, dest_state->entrance_nodes,
+ new_dest_nodes);
+ state_log[dest_str_idx] = re_acquire_state_context (dfa, &dest_nodes,
+ context);
+ re_node_set_free (&dest_nodes);
+ }
+
+ /* We need to check recursively if the backreference can epsilon
+ transit. */
+ if (subexp_len == 0 && state_log[cur_str_idx]->nodes.nelem > prev_nelem)
+ transit_state_bkref_loop (preg, input, new_dest_nodes, work_state_log,
+ state_log, mctx);
+ }
+ re_free (cur_regs);
+}
+
+/* Build transition table for the state. */
+
+static re_dfastate_t **
+build_trtable (preg, state, fl_search)
+ const regex_t *preg;
+ const re_dfastate_t *state;
+ int fl_search;
+{
+ re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ int i, j, k, ch;
+ int ndests; /* Number of the destination states from `state'. */
+ re_dfastate_t **trtable, **dest_states, **dest_states_word, **dest_states_nl;
+ re_node_set follows, *dests_node;
+ bitset *dests_ch;
+ bitset acceptable;
+
+ /* We build DFA states which corresponds to the destination nodes
+ from `state'. `dests_node[i]' represents the nodes which i-th
+ destination state contains, and `dests_ch[i]' represents the
+ characters which i-th destination state accepts. */
+ dests_node = re_malloc (re_node_set, SBC_MAX);
+ dests_ch = re_malloc (bitset, SBC_MAX);
+
+ /* Initialize transiton table. */
+ trtable = (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX);
+
+ /* At first, group all nodes belonging to `state' into several
+ destinations. */
+ ndests = group_nodes_into_DFAstates (preg, state, dests_node, dests_ch);
+ if (ndests == 0)
+ {
+ re_free (dests_node);
+ re_free (dests_ch);
+ return trtable;
+ }
+
+ dest_states = re_malloc (re_dfastate_t *, ndests);
+ dest_states_word = re_malloc (re_dfastate_t *, ndests);
+ dest_states_nl = re_malloc (re_dfastate_t *, ndests);
+ bitset_empty (acceptable);
+
+ re_node_set_alloc (&follows, ndests + 1);
+ /* Then build the states for all destinations. */
+ for (i = 0; i < ndests; ++i)
+ {
+ int next_node;
+ re_node_set_empty (&follows);
+ /* Merge the follows of this destination states. */
+ for (j = 0; j < dests_node[i].nelem; ++j)
+ {
+ next_node = dfa->nexts[dests_node[i].elems[j]];
+ if (next_node != -1)
+ {
+ re_node_set_merge (&follows, dfa->eclosures + next_node);
+ }
+ }
+ /* If search flag is set, merge the initial state. */
+ if (fl_search)
+ {
+#ifdef RE_ENABLE_I18N
+ int not_initial = 0;
+ for (j = 0; j < follows.nelem; ++j)
+ if (dfa->nodes[follows.elems[j]].type == CHARACTER)
+ {
+ not_initial = dfa->nodes[follows.elems[j]].mb_partial;
+ break;
+ }
+ if (!not_initial)
+#endif
+ re_node_set_merge (&follows, dfa->init_state->entrance_nodes);
+ }
+ dest_states[i] = re_acquire_state_context (dfa, &follows, 0);
+ /* If the new state has context constraint,
+ build appropriate states for these contexts. */
+ if (dest_states[i]->has_constraint)
+ {
+ dest_states_word[i] = re_acquire_state_context (dfa, &follows,
+ CONTEXT_WORD);
+ dest_states_nl[i] = re_acquire_state_context (dfa, &follows,
+ CONTEXT_NEWLINE);
+ }
+ else
+ {
+ dest_states_word[i] = dest_states[i];
+ dest_states_nl[i] = dest_states[i];
+ }
+ bitset_merge (acceptable, dests_ch[i]);
