aboutsummaryrefslogtreecommitdiff
path: root/sim/ppc/psim.c
blob: 636ae05e2d68fae9f2ed749eae7c6cdc52b852bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
/*  This file is part of the program psim.

    Copyright (C) 1994-1995, Andrew Cagney <cagney@highland.com.au>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 
    */


#ifndef _PSIM_C_
#define _PSIM_C_

#include <stdio.h>
#include <ctype.h>

#include "config.h"
#include "ppc-config.h"
#include "inline.h"

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#ifndef STATIC_INLINE_PSIM
#define STATIC_INLINE_PSIM STATIC_INLINE
#endif

#include <setjmp.h>

#include "cpu.h" /* includes psim.h */
#include "idecode.h"

#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif

#include "bfd.h"


#include "inline.c"

/* Any starting address less than this is assumed to be an OEA program
   rather than VEA.  */
#ifndef OEA_START_ADDRESS
#define OEA_START_ADDRESS 4096
#endif

/* Any starting address greater than this is assumed to be an OpenBoot
   rather than VEA */
#ifndef OPENBOOT_START_ADDRESS
#define OPENBOOT_START_ADDRESS 0x80000000
#endif

#ifndef OEA_MEMORY_SIZE
#define OEA_MEMORY_SIZE 0x100000
#endif


/* system structure, actual size of processor array determined at
   runtime */

struct _psim {
  event_queue *events;
  device_tree *devices;
  mon *monitor;
  core *memory;
  /* escape routine for inner functions */
  void *path_to_halt;
  void *path_to_restart;
  /* status from last halt */
  psim_status halt_status;
  /* the processes proper */
  int nr_cpus;
  int last_cpu; /* CPU that last (tried to) execute an instruction */
  cpu *processors[MAX_NR_PROCESSORS];
};


int current_target_byte_order;
int current_host_byte_order;
int current_environment;
int current_alignment;
int current_floating_point;
model_enum current_model = WITH_DEFAULT_MODEL;


/* create a device tree from the image */



/* Raw hardware tree:

   A small default set of devices are configured.  Each section of the
   image is loaded directly into physical memory. */

STATIC_INLINE_PSIM void
create_hardware_device_tree(bfd *image,
			    device_tree *root)
{
  char *name;
  const memory_size = OEA_MEMORY_SIZE;

  /* options */
  device_tree_add_passthrough(root, "/options");
  device_tree_add_integer(root, "/options/smp",
			  MAX_NR_PROCESSORS);
  device_tree_add_boolean(root, "/options/little-endian?",
			  !image->xvec->byteorder_big_p);
  device_tree_add_string(root, "/options/env",
			 "operating");
  device_tree_add_boolean(root, "/options/strict-alignment?",
			  (WITH_ALIGNMENT == STRICT_ALIGNMENT
			   || !image->xvec->byteorder_big_p));
  device_tree_add_boolean(root, "/options/floating-point?",
			  WITH_FLOATING_POINT);

  /* hardware */
  name = printd_uw_u_u("/memory", 0, memory_size, access_read_write_exec);
  device_tree_add_found_device(root, name);
  zfree(name);
  device_tree_add_found_device(root, "/iobus@0x400000");
  device_tree_add_found_device(root, "/iobus/console@0x000000,16");
  device_tree_add_found_device(root, "/iobus/halt@0x100000,4");
  device_tree_add_found_device(root, "/iobus/icu@0x200000,4");

  /* initialization */
  device_tree_add_passthrough(root, "/init");
  device_tree_add_found_device(root, "/init/register@pc,0x0");
  name = printd_c_uw("/init/register", "sp", memory_size);
  device_tree_add_found_device(root, name);
  zfree(name);
  name = printd_c_uw("/init/register", "msr",
		     (image->xvec->byteorder_big_p
		      ? 0
		      : msr_little_endian_mode));
  device_tree_add_found_device(root, name);
  zfree(name);
  /* AJC puts the PC at zero and wants a stack while MM puts it above
     zero and doesn't. Really there should be no stack *but* this
     makes testing easier */
  device_tree_add_found_device(root,
			       (bfd_get_start_address(image) == 0
				? "/init/stack@elf"
				: "/init/stack@none"));
  name = printd_c("/init/load-binary", bfd_get_filename(image));
  device_tree_add_found_device(root, name);
  zfree(name);
}


