aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSunil K Pandey <skpgkp2@gmail.com>2022-03-07 10:47:09 -0800
committerSunil K Pandey <skpgkp2@gmail.com>2022-03-07 21:14:09 -0800
commit9026b251b358aa592490d26e166a4ae3debf64e0 (patch)
tree4847d1141eadeca95432d5fbd25f219fb3e60d18
parent41d4013a7486f6e6905961666699bbcc93d6006d (diff)
downloadglibc-9026b251b358aa592490d26e166a4ae3debf64e0.zip
glibc-9026b251b358aa592490d26e166a4ae3debf64e0.tar.gz
glibc-9026b251b358aa592490d26e166a4ae3debf64e0.tar.bz2
x86_64: Fix svml_s_asinhf4_core_sse4.S code formatting
This commit contains following formatting changes 1. Instructions proceeded by a tab. 2. Instruction less than 8 characters in length have a tab between it and the first operand. 3. Instruction greater than 7 characters in length have a space between it and the first operand. 4. Tabs after `#define`d names and their value. 5. 8 space at the beginning of line replaced by tab. 6. Indent comments with code. 7. Remove redundent .text section. 8. 1 space between line content and line comment. 9. Space after all commas. Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
-rw-r--r--sysdeps/x86_64/fpu/multiarch/svml_s_asinhf4_core_sse4.S895
1 files changed, 447 insertions, 448 deletions
diff --git a/sysdeps/x86_64/fpu/multiarch/svml_s_asinhf4_core_sse4.S b/sysdeps/x86_64/fpu/multiarch/svml_s_asinhf4_core_sse4.S
index 6b5c097..26573bc 100644
--- a/sysdeps/x86_64/fpu/multiarch/svml_s_asinhf4_core_sse4.S
+++ b/sysdeps/x86_64/fpu/multiarch/svml_s_asinhf4_core_sse4.S
@@ -31,479 +31,478 @@
/* Offsets for data table __svml_sasinh_data_internal
*/
-#define SgnMask 0
-#define sOne 16
-#define sPoly 32
-#define iBrkValue 160
-#define iOffExpoMask 176
-#define sBigThreshold 192
-#define sC2 208
-#define sC3 224
-#define sHalf 240
-#define sLargestFinite 256
-#define sLittleThreshold 272
-#define sSign 288
-#define sThirtyOne 304
-#define sTopMask11 320
-#define sTopMask8 336
-#define XScale 352
-#define sLn2 368
+#define SgnMask 0
+#define sOne 16
+#define sPoly 32
+#define iBrkValue 160
+#define iOffExpoMask 176
+#define sBigThreshold 192
+#define sC2 208
+#define sC3 224
+#define sHalf 240
+#define sLargestFinite 256
+#define sLittleThreshold 272
+#define sSign 288
+#define sThirtyOne 304
+#define sTopMask11 320
+#define sTopMask8 336
+#define XScale 352
+#define sLn2 368
#include <sysdep.h>
- .text
- .section .text.sse4,"ax",@progbits
+ .section .text.sse4, "ax", @progbits
ENTRY(_ZGVbN4v_asinhf_sse4)
- subq $72, %rsp
- cfi_def_cfa_offset(80)
- movaps %xmm0, %xmm8
-
-/*
- * Split X into high and low parts, XHi (<= 11 bits) and XLo (<= 13 bits)
- * We could use either X or |X| here, but it doesn't seem to matter
- */
- movups sTopMask11+__svml_sasinh_data_internal(%rip), %xmm10
- movaps %xmm8, %xmm2
- andps %xmm8, %xmm10
-
-/*
- * Compute X^2 = (XHi + XLo)^2 = XHi^2 + XLo * (X + XHi)
- * The two parts are shifted off by around 11 bits. So even though
- * the low bit will not in general be exact, it's near enough
- */
- movaps %xmm10, %xmm3
- subps %xmm10, %xmm2
- mulps %xmm10, %xmm3
- addps %xmm8, %xmm10
-
-/* Load the constant 1 and a sign mask */
- movups sOne+__svml_sasinh_data_internal(%rip), %xmm7
-
-/*
- * Finally, express Y + W = X^2 + 1 accurately where Y has <= 8 bits.
- * If |X| <= 1 then |XHi| <= 1 and so |X2Hi| <= 1, so we can treat 1
- * as the dominant component in the compensated summation. Otherwise,
- * if |X| >= 1, then since X2Hi only has 22 significant bits, the basic
- * addition will be exact anyway until we get to |X| >= 2^24. But by
- * that time the log function is well-conditioned enough that the
- * rounding error doesn't matter. Hence we can treat 1 as dominant even
- * if it literally isn't.
