aboutsummaryrefslogtreecommitdiff
path: root/math/s_clogl.c
diff options
context:
space:
mode:
authorPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-06-28 14:28:04 -0500
committerPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-08-29 12:43:38 -0500
commitfeb62ddacb7b1d772d7383de0228a3977f07fc1e (patch)
tree963280635eb242a98f191744c196d55fadc2550f /math/s_clogl.c
parent1dbc54f61e281d3f2c1712dadd12864c42f8a64a (diff)
downloadglibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.zip
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.gz
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.bz2
Convert remaining complex function to generated files
Convert cpow, clog, clog10, cexp, csqrt, and cproj functions into generated templates. Note, ldbl-opt still retains s_clog10l.c as the aliasing rules are non-trivial.
Diffstat (limited to 'math/s_clogl.c')
-rw-r--r--math/s_clogl.c121
1 files changed, 0 insertions, 121 deletions
diff --git a/math/s_clogl.c b/math/s_clogl.c
deleted file mode 100644
index 6db59b7..0000000
--- a/math/s_clogl.c
+++ /dev/null
@@ -1,121 +0,0 @@
-/* Compute complex natural logarithm.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-/* To avoid spurious underflows, use this definition to treat IBM long
- double as approximating an IEEE-style format. */
-#if LDBL_MANT_DIG == 106
-# undef LDBL_EPSILON
-# define LDBL_EPSILON 0x1p-106L
-#endif
-
-__complex__ long double
-__clogl (__complex__ long double x)
-{
- __complex__ long double result;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
- {
- /* Real and imaginary part are 0.0. */
- __imag__ result = signbit (__real__ x) ? M_PIl : 0.0;
- __imag__ result = __copysignl (__imag__ result, __imag__ x);
- /* Yes, the following line raises an exception. */
- __real__ result = -1.0 / fabsl (__real__ x);
- }
- else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
- {
- /* Neither real nor imaginary part is NaN. */
- long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x);
- int scale = 0;
-
- if (absx < absy)
- {
- long double t = absx;
- absx = absy;
- absy = t;
- }
-
- if (absx > LDBL_MAX / 2.0L)
- {
- scale = -1;
- absx = __scalbnl (absx, scale);
- absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L);
- }
- else if (absx < LDBL_MIN && absy < LDBL_MIN)
- {
- scale = LDBL_MANT_DIG;
- absx = __scalbnl (absx, scale);
- absy = __scalbnl (absy, scale);
- }
-
- if (absx == 1.0L && scale == 0)
- {
- __real__ result = __log1pl (absy * absy) / 2.0L;
- math_check_force_underflow_nonneg (__real__ result);
- }
- else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0)
- {
- long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
- if (absy >= LDBL_EPSILON)
- d2m1 += absy * absy;
- __real__ result = __log1pl (d2m1) / 2.0L;
- }
- else if (absx < 1.0L
- && absx >= 0.5L
- && absy < LDBL_EPSILON / 2.0L
- && scale == 0)
- {
- long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
- __real__ result = __log1pl (d2m1) / 2.0L;
- }
- else if (absx < 1.0L
- && absx >= 0.5L
- && scale == 0
- && absx * absx + absy * absy >= 0.5L)
- {
- long double d2m1 = __x2y2m1l (absx, absy);
- __real__ result = __log1pl (d2m1) / 2.0L;
- }
- else
- {
- long double d = __ieee754_hypotl (absx, absy);
- __real__ result = __ieee754_logl (d) - scale * M_LN2l;
- }
-
- __imag__ result = __ieee754_atan2l (__imag__ x, __real__ x);
- }
- else
- {
- __imag__ result = __nanl ("");
- if (rcls == FP_INFINITE || icls == FP_INFINITE)
- /* Real or imaginary part is infinite. */
- __real__ result = HUGE_VALL;
- else
- __real__ result = __nanl ("");
- }
-
- return result;
-}
-weak_alias (__clogl, clogl)