+ }
+
+ /* Update the transition table. */
+ for (i = 0, ch = 0; i < BITSET_UINTS; ++i)
+ for (j = 0; j < UINT_BITS; ++j, ++ch)
+ if ((acceptable[i] >> j) & 1)
+ {
+ if (IS_WORD_CHAR (ch))
+ {
+ for (k = 0; k < ndests; ++k)
+ if ((dests_ch[k][i] >> j) & 1)
+ trtable[ch] = dest_states_word[k];
+ }
+ else /* not WORD_CHAR */
+ {
+ for (k = 0; k < ndests; ++k)
+ if ((dests_ch[k][i] >> j) & 1)
+ trtable[ch] = dest_states[k];
+ }
+ }
+ /* new line */
+ for (k = 0; k < ndests; ++k)
+ if (bitset_contain (acceptable, NEWLINE_CHAR))
+ trtable[NEWLINE_CHAR] = dest_states_nl[k];
+
+ re_free (dest_states_nl);
+ re_free (dest_states_word);
+ re_free (dest_states);
+
+ re_node_set_free (&follows);
+ for (i = 0; i < ndests; ++i)
+ re_node_set_free (dests_node + i);
+
+ re_free (dests_ch);
+ re_free (dests_node);
+
+ return trtable;
+}
+
+/* Group all nodes belonging to STATE into several destinations.
+ Then for all destinations, set the nodes belonging to the destination
+ to DESTS_NODE[i] and set the characters accepted by the destination
+ to DEST_CH[i]. This function return the number of destinations. */
+
+static int
+group_nodes_into_DFAstates (preg, state, dests_node, dests_ch)
+ const regex_t *preg;
+ const re_dfastate_t *state;
+ re_node_set *dests_node;
+ bitset *dests_ch;
+{
+ const re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ int i, j, k;
+ int ndests; /* Number of the destinations from `state'. */
+ bitset accepts; /* Characters a node can accept. */
+ const re_node_set *cur_nodes = &state->nodes;
+ bitset_empty (accepts);
+ ndests = 0;
+
+ /* For all the nodes belonging to `state', */
+ for (i = 0; i < cur_nodes->nelem; ++i)
+ {
+ unsigned int constraint = 0;
+ re_token_t *node = &dfa->nodes[cur_nodes->elems[i]];
+ re_token_type_t type = node->type;
+
+ if (type == OP_CONTEXT_NODE)
+ {
+ constraint = node->constraint;
+ node = dfa->nodes + node->opr.ctx_info->entity;
+ type = node->type;
+ }
+
+ /* Enumerate all single byte character this node can accept. */
+ if (type == CHARACTER)
+ bitset_set (accepts, node->opr.c);
+ else if (type == SIMPLE_BRACKET)
+ {
+ bitset_merge (accepts, node->opr.sbcset);
+ }
+ else if (type == OP_PERIOD)
+ {
+ bitset_set_all (accepts);
+ if (!(preg->syntax & RE_DOT_NEWLINE))
+ bitset_clear (accepts, '\n');
+ if (preg->syntax & RE_DOT_NOT_NULL)
+ bitset_clear (accepts, '\0');
+ }
+ else
+ continue;
+
+ /* Check the `accepts' and sift the characters which are not
+ match it the context. */
+ if (constraint)
+ {
+ if (constraint & NEXT_WORD_CONSTRAINT)
+ for (j = 0; j < BITSET_UINTS; ++j)
+ accepts[j] &= dfa->word_char[j];
+ else if (constraint & NEXT_NOTWORD_CONSTRAINT)
+ for (j = 0; j < BITSET_UINTS; ++j)
+ accepts[j] &= ~dfa->word_char[j];
+ else if (constraint & NEXT_NEWLINE_CONSTRAINT)
+ {
+ int accepts_newline = bitset_contain (accepts, NEWLINE_CHAR);
+ bitset_empty (accepts);
+ if (accepts_newline)
+ bitset_set (accepts, NEWLINE_CHAR);
+ else
+ continue;
+ }
+ }
+
+ /* Then divide `accepts' into DFA states, or create a new
+ state. */
+ for (j = 0; j < ndests; ++j)
+ {
+ bitset intersec; /* Intersection sets, see below. */