- */
- movaps %xmm7, %xmm11
- movaps %xmm7, %xmm4
- movups sTopMask8+__svml_sasinh_data_internal(%rip), %xmm12
- addps %xmm3, %xmm11
- mulps %xmm10, %xmm2
- subps %xmm11, %xmm4
- movaps %xmm12, %xmm0
- addps %xmm3, %xmm4
-
-/*
- * Unfortunately, we can still be in trouble if |X| <= 2^-5, since
- * the absolute error 2^-(7+24)-ish in sqrt(1 + X^2) gets scaled up
- * by 1/X and comes close to our threshold. Hence if |X| <= 2^-4,
- * perform an alternative computation
- * sqrt(1 + X^2) - 1 = X^2/2 - X^4/8 + X^6/16
- * X2 = X^2
- */
- addps %xmm2, %xmm3
- addps %xmm2, %xmm4
- andps %xmm11, %xmm0
-
-/*
- * Compute R = 1/sqrt(Y + W) * (1 + d)
- * Force R to <= 8 significant bits.
- * This means that R * Y and R^2 * Y are exactly representable.
- */
- rsqrtps %xmm0, %xmm14
- subps %xmm0, %xmm11
- andps %xmm12, %xmm14
- addps %xmm11, %xmm4
-
-/*
- * Compute S = (Y/sqrt(Y + W)) * (1 + d)
- * and T = (W/sqrt(Y + W)) * (1 + d)
- * so that S + T = sqrt(Y + W) * (1 + d)
- * S is exact, and the rounding error in T is OK.
- */
- mulps %xmm14, %xmm0
- mulps %xmm14, %xmm4
-
-/*
- * Get the absolute value of the input, since we will exploit antisymmetry
- * and mostly assume X >= 0 in the core computation
- */
- movups SgnMask+__svml_sasinh_data_internal(%rip), %xmm6
-
-/*
- * Compute e = -(2 * d + d^2)
- * The first FMR is exact, and the rounding error in the other is acceptable
- * since d and e are ~ 2^-8
- */
- movaps %xmm14, %xmm13
- andps %xmm8, %xmm6
-
-/*
- * Obtain sqrt(1 + X^2) - 1 in two pieces
- * sqrt(1 + X^2) - 1
- * = sqrt(Y + W) - 1
- * = (S + T) * (1 + Corr) - 1
- * = [S - 1] + [T + (S + T) * Corr]
- * We need a compensated summation for the last part. We treat S - 1
- * as the larger part; it certainly is until about X < 2^-4, and in that
- * case, the error is affordable since X dominates over sqrt(1 + X^2) - 1
- * Final sum is dTmp5 (hi) + dTmp7 (lo)
- */
- movaps %xmm0, %xmm1
-
-/*
- * Check whether the input is finite, by checking |X| <= MaxFloat
- * Otherwise set the rangemask so that the callout will get used.
- * Note that this will also use the callout for NaNs since not(NaN <= MaxFloat)
- */
- movaps %xmm6, %xmm9
-
-/*
- * The following computation can go wrong for very large X, basically
- * because X^2 overflows. But for large X we have
- * asinh(X) / log(2 X) - 1 =~= 1/(4 * X^2), so for X >= 2^30
- * we can just later stick X back into the log and tweak up the exponent.
- * Actually we scale X by 2^-30 and tweak the exponent up by 31,
- * to stay in the safe range for the later log computation.
- * Compute a flag now telling us when do do this.
- */
- movaps %xmm6, %xmm5
- cmpnleps sLargestFinite+__svml_sasinh_data_internal(%rip), %xmm9
- cmpltps sBigThreshold+__svml_sasinh_data_internal(%rip), %xmm5
- mulps %xmm0, %xmm13
- addps %xmm4, %xmm1
- subps %xmm7, %xmm0
- mulps %xmm4, %xmm14
- movmskps %xmm9, %edx
- movaps %xmm7, %xmm9
-
-/*
- * Now 1 / (1 + d)
- * = 1 / (1 + (sqrt(1 - e) - 1))
- * = 1 / sqrt(1 - e)
- * = 1 + 1/2 * e + 3/8 * e^2 + 5/16 * e^3 + 35/128 * e^4 + ...
- * So compute the first three nonconstant terms of that, so that
- * we have a relative correction (1 + Corr) to apply to S etc.
- * C1 = 1/2
- * C2 = 3/8
- * C3 = 5/16
- */
- movups sC3+__svml_sasinh_data_internal(%rip), %xmm15
- subps %xmm13, %xmm9
- movups sHalf+__svml_sasinh_data_internal(%rip), %xmm10
- subps %xmm14, %xmm9
-
-/* sX2over2 = X^2/2 */
- mulps %xmm10, %xmm3
- mulps %xmm9, %xmm15
-
-/* sX46 = -X^4/4 + X^6/8 */
- movaps %xmm3, %xmm2
- movaps %xmm3, %xmm12
-
-/*
- * Now do another compensated sum to add |X| + [sqrt(1 + X^2) - 1].
- * It's always safe to assume |X| is larger.
