aboutsummaryrefslogtreecommitdiff
path: root/crypt/sha256-crypt.c
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2009-04-02 17:00:46 +0000
committerUlrich Drepper <drepper@redhat.com>2009-04-02 17:00:46 +0000
commitff886b82a2b65758950bdb4687cf5a1238f697a1 (patch)
tree46f1826abb9c0fba4227b39fc7ff7e91b3e94c2c /crypt/sha256-crypt.c
parent900d7961d48f704b8396841efb916435faf9c374 (diff)
downloadglibc-ff886b82a2b65758950bdb4687cf5a1238f697a1.zip
glibc-ff886b82a2b65758950bdb4687cf5a1238f697a1.tar.gz
glibc-ff886b82a2b65758950bdb4687cf5a1238f697a1.tar.bz2
* configure.in: Recognize --enable-nss-crypt.
* config.make.in: Add nss-crypt entry. * crypt/Makefile: If nss-crypt==yes, don't build md5.c, sha256.c, sha512.c. Don't run md5test, sha256test, sha512test. Pass -DUSE_NSS and include path for NSS directory to compiler for md5-crypt, sha256-crypt, sha512-crypt. Link libcrypt.so with -lfreebl3. * crypt/md5-crypt.c: If USE_NSS is defined, don't use local hash function implementation, use NSS. Introduce wrappers around the hash function calls. Little code size optimization. * crypt/sha256-crypt.c: Likewise. * crypt/sha512-crypt.c: Likewise. * scripts/check-local-headers.sh: Ignore nss3 directory. * configure.in: Rename pic_default to libc_cv_pic_default. * config.make.in: Likewise.
Diffstat (limited to 'crypt/sha256-crypt.c')
-rw-r--r--crypt/sha256-crypt.c149
1 files changed, 106 insertions, 43 deletions
diff --git a/crypt/sha256-crypt.c b/crypt/sha256-crypt.c
index dbd29e0..0131c80 100644
--- a/crypt/sha256-crypt.c
+++ b/crypt/sha256-crypt.c
@@ -1,5 +1,5 @@
/* One way encryption based on SHA256 sum.
- Copyright (C) 2007 Free Software Foundation, Inc.
+ Copyright (C) 2007, 2009 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
@@ -28,6 +28,52 @@
#include "sha256.h"
+#ifdef USE_NSS
+typedef int PRBool;
+# include <hasht.h>
+# include <nsslowhash.h>
+
+# define sha256_init_ctx(ctxp, nss_ctxp) \
+ do \
+ { \
+ if (((nss_ctxp = NSSLOWHASH_NewContext (nss_ictx, HASH_AlgSHA256)) \
+ == NULL)) \
+ { \
+ if (nss_ctx != NULL) \
+ NSSLOWHASH_Destroy (nss_ctx); \
+ if (nss_alt_ctx != NULL) \
+ NSSLOWHASH_Destroy (nss_alt_ctx); \
+ return NULL; \
+ } \
+ NSSLOWHASH_Begin (nss_ctxp); \
+ } \
+ while (0)
+
+# define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
+ NSSLOWHASH_Update (nss_ctxp, (const unsigned char *) buf, len)
+
+# define sha256_finish_ctx(ctxp, nss_ctxp, result) \
+ do \
+ { \
+ unsigned int ret; \
+ NSSLOWHASH_End (nss_ctxp, result, &ret, sizeof (result)); \
+ assert (ret == sizeof (result)); \
+ NSSLOWHASH_Destroy (nss_ctxp); \
+ nss_ctxp = NULL; \
+ } \
+ while (0)
+#else
+# define sha256_init_ctx(ctxp, nss_ctxp) \
+ __sha256_init_ctx (ctxp)
+
+# define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
+ __sha256_process_bytes(buf, len, ctxp)
+
+# define sha256_finish_ctx(ctxp, nss_ctxp, result) \
+ __sha256_finish_ctx (ctxp, result)
+#endif
+
+
/* Define our magic string to mark salt for SHA256 "encryption"
replacement. */
static const char sha256_salt_prefix[] = "$5$";
@@ -66,8 +112,6 @@ __sha256_crypt_r (key, salt, buffer, buflen)
__attribute__ ((__aligned__ (__alignof__ (uint32_t))));
unsigned char temp_result[32]
__attribute__ ((__aligned__ (__alignof__ (uint32_t))));
- struct sha256_ctx ctx;
- struct sha256_ctx alt_ctx;
size_t salt_len;
size_t key_len;
size_t cnt;
@@ -123,59 +167,71 @@ __sha256_crypt_r (key, salt, buffer, buflen)
assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0);
}
+#ifdef USE_NSS
+ /* Initialize libfreebl3. */
+ NSSLOWInitContext *nss_ictx = NSSLOW_Init ();
+ if (nss_ictx == NULL)
+ return NULL;
+ NSSLOWHASHContext *nss_ctx = NULL;
+ NSSLOWHASHContext *nss_alt_ctx = NULL;
+#else
+ struct sha256_ctx ctx;
+ struct sha256_ctx alt_ctx;
+#endif
+
/* Prepare for the real work. */
- __sha256_init_ctx (&ctx);
+ sha256_init_ctx (&ctx, nss_ctx);
/* Add the key string. */
- __sha256_process_bytes (key, key_len, &ctx);
+ sha256_process_bytes (key, key_len, &ctx, nss_ctx);
/* The last part is the salt string. This must be at most 16
characters and it ends at the first `$' character. */
- __sha256_process_bytes (salt, salt_len, &ctx);
+ sha256_process_bytes (salt, salt_len, &ctx, nss_ctx);
/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
final result will be added to the first context. */
- __sha256_init_ctx (&alt_ctx);
+ sha256_init_ctx (&alt_ctx, nss_alt_ctx);
/* Add key. */
- __sha256_process_bytes (key, key_len, &alt_ctx);
+ sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
/* Add salt. */
- __sha256_process_bytes (salt, salt_len, &alt_ctx);
+ sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
/* Add key again. */
- __sha256_process_bytes (key, key_len, &alt_ctx);
+ sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