+ bitset remains;
+ /* Flags, see below. */
+ int has_intersec, not_subset, not_consumed;
+
+ /* Optimization, skip if this state doesn't accept the character. */
+ if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c))
+ continue;
+
+ /* Enumerate the intersection set of this state and `accepts'. */
+ has_intersec = 0;
+ for (k = 0; k < BITSET_UINTS; ++k)
+ has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k];
+ /* And skip if the intersection set is empty. */
+ if (!has_intersec)
+ continue;
+
+ /* Then check if this state is a subset of `accepts'. */
+ not_subset = not_consumed = 0;
+ for (k = 0; k < BITSET_UINTS; ++k)
+ {
+ not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k];
+ not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k];
+ }
+
+ /* If this state isn't a subset of `accepts', create a
+ new group state, which has the `remains'. */
+ if (not_subset)
+ {
+ bitset_copy (dests_ch[ndests], remains);
+ bitset_copy (dests_ch[j], intersec);
+ re_node_set_init_copy (dests_node + ndests, &dests_node[j]);
+ ++ndests;
+ }
+
+ /* Put the position in the current group. */
+ re_node_set_insert (&dests_node[j], cur_nodes->elems[i]);
+
+ /* If all characters are consumed, go to next node. */
+ if (!not_consumed)
+ break;
+ }
+ /* Some characters remain, create a new group. */
+ if (j == ndests)
+ {
+ bitset_copy (dests_ch[ndests], accepts);
+ re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]);
+ ++ndests;
+ bitset_empty (accepts);
+ }
+ }
+ return ndests;
+}
+
+/* Check how many bytes the node `dfa->nodes[node_idx]' accepts. */
+
+static int
+check_node_accept_bytes (preg, node_idx, input, str_idx)
+ const regex_t *preg;
+ int node_idx, str_idx;
+ const re_string_t *input;
+{
+ const re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ const re_token_t *node = dfa->nodes + node_idx;
+ int elem_len = re_string_elem_size_at (input, str_idx);
+ int char_len = re_string_char_size_at (input, str_idx);
+ int i, j;
+#ifdef _LIBC
+ uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
+#endif /* _LIBC */
+ if (elem_len <= 1 && char_len <= 1)
+ return 0;
+ if (node->type == OP_PERIOD)
+ {
+ if ((!(preg->syntax & RE_DOT_NEWLINE) &&
+ re_string_byte_at (input, str_idx) == '\n') ||
+ ((preg->syntax & RE_DOT_NOT_NULL) &&
+ re_string_byte_at (input, str_idx) == '\0'))
+ return 0;
+ return char_len;
+ }
+ else if (node->type == COMPLEX_BRACKET)
+ {
+ const re_charset_t *cset = node->opr.mbcset;
+ const unsigned char *pin = re_string_get_buffer (input) + str_idx;
+#ifdef _LIBC
+ if (nrules != 0)
+ {
+ int match_len = 0;
+ unsigned int in_collseq = 0;
+ const int32_t *table, *indirect;
+ const unsigned char *weights, *extra, *collseqwc;
+ int32_t idx;
+ wchar_t wc = 0;
+ /* This #include defines a local function! */
+# include <locale/weight.h>
+
+ /* match with collating_symbol? */
+ if (cset->ncoll_syms)
+ extra = (const unsigned char *)
+ _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
+ for (i = 0; i < cset->ncoll_syms; ++i)
+ {
+ const unsigned char *coll_sym = extra + cset->coll_syms[i];
+ /* Compare the length of input collating element and
+ the length of current collating element. */