- * This is the final 2-part argument to the log1p function
- */
- movaps %xmm6, %xmm14
- addps sC2+__svml_sasinh_data_internal(%rip), %xmm15
- mulps %xmm9, %xmm15
- addps %xmm10, %xmm15
- mulps %xmm15, %xmm9
- mulps %xmm1, %xmm9
-
-/* Now multiplex to the case X = 2^-30 * input, Xl = sL = 0 in the "big" case. */
- movups XScale+__svml_sasinh_data_internal(%rip), %xmm15
- addps %xmm9, %xmm4
- movaps %xmm4, %xmm11
- addps %xmm0, %xmm11
- subps %xmm11, %xmm0
- addps %xmm0, %xmm4
-
-/* sX4over4 = X^4/4 */
- movaps %xmm3, %xmm0
- mulps %xmm3, %xmm0
- mulps %xmm0, %xmm2
- subps %xmm0, %xmm2
-
-/*
- * Now we feed into the log1p code, using H in place of _VARG1 and
- * also adding L into Xl.
- * compute 1+x as high, low parts
- */
- movaps %xmm7, %xmm0
-
-/* sX46over2 = -X^4/8 + x^6/16 */
- mulps %xmm2, %xmm10
- movaps %xmm7, %xmm2
- addps %xmm10, %xmm12
- subps %xmm12, %xmm3
- addps %xmm3, %xmm10
-
-/* Now multiplex the two possible computations */
- movaps %xmm6, %xmm3
- cmpleps sLittleThreshold+__svml_sasinh_data_internal(%rip), %xmm3
- movaps %xmm3, %xmm13
- andps %xmm3, %xmm12
- andnps %xmm11, %xmm13
- movaps %xmm3, %xmm1
- orps %xmm12, %xmm13
- andnps %xmm4, %xmm1
- andps %xmm3, %xmm10
- movaps %xmm6, %xmm4
- orps %xmm10, %xmm1
- addps %xmm13, %xmm14
- mulps %xmm15, %xmm6
- maxps %xmm14, %xmm0
- minps %xmm14, %xmm2
- subps %xmm14, %xmm4
- movaps %xmm0, %xmm3
- addps %xmm4, %xmm13
- addps %xmm2, %xmm3
- addps %xmm13, %xmm1
- subps %xmm3, %xmm0
- movaps %xmm5, %xmm4
- andps %xmm5, %xmm3
- andnps %xmm6, %xmm4
- addps %xmm0, %xmm2
-
-/*
- * Now resume the main code.
- * reduction: compute r,n
- */
- movdqu iBrkValue+__svml_sasinh_data_internal(%rip), %xmm6
- orps %xmm3, %xmm4
- psubd %xmm6, %xmm4
- movaps %xmm7, %xmm0
- addps %xmm2, %xmm1
- movdqu iOffExpoMask+__svml_sasinh_data_internal(%rip), %xmm2
- pand %xmm4, %xmm2
- psrad $23, %xmm4
- cvtdq2ps %xmm4, %xmm3
- pslld $23, %xmm4
- andps %xmm5, %xmm1
- paddd %xmm6, %xmm2
- psubd %xmm4, %xmm0
- mulps %xmm0, %xmm1
-
-/* polynomial evaluation */
- subps %xmm7, %xmm2
- movups sPoly+112+__svml_sasinh_data_internal(%rip), %xmm7
- addps %xmm2, %xmm1
- mulps %xmm1, %xmm7
- movaps %xmm5, %xmm2
-
-/* Add 31 to the exponent in the "large" case to get log(2 * input) */
- movups sThirtyOne+__svml_sasinh_data_internal(%rip), %xmm0
- addps sPoly+96+__svml_sasinh_data_internal(%rip), %xmm7
- addps %xmm3, %xmm0
- mulps %xmm1, %xmm7
- andnps %xmm0, %xmm2
- andps %xmm5, %xmm3
- orps %xmm3, %xmm2
- addps sPoly+80+__svml_sasinh_data_internal(%rip), %xmm7
-
-/* final reconstruction */
- mulps sLn2+__svml_sasinh_data_internal(%rip), %xmm2
- mulps %xmm1, %xmm7
-
-/* Finally, reincorporate the original sign. */
- movups sSign+__svml_sasinh_data_internal(%rip), %xmm0
- andps %xmm8, %xmm0
- addps sPoly+64+__svml_sasinh_data_internal(%rip), %xmm7
- mulps %xmm1, %xmm7
- addps sPoly+48+__svml_sasinh_data_internal(%rip), %xmm7
- mulps %xmm1, %xmm7
- addps sPoly+32+__svml_sasinh_data_internal(%rip), %xmm7
- mulps %xmm1, %xmm7
- addps sPoly+16+__svml_sasinh_data_internal(%rip), %xmm7
- mulps %xmm1, %xmm7
- addps sPoly+__svml_sasinh_data_internal(%rip), %xmm7
- mulps %xmm1, %xmm7
- mulps %xmm1, %xmm7
- addps %xmm7, %xmm1
- addps %xmm2, %xmm1
- pxor %xmm1, %xmm0
- testl %edx, %edx
-
-/* Go to special inputs processing branch */
- jne L(SPECIAL_VALUES_BRANCH)
- # LOE rbx rbp r12 r13 r14 r15 edx xmm0 xmm8
-
-/* Restore registers
- * and exit the function
- */
+ subq $72, %rsp
+ cfi_def_cfa_offset(80)
+ movaps %xmm0, %xmm8
+
+ /*
+ * Split X into high and low parts, XHi (<= 11 bits) and XLo (<= 13 bits)
+ * We could use either X or |X| here, but it doesn't seem to matter
+ */
+ movups sTopMask11+__svml_sasinh_data_internal(%rip), %xmm10
+ movaps %xmm8, %xmm2
+ andps %xmm8, %xmm10
+
+ /*
+ * Compute X^2 = (XHi + XLo)^2 = XHi^2 + XLo * (X + XHi)
+ * The two parts are shifted off by around 11 bits. So even though
+ * the low bit will not in general be exact, it's near enough
+ */
+ movaps %xmm10, %xmm3
+ subps %xmm10, %xmm2
+ mulps %xmm10, %xmm3
+ addps %xmm8, %xmm10
+
+ /* Load the constant 1 and a sign mask */
+ movups sOne+__svml_sasinh_data_internal(%rip), %xmm7
+
+ /*
+ * Finally, express Y + W = X^2 + 1 accurately where Y has <= 8 bits.