/* Now get result of this (32 bytes) and add it to the other
context. */
- __sha256_finish_ctx (&alt_ctx, alt_result);
+ sha256_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result);
/* Add for any character in the key one byte of the alternate sum. */
for (cnt = key_len; cnt > 32; cnt -= 32)
- __sha256_process_bytes (alt_result, 32, &ctx);
- __sha256_process_bytes (alt_result, cnt, &ctx);
+ sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
+ sha256_process_bytes (alt_result, cnt, &ctx, nss_ctx);
/* Take the binary representation of the length of the key and for every
1 add the alternate sum, for every 0 the key. */
for (cnt = key_len; cnt > 0; cnt >>= 1)
if ((cnt & 1) != 0)
- __sha256_process_bytes (alt_result, 32, &ctx);
+ sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
else
- __sha256_process_bytes (key, key_len, &ctx);
+ sha256_process_bytes (key, key_len, &ctx, nss_ctx);
/* Create intermediate result. */
- __sha256_finish_ctx (&ctx, alt_result);
+ sha256_finish_ctx (&ctx, nss_ctx, alt_result);
/* Start computation of P byte sequence. */
- __sha256_init_ctx (&alt_ctx);
+ sha256_init_ctx (&alt_ctx, nss_alt_ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < key_len; ++cnt)
- __sha256_process_bytes (key, key_len, &alt_ctx);
+ sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
/* Finish the digest. */
- __sha256_finish_ctx (&alt_ctx, temp_result);
+ sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
/* Create byte sequence P. */
cp = p_bytes = alloca (key_len);
@@ -184,14 +240,14 @@ __sha256_crypt_r (key, salt, buffer, buflen)
memcpy (cp, temp_result, cnt);
/* Start computation of S byte sequence. */
- __sha256_init_ctx (&alt_ctx);
+ sha256_init_ctx (&alt_ctx, nss_alt_ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
- __sha256_process_bytes (salt, salt_len, &alt_ctx);
+ sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
/* Finish the digest. */
- __sha256_finish_ctx (&alt_ctx, temp_result);
+ sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
/* Create byte sequence S. */
cp = s_bytes = alloca (salt_len);
@@ -204,32 +260,37 @@ __sha256_crypt_r (key, salt, buffer, buflen)
for (cnt = 0; cnt < rounds; ++cnt)
{
/* New context. */
- __sha256_init_ctx (&ctx);
+ sha256_init_ctx (&ctx, nss_ctx);
/* Add key or last result. */
if ((cnt & 1) != 0)
- __sha256_process_bytes (p_bytes, key_len, &ctx);
+ sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
else
- __sha256_process_bytes (alt_result, 32, &ctx);
+ sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
- __sha256_process_bytes (s_bytes, salt_len, &ctx);
+ sha256_process_bytes (s_bytes, salt_len, &ctx, nss_ctx);
/* Add key for numbers not divisible by 7. */
if (cnt % 7 != 0)
- __sha256_process_bytes (p_bytes, key_len, &ctx);
+ sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
/* Add key or last result. */
if ((cnt & 1) != 0)
- __sha256_process_bytes (alt_result, 32, &ctx);
+ sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
else
- __sha256_process_bytes (p_bytes, key_len, &ctx);
+ sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
/* Create intermediate result. */
- __sha256_finish_ctx (&ctx, alt_result);
+ sha256_finish_ctx (&ctx, nss_ctx, alt_result);
}
+#ifdef USE_NSS
+ /* Free libfreebl3 resources. */
+ NSSLOW_Shutdown (nss_ictx);
+#endif
+
/* Now we can construct the result string. It consists of three
parts. */
cp = __stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
@@ -252,17 +313,17 @@ __sha256_crypt_r (key, salt, buffer, buflen)
--buflen;
}
-#define b64_from_24bit(B2, B1, B0, N) \
- do { \
- unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
- int n = (N); \
- while (n-- > 0 && buflen > 0) \
- { \
- *cp++ = b64t[w & 0x3f]; \
- --buflen; \
- w >>= 6; \
- } \
- } while (0)
+ void b64_from_24bit (unsigned int b2, unsigned int b1, unsigned int b0,
+ int n)
+ {
+ unsigned int w = (b2 << 16) | (b1 << 8) | b0;
+ while (n-- > 0 && buflen > 0)
+ {
+ *cp++ = b64t[w & 0x3f];
+ --buflen;
+ w >>= 6;
+ }
+ }
b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4);
b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4);
@@ -287,13 +348,15 @@ __sha256_crypt_r (key, salt, buffer, buflen)
attaching to processes or reading core dumps cannot get any
information. We do it in this way to clear correct_words[]
inside the SHA256 implementation as well. */
+#ifndef USE_NSS
__sha256_init_ctx (&ctx);
__sha256_finish_ctx (&ctx, alt_result);
+ memset (&ctx, '\0', sizeof (ctx));
+ memset (&alt_ctx, '\0', sizeof (alt_ctx));
+#endif
memset (temp_result, '\0', sizeof (temp_result));
memset (p_bytes, '\0', key_len);
memset (s_bytes, '\0', salt_len);
- memset (&ctx, '\0', sizeof (ctx));
- memset (&alt_ctx, '\0', sizeof (alt_ctx));
if (copied_key != NULL)
memset (copied_key, '\0', key_len);
if (copied_salt != NULL)