+ if (*coll_sym != elem_len)
+ continue;
+ /* Compare each bytes. */
+ for (j = 0; j < *coll_sym; j++)
+ if (pin[j] != coll_sym[1 + j])
+ break;
+ if (j == *coll_sym)
+ {
+ /* Match if every bytes is equal. */
+ match_len = j;
+ goto check_node_accept_bytes_match;
+ }
+ }
+
+ if (cset->nranges || cset->nchar_classes || cset->nmbchars)
+ wc = re_string_wchar_at (input, str_idx);
+
+ if (cset->nranges)
+ {
+ if (elem_len <= char_len)
+ {
+ collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
+ in_collseq = collseq_table_lookup (collseqwc, wc);
+ }
+ else
+ in_collseq = find_collation_sequence_value (pin, elem_len);
+ }
+ /* match with range expression? */
+ for (i = 0; i < cset->nranges; ++i)
+ if (cset->range_starts[i] <= in_collseq
+ && in_collseq <= cset->range_ends[i])
+ {
+ match_len = elem_len;
+ goto check_node_accept_bytes_match;
+ }
+
+ /* match with equivalence_class? */
+ if (cset->nequiv_classes)
+ {
+ const unsigned char *cp = pin;
+ table = (const int32_t *)
+ _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
+ weights = (const unsigned char *)
+ _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
+ extra = (const unsigned char *)
+ _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
+ indirect = (const int32_t *)
+ _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
+ idx = findidx (&cp);
+ if (idx > 0)
+ for (i = 0; i < cset->nequiv_classes; ++i)
+ {
+ int32_t equiv_class_idx = cset->equiv_classes[i];
+ size_t weight_len = weights[idx];
+ if (weight_len == weights[equiv_class_idx])
+ {
+ int cnt = 0;
+ while (cnt <= weight_len
+ && (weights[equiv_class_idx + 1 + cnt]
+ == weights[idx + 1 + cnt]))
+ ++cnt;
+ if (cnt > weight_len)
+ {
+ match_len = elem_len;
+ goto check_node_accept_bytes_match;
+ }
+ }
+ }
+ }
+
+ /* match with multibyte character? */
+ for (i = 0; i < cset->nmbchars; ++i)
+ if (wc == cset->mbchars[i])
+ {
+ match_len = char_len;
+ goto check_node_accept_bytes_match;
+ }
+
+ /* match with character_class? */
+ for (i = 0; i < cset->nchar_classes; ++i)
+ {
+ wctype_t wt = cset->char_classes[i];
+ if (__iswctype (wc, wt))
+ {
+ match_len = char_len;
+ goto check_node_accept_bytes_match;
+ }
+ }
+
+ check_node_accept_bytes_match:
+ if (!cset->non_match)
+ return match_len;
+ else
+ {
+ if (match_len > 0)
+ return 0;
+ else
+ return re_string_elem_size_at (input, str_idx);
+ }
+ }
+#endif
+ }
+ return 0;
+}
+
+#ifdef _LIBC
+static unsigned int
+find_collation_sequence_value (mbs, mbs_len)
+ const unsigned char *mbs;
+ size_t mbs_len;
+{
+ uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
+ if (nrules == 0)
+ {
+ if (mbs_len == 1)
+ {
+ /* No valid character. Match it as a single byte character. */
+ const unsigned char *collseq = (const unsigned char *)
+ _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
+ return collseq[mbs[0]];
+ }
+ return UINT_MAX;
+ }
+ else
+ {
+ int32_t idx;
+ const unsigned char *extra = (const unsigned char *)
+ _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
+
+ for (idx = 0; ;)
+ {
+ int mbs_cnt, found = 0;
+ int32_t elem_mbs_len;
+ /* Skip the name of collating element name. */