+ * If |X| <= 1 then |XHi| <= 1 and so |X2Hi| <= 1, so we can treat 1
+ * as the dominant component in the compensated summation. Otherwise,
+ * if |X| >= 1, then since X2Hi only has 22 significant bits, the basic
+ * addition will be exact anyway until we get to |X| >= 2^24. But by
+ * that time the log function is well-conditioned enough that the
+ * rounding error doesn't matter. Hence we can treat 1 as dominant even
+ * if it literally isn't.
+ */
+ movaps %xmm7, %xmm11
+ movaps %xmm7, %xmm4
+ movups sTopMask8+__svml_sasinh_data_internal(%rip), %xmm12
+ addps %xmm3, %xmm11
+ mulps %xmm10, %xmm2
+ subps %xmm11, %xmm4
+ movaps %xmm12, %xmm0
+ addps %xmm3, %xmm4
+
+ /*
+ * Unfortunately, we can still be in trouble if |X| <= 2^-5, since
+ * the absolute error 2^-(7+24)-ish in sqrt(1 + X^2) gets scaled up
+ * by 1/X and comes close to our threshold. Hence if |X| <= 2^-4,
+ * perform an alternative computation
+ * sqrt(1 + X^2) - 1 = X^2/2 - X^4/8 + X^6/16
+ * X2 = X^2
+ */
+ addps %xmm2, %xmm3
+ addps %xmm2, %xmm4
+ andps %xmm11, %xmm0
+
+ /*
+ * Compute R = 1/sqrt(Y + W) * (1 + d)
+ * Force R to <= 8 significant bits.
+ * This means that R * Y and R^2 * Y are exactly representable.
+ */
+ rsqrtps %xmm0, %xmm14
+ subps %xmm0, %xmm11
+ andps %xmm12, %xmm14
+ addps %xmm11, %xmm4
+
+ /*
+ * Compute S = (Y/sqrt(Y + W)) * (1 + d)
+ * and T = (W/sqrt(Y + W)) * (1 + d)
+ * so that S + T = sqrt(Y + W) * (1 + d)
+ * S is exact, and the rounding error in T is OK.
+ */
+ mulps %xmm14, %xmm0
+ mulps %xmm14, %xmm4
+
+ /*
+ * Get the absolute value of the input, since we will exploit antisymmetry
+ * and mostly assume X >= 0 in the core computation
+ */
+ movups SgnMask+__svml_sasinh_data_internal(%rip), %xmm6
+
+ /*
+ * Compute e = -(2 * d + d^2)
+ * The first FMR is exact, and the rounding error in the other is acceptable
+ * since d and e are ~ 2^-8
+ */
+ movaps %xmm14, %xmm13
+ andps %xmm8, %xmm6
+
+ /*
+ * Obtain sqrt(1 + X^2) - 1 in two pieces
+ * sqrt(1 + X^2) - 1
+ * = sqrt(Y + W) - 1
+ * = (S + T) * (1 + Corr) - 1
+ * = [S - 1] + [T + (S + T) * Corr]
+ * We need a compensated summation for the last part. We treat S - 1
+ * as the larger part; it certainly is until about X < 2^-4, and in that
+ * case, the error is affordable since X dominates over sqrt(1 + X^2) - 1
+ * Final sum is dTmp5 (hi) + dTmp7 (lo)
+ */
+ movaps %xmm0, %xmm1
+
+ /*
+ * Check whether the input is finite, by checking |X| <= MaxFloat
+ * Otherwise set the rangemask so that the callout will get used.
+ * Note that this will also use the callout for NaNs since not(NaN <= MaxFloat)
+ */
+ movaps %xmm6, %xmm9
+
+ /*
+ * The following computation can go wrong for very large X, basically
+ * because X^2 overflows. But for large X we have
+ * asinh(X) / log(2 X) - 1 =~= 1/(4 * X^2), so for X >= 2^30
+ * we can just later stick X back into the log and tweak up the exponent.
+ * Actually we scale X by 2^-30 and tweak the exponent up by 31,
+ * to stay in the safe range for the later log computation.
+ * Compute a flag now telling us when do do this.
+ */
+ movaps %xmm6, %xmm5
+ cmpnleps sLargestFinite+__svml_sasinh_data_internal(%rip), %xmm9
+ cmpltps sBigThreshold+__svml_sasinh_data_internal(%rip), %xmm5
+ mulps %xmm0, %xmm13
+ addps %xmm4, %xmm1
+ subps %xmm7, %xmm0
+ mulps %xmm4, %xmm14
+ movmskps %xmm9, %edx
+ movaps %xmm7, %xmm9
+
+ /*
+ * Now 1 / (1 + d)
+ * = 1 / (1 + (sqrt(1 - e) - 1))
+ * = 1 / sqrt(1 - e)
+ * = 1 + 1/2 * e + 3/8 * e^2 + 5/16 * e^3 + 35/128 * e^4 + ...
+ * So compute the first three nonconstant terms of that, so that
+ * we have a relative correction (1 + Corr) to apply to S etc.
+ * C1 = 1/2
+ * C2 = 3/8
+ * C3 = 5/16
+ */
+ movups sC3+__svml_sasinh_data_internal(%rip), %xmm15
+ subps %xmm13, %xmm9
+ movups sHalf+__svml_sasinh_data_internal(%rip), %xmm10
+ subps %xmm14, %xmm9
+
+ /* sX2over2 = X^2/2 */
+ mulps %xmm10, %xmm3
+ mulps %xmm9, %xmm15
+
+ /* sX46 = -X^4/4 + X^6/8 */
+ movaps %xmm3, %xmm2
+ movaps %xmm3, %xmm12
+
+ /*
+ * Now do another compensated sum to add |X| + [sqrt(1 + X^2) - 1].
+ * It's always safe to assume |X| is larger.
+ * This is the final 2-part argument to the log1p function
+ */
+ movaps %xmm6, %xmm14
+ addps sC2+__svml_sasinh_data_internal(%rip), %xmm15
+ mulps %xmm9, %xmm15
+ addps %xmm10, %xmm15
+ mulps %xmm15, %xmm9
+ mulps %xmm1, %xmm9
+
+ /* Now multiplex to the case X = 2^-30 * input, Xl = sL = 0 in the "big" case. */
+ movups XScale+__svml_sasinh_data_internal(%rip), %xmm15
+ addps %xmm9, %xmm4
+ movaps %xmm4, %xmm11
+ addps %xmm0, %xmm11
+ subps %xmm11, %xmm0
+ addps %xmm0, %xmm4
+
+ /* sX4over4 = X^4/4 */
+ movaps %xmm3, %xmm0
+ mulps %xmm3, %xmm0
+ mulps %xmm0, %xmm2
+ subps %xmm0, %xmm2
+
+ /*
+ * Now we feed into the log1p code, using H in place of _VARG1 and
+ * also adding L into Xl.
+ * compute 1+x as high, low parts
+ */
+ movaps %xmm7, %xmm0
+
+ /* sX46over2 = -X^4/8 + x^6/16 */
+ mulps %xmm2, %xmm10
+ movaps %xmm7, %xmm2
+ addps %xmm10, %xmm12
+ subps %xmm12, %xmm3
+ addps %xmm3, %xmm10
+
+ /* Now multiplex the two possible computations */
+ movaps %xmm6, %xmm3
+ cmpleps sLittleThreshold+__svml_sasinh_data_internal(%rip), %xmm3
+ movaps %xmm3, %xmm13
+ andps %xmm3, %xmm12
+ andnps %xmm11, %xmm13
+ movaps %xmm3, %xmm1
+ orps %xmm12, %xmm13
+ andnps %xmm4, %xmm1
+ andps %xmm3, %xmm10
+ movaps %xmm6, %xmm4
+ orps %xmm10, %xmm1
+ addps %xmm13, %xmm14
+ mulps %xmm15, %xmm6
+ maxps %xmm14, %xmm0
+ minps %xmm14, %xmm2
+ subps %xmm14, %xmm4
+ movaps %xmm0, %xmm3
+ addps %xmm4, %xmm13
+ addps %xmm2, %xmm3
+ addps %xmm13, %xmm1
+ subps %xmm3, %xmm0
+ movaps %xmm5, %xmm4
+ andps %xmm5, %xmm3
+ andnps %xmm6, %xmm4
+ addps %xmm0, %xmm2
+
+ /*
+ * Now resume the main code.