+ idx = idx + extra[idx] + 1;
+ elem_mbs_len = extra[idx++];
+ if (mbs_len == elem_mbs_len)
+ {
+ for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt)
+ if (extra[idx + mbs_cnt] != mbs[mbs_cnt])
+ break;
+ if (mbs_cnt == elem_mbs_len)
+ /* Found the entry. */
+ found = 1;
+ }
+ /* Skip the byte sequence of the collating element. */
+ idx += elem_mbs_len;
+ /* Adjust for the alignment. */
+ idx = (idx + 3) & ~3;
+ /* Skip the collation sequence value. */
+ idx += sizeof (uint32_t);
+ /* Skip the wide char sequence of the collating element. */
+ idx = idx + sizeof (uint32_t) * (extra[idx] + 1);
+ /* If we found the entry, return the sequence value. */
+ if (found)
+ return *(uint32_t *) (extra + idx);
+ /* Skip the collation sequence value. */
+ idx += sizeof (uint32_t);
+ }
+ }
+}
+#endif
+
+/* Check whether the node accepts the byte which is IDX-th
+ byte of the INPUT. */
+
+static int
+check_node_accept (preg, node, input, idx, eflags)
+ const regex_t *preg;
+ const re_token_t *node;
+ const re_string_t *input;
+ int idx, eflags;
+{
+ const re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
+ const re_token_t *cur_node;
+ unsigned char ch;
+ if (node->type == OP_CONTEXT_NODE)
+ {
+ /* The node has constraints. Check whether the current context
+ satisfies the constraints. */
+ unsigned int context = re_string_context_at (input, idx, eflags,
+ preg->newline_anchor);
+ if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
+ return 0;
+ cur_node = dfa->nodes + node->opr.ctx_info->entity;
+ }
+ else
+ cur_node = node;
+
+ ch = re_string_byte_at (input, idx);
+ if (cur_node->type == CHARACTER)
+ return cur_node->opr.c == ch;
+ else if (cur_node->type == SIMPLE_BRACKET)
+ return bitset_contain (cur_node->opr.sbcset, ch);
+ else if (cur_node->type == OP_PERIOD)
+ return !((ch == '\n' && !(preg->syntax & RE_DOT_NEWLINE))
+ || (ch == '\0' && (preg->syntax & RE_DOT_NOT_NULL)));
+ else
+ return 0;
+}
+
+/* Functions for matching context. */
+
+static void
+match_ctx_init (mctx, eflags, n)
+ re_match_context_t *mctx;
+ int eflags;
+ int n;
+{
+ mctx->eflags = eflags;
+ mctx->match_first = mctx->match_last = -1;
+ if (n > 0)
+ mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n);
+ else
+ mctx->bkref_ents = NULL;
+ mctx->nbkref_ents = 0;
+ mctx->abkref_ents = n;
+ mctx->max_bkref_len = 0;
+}
+
+static void
+match_ctx_free (mctx)
+ re_match_context_t *mctx;
+{
+ re_free (mctx->bkref_ents);
+}
+
+/* Add a new backreference entry to the cache. */
+
+static void
+match_ctx_add_entry (mctx, node, from, to)
+ re_match_context_t *mctx;
+ int node, from, to;
+{
+ if (mctx->nbkref_ents >= mctx->abkref_ents)
+ {
+ mctx->bkref_ents = re_realloc (mctx->bkref_ents,
+ struct re_backref_cache_entry,
+ mctx->abkref_ents * 2);
+ memset (mctx->bkref_ents + mctx->nbkref_ents, '\0',
+ sizeof (struct re_backref_cache_entry) * mctx->abkref_ents);
+ mctx->abkref_ents *= 2;
+ }
+ mctx->bkref_ents[mctx->nbkref_ents].node = node;
+ mctx->bkref_ents[mctx->nbkref_ents].from = from;
+ mctx->bkref_ents[mctx->nbkref_ents++].to = to;
+ if (mctx->max_bkref_len < to - from)
+ mctx->max_bkref_len = to - from;
+}