+ * reduction: compute r, n
+ */
+ movdqu iBrkValue+__svml_sasinh_data_internal(%rip), %xmm6
+ orps %xmm3, %xmm4
+ psubd %xmm6, %xmm4
+ movaps %xmm7, %xmm0
+ addps %xmm2, %xmm1
+ movdqu iOffExpoMask+__svml_sasinh_data_internal(%rip), %xmm2
+ pand %xmm4, %xmm2
+ psrad $23, %xmm4
+ cvtdq2ps %xmm4, %xmm3
+ pslld $23, %xmm4
+ andps %xmm5, %xmm1
+ paddd %xmm6, %xmm2
+ psubd %xmm4, %xmm0
+ mulps %xmm0, %xmm1
+
+ /* polynomial evaluation */
+ subps %xmm7, %xmm2
+ movups sPoly+112+__svml_sasinh_data_internal(%rip), %xmm7
+ addps %xmm2, %xmm1
+ mulps %xmm1, %xmm7
+ movaps %xmm5, %xmm2
+
+ /* Add 31 to the exponent in the "large" case to get log(2 * input) */
+ movups sThirtyOne+__svml_sasinh_data_internal(%rip), %xmm0
+ addps sPoly+96+__svml_sasinh_data_internal(%rip), %xmm7
+ addps %xmm3, %xmm0
+ mulps %xmm1, %xmm7
+ andnps %xmm0, %xmm2
+ andps %xmm5, %xmm3
+ orps %xmm3, %xmm2
+ addps sPoly+80+__svml_sasinh_data_internal(%rip), %xmm7
+
+ /* final reconstruction */
+ mulps sLn2+__svml_sasinh_data_internal(%rip), %xmm2
+ mulps %xmm1, %xmm7
+
+ /* Finally, reincorporate the original sign. */
+ movups sSign+__svml_sasinh_data_internal(%rip), %xmm0
+ andps %xmm8, %xmm0
+ addps sPoly+64+__svml_sasinh_data_internal(%rip), %xmm7
+ mulps %xmm1, %xmm7
+ addps sPoly+48+__svml_sasinh_data_internal(%rip), %xmm7
+ mulps %xmm1, %xmm7
+ addps sPoly+32+__svml_sasinh_data_internal(%rip), %xmm7
+ mulps %xmm1, %xmm7
+ addps sPoly+16+__svml_sasinh_data_internal(%rip), %xmm7
+ mulps %xmm1, %xmm7
+ addps sPoly+__svml_sasinh_data_internal(%rip), %xmm7
+ mulps %xmm1, %xmm7
+ mulps %xmm1, %xmm7
+ addps %xmm7, %xmm1
+ addps %xmm2, %xmm1
+ pxor %xmm1, %xmm0
+ testl %edx, %edx
+
+ /* Go to special inputs processing branch */
+ jne L(SPECIAL_VALUES_BRANCH)
+ # LOE rbx rbp r12 r13 r14 r15 edx xmm0 xmm8
+
+ /* Restore registers
+ * and exit the function
+ */
L(EXIT):
- addq $72, %rsp
- cfi_def_cfa_offset(8)
- ret
- cfi_def_cfa_offset(80)
+ addq $72, %rsp
+ cfi_def_cfa_offset(8)
+ ret
+ cfi_def_cfa_offset(80)
-/* Branch to process
- * special inputs
- */
+ /* Branch to process
+ * special inputs
+ */
L(SPECIAL_VALUES_BRANCH):
- movups %xmm8, 32(%rsp)
- movups %xmm0, 48(%rsp)
- # LOE rbx rbp r12 r13 r14 r15 edx
-
- xorl %eax, %eax
- movq %r12, 16(%rsp)
- cfi_offset(12, -64)
- movl %eax, %r12d
- movq %r13, 8(%rsp)
- cfi_offset(13, -72)
- movl %edx, %r13d
- movq %r14, (%rsp)
- cfi_offset(14, -80)
- # LOE rbx rbp r15 r12d r13d
-
-/* Range mask
- * bits check
- */
+ movups %xmm8, 32(%rsp)
+ movups %xmm0, 48(%rsp)
+ # LOE rbx rbp r12 r13 r14 r15 edx
+
+ xorl %eax, %eax
+ movq %r12, 16(%rsp)
+ cfi_offset(12, -64)
+ movl %eax, %r12d
+ movq %r13, 8(%rsp)
+ cfi_offset(13, -72)
+ movl %edx, %r13d
+ movq %r14, (%rsp)
+ cfi_offset(14, -80)
+ # LOE rbx rbp r15 r12d r13d
+
+ /* Range mask
+ * bits check
+ */
L(RANGEMASK_CHECK):
- btl %r12d, %r13d
+ btl %r12d, %r13d
-/* Call scalar math function */
- jc L(SCALAR_MATH_CALL)
- # LOE rbx rbp r15 r12d r13d
+ /* Call scalar math function */
+ jc L(SCALAR_MATH_CALL)
+ # LOE rbx rbp r15 r12d r13d
-/* Special inputs
- * processing loop
- */
+ /* Special inputs
+ * processing loop
+ */
L(SPECIAL_VALUES_LOOP):
- incl %r12d
- cmpl $4, %r12d
-
-/* Check bits in range mask */
- jl L(RANGEMASK_CHECK)
- # LOE rbx rbp r15 r12d r13d
-
- movq 16(%rsp), %r12
- cfi_restore(12)
- movq 8(%rsp), %r13
- cfi_restore(13)
- movq (%rsp), %r14
- cfi_restore(14)
- movups 48(%rsp), %xmm0
-
-/* Go to exit */
- jmp L(EXIT)
- cfi_offset(12, -64)
- cfi_offset(13, -72)
- cfi_offset(14, -80)
- # LOE rbx rbp r12 r13 r14 r15 xmm0
-
-/* Scalar math fucntion call
- * to process special input
- */
+ incl %r12d
+ cmpl $4, %r12d
+
+ /* Check bits in range mask */
+ jl L(RANGEMASK_CHECK)
+ # LOE rbx rbp r15 r12d r13d
+
+ movq 16(%rsp), %r12
+ cfi_restore(12)
+ movq 8(%rsp), %r13
+ cfi_restore(13)
+ movq (%rsp), %r14
+ cfi_restore(14)
+ movups 48(%rsp), %xmm0
+
+ /* Go to exit */
+ jmp L(EXIT)
+ cfi_offset(12, -64)
+ cfi_offset(13, -72)
+ cfi_offset(14, -80)
+ # LOE rbx rbp r12 r13 r14 r15 xmm0
+
+ /* Scalar math fucntion call
+ * to process special input
+ */
L(SCALAR_MATH_CALL):
- movl %r12d, %r14d
- movss 32(%rsp,%r14,4), %xmm0
- call asinhf@PLT
- # LOE rbx rbp r14 r15 r12d r13d xmm0
+ movl %r12d, %r14d
+ movss 32(%rsp, %r14, 4), %xmm0
+ call asinhf@PLT
+ # LOE rbx rbp r14 r15 r12d r13d xmm0
- movss %xmm0, 48(%rsp,%r14,4)
+ movss %xmm0, 48(%rsp, %r14, 4)
-/* Process special inputs in loop */
- jmp L(SPECIAL_VALUES_LOOP)
- # LOE rbx rbp r15 r12d r13d
+ /* Process special inputs in loop */
+ jmp L(SPECIAL_VALUES_LOOP)
+ # LOE rbx rbp r15 r12d r13d
END(_ZGVbN4v_asinhf_sse4)
- .section .rodata, "a"
- .align 16
+ .section .rodata, "a"
+ .align 16
#ifdef __svml_sasinh_data_internal_typedef
typedef unsigned int VUINT32;
typedef struct {
- __declspec(align(16)) VUINT32 SgnMask[4][1];
- __declspec(align(16)) VUINT32 sOne[4][1];
- __declspec(align(16)) VUINT32 sPoly[8][4][1];
- __declspec(align(16)) VUINT32 iBrkValue[4][1];
- __declspec(align(16)) VUINT32 iOffExpoMask[4][1];
- __declspec(align(16)) VUINT32 sBigThreshold[4][1];
- __declspec(align(16)) VUINT32 sC2[4][1];
- __declspec(align(16)) VUINT32 sC3[4][1];
- __declspec(align(16)) VUINT32 sHalf[4][1];
- __declspec(align(16)) VUINT32 sLargestFinite[4][1];
- __declspec(align(16)) VUINT32 sLittleThreshold[4][1];
- __declspec(align(16)) VUINT32 sSign[4][1];
- __declspec(align(16)) VUINT32 sThirtyOne[4][1];
- __declspec(align(16)) VUINT32 sTopMask11[4][1];
- __declspec(align(16)) VUINT32 sTopMask8[4][1];
- __declspec(align(16)) VUINT32 XScale[4][1];
- __declspec(align(16)) VUINT32 sLn2[4][1];
+ __declspec(align(16)) VUINT32 SgnMask[4][1];
+ __declspec(align(16)) VUINT32 sOne[4][1];
+ __declspec(align(16)) VUINT32 sPoly[8][4][1];
+ __declspec(align(16)) VUINT32 iBrkValue[4][1];
+ __declspec(align(16)) VUINT32 iOffExpoMask[4][1];
+ __declspec(align(16)) VUINT32 sBigThreshold[4][1];
+ __declspec(align(16)) VUINT32 sC2[4][1];
+ __declspec(align(16)) VUINT32 sC3[4][1];
+ __declspec(align(16)) VUINT32 sHalf[4][1];
+ __declspec(align(16)) VUINT32 sLargestFinite[4][1];
+ __declspec(align(16)) VUINT32 sLittleThreshold[4][1];
+ __declspec(align(16)) VUINT32 sSign[4][1];
+ __declspec(align(16)) VUINT32 sThirtyOne[4][1];
+ __declspec(align(16)) VUINT32 sTopMask11[4][1];
+ __declspec(align(16)) VUINT32 sTopMask8[4][1];
+ __declspec(align(16)) VUINT32 XScale[4][1];
+ __declspec(align(16)) VUINT32 sLn2[4][1];
} __svml_sasinh_data_internal;
#endif
__svml_sasinh_data_internal:
- /*== SgnMask ==*/
- .long 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff
- /*== sOne = SP 1.0 ==*/
- .align 16
- .long 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000
- /*== sPoly[] = SP polynomial ==*/
- .align 16
- .long 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000 /* -5.0000000000000000000000000e-01 P0 */
- .long 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94 /* 3.3333265781402587890625000e-01 P1 */
- .long 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e /* -2.5004237890243530273437500e-01 P2 */
- .long 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190 /* 2.0007920265197753906250000e-01 P3 */
- .long 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37 /* -1.6472326219081878662109375e-01 P4 */
- .long 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12 /* 1.4042308926582336425781250e-01 P5 */
- .long 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3 /* -1.5122179687023162841796875e-01 P6 */
- .long 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed /* 1.3820238411426544189453125e-01 P7 */
- /*== iBrkValue = SP 2/3 ==*/
- .align 16
- .long 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab
- /*== iOffExpoMask = SP significand mask ==*/
- .align 16
- .long 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff
- /*== sBigThreshold ==*/
- .align 16
- .long 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000
- /*== sC2 ==*/
- .align 16
- .long 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000
- /*== sC3 ==*/
- .align 16
- .long 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000
- /*== sHalf ==*/
- .align 16
- .long 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000
- /*== sLargestFinite ==*/
- .align 16
- .long 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF
- /*== sLittleThreshold ==*/
- .align 16
- .long 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000
- /*== sSign ==*/
- .align 16
- .long 0x80000000, 0x80000000, 0x80000000, 0x80000000
- /*== sThirtyOne ==*/
- .align 16
- .long 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000
- /*== sTopMask11 ==*/
- .align 16
- .long 0xFFFFE000, 0xFFFFE000, 0xFFFFE000, 0xFFFFE000
- /*== sTopMask8 ==*/
- .align 16
- .long 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000
- /*== XScale ==*/
- .align 16
- .long 0x30800000, 0x30800000, 0x30800000, 0x30800000
- /*== sLn2 = SP ln(2) ==*/
- .align 16
- .long 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218
- .align 16
- .type __svml_sasinh_data_internal,@object
- .size __svml_sasinh_data_internal,.-__svml_sasinh_data_internal
+ /* SgnMask */
+ .long 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff
+ /* sOne = SP 1.0 */
+ .align 16
+ .long 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000
+ /* sPoly[] = SP polynomial */
+ .align 16
+ .long 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000 /* -5.0000000000000000000000000e-01 P0 */
+ .long 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94 /* 3.3333265781402587890625000e-01 P1 */
+ .long 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e /* -2.5004237890243530273437500e-01 P2 */
+ .long 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190 /* 2.0007920265197753906250000e-01 P3 */
+ .long 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37 /* -1.6472326219081878662109375e-01 P4 */
+ .long 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12 /* 1.4042308926582336425781250e-01 P5 */
+ .long 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3 /* -1.5122179687023162841796875e-01 P6 */
+ .long 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed /* 1.3820238411426544189453125e-01 P7 */
+ /* iBrkValue = SP 2/3 */
+ .align 16
+ .long 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab
+ /* iOffExpoMask = SP significand mask */
+ .align 16
+ .long 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff
+ /* sBigThreshold */
+ .align 16
+ .long 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000
+ /* sC2 */
+ .align 16
+ .long 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000
+ /* sC3 */
+ .align 16
+ .long 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000
+ /* sHalf */
+ .align 16
+ .long 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000
+ /* sLargestFinite */
+ .align 16
+ .long 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF
+ /* sLittleThreshold */
+ .align 16
+ .long 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000
+ /* sSign */
+ .align 16
+ .long 0x80000000, 0x80000000, 0x80000000, 0x80000000
+ /* sThirtyOne */
+ .align 16
+ .long 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000
+ /* sTopMask11 */
+ .align 16
+ .long 0xFFFFE000, 0xFFFFE000, 0xFFFFE000, 0xFFFFE000
+ /* sTopMask8 */
+ .align 16
+ .long 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000
+ /* XScale */
+ .align 16
+ .long 0x30800000, 0x30800000, 0x30800000, 0x30800000
+ /* sLn2 = SP ln(2) */
+ .align 16
+ .long 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218
+ .align 16
+ .type __svml_sasinh_data_internal, @object
+ .size __svml_sasinh_data_internal, .-__svml_sasinh_data_internal