/* Openboot model (under development):

   An extension of the hardware model.  The image is read into memory
   as a single block.  Sections of the image are then mapped as
   required using a HTAB. */

STATIC_INLINE_PSIM void
create_openboot_device_tree(bfd *image,
			    device_tree *root)
{
  create_hardware_device_tree(image, root);
}


/* User mode model:

   Image sections loaded into virtual addresses as specified.  A
   (large) stack is reserved (but only allocated as needed). System
   calls that include suport for heap growth are attached. */

STATIC_INLINE_PSIM void
create_vea_device_tree(bfd *image,
		       device_tree *root)
{
  unsigned_word top_of_stack;
  unsigned stack_size;
  int elf_binary;
  char *name;

  /* establish a few defaults */
  if (image->xvec->flavour == bfd_target_elf_flavour) {
    elf_binary = 1;
    top_of_stack = 0xe0000000;
    stack_size =   0x00100000;
  }
  else {
    elf_binary = 0;
    top_of_stack = 0x20000000;
    stack_size =   0x00100000;
  }

  /* options */
  device_tree_add_passthrough(root, "/options");
  device_tree_add_integer(root, "/options/smp", 1); /* always */
  device_tree_add_boolean(root, "/options/little-endian?",
			  !image->xvec->byteorder_big_p);
  device_tree_add_string(root, "/options/env",
			 (WITH_ENVIRONMENT == USER_ENVIRONMENT
			  ? "user" : "virtual"));
  device_tree_add_boolean(root, "/options/strict-alignment?",
			  (WITH_ALIGNMENT == STRICT_ALIGNMENT
			    || !image->xvec->byteorder_big_p));
  device_tree_add_boolean(root, "/options/floating-point?",
			  WITH_FLOATING_POINT);

  /* virtual memory - handles growth of stack/heap */
  name = printd_uw_u("/vm", top_of_stack - stack_size, stack_size);
  device_tree_add_found_device(root, name);
  zfree(name);
  name = printd_c("/vm/map-binary", bfd_get_filename(image));
  device_tree_add_found_device(root, name);
  zfree(name);

  /* finish the init */
  device_tree_add_passthrough(root, "/init");
  name = printd_c_uw("/init/register", "pc", bfd_get_start_address(image));
  device_tree_add_found_device(root, name); /*pc*/
  zfree(name);
  name = printd_c_uw("/init/register", "sp", top_of_stack);
  device_tree_add_found_device(root, name);
  zfree(name);
  name = printd_c_uw("/init/register", "msr",
		     (image->xvec->byteorder_big_p
		      ? 0
		      : msr_little_endian_mode));
  device_tree_add_found_device(root, name);
  zfree(name);
  device_tree_add_found_device(root, (elf_binary
				      ? "/init/stack@elf"
				      : "/init/stack@xcoff"));
}


/* File device:

   The file contains lines that specify the describe the device tree
   to be created, read them in and load them into the tree */

STATIC_INLINE_PSIM void
create_filed_device_tree(const char *file_name,
			 device_tree *root)
{
  FILE *description = fopen(file_name, "r");
  int line_nr = 0;
  char device_path[1000];
  while (fgets(device_path, sizeof(device_path), description)) {
    /* check all of line was read */
    {
      char *end = strchr(device_path, '\n');
      if (end == NULL) {
	fclose(description);
	error("create_filed_device_tree() line %d to long: %s\n",
	      line_nr, device_path);
      }
      line_nr++;
      *end = '\0';
    }
    /* check for leading comment */
    if (device_path[0] != '/')
      continue;
    /* enter it in varying ways */
    if (strchr(device_path, '@') != NULL) {
      device_tree_add_found_device(root, device_path);
    }
    else {
      char *space = strchr(device_path, ' ');
      if (space == NULL) {
	/* intermediate node */
	device_tree_add_passthrough(root, device_path);
      }
      else if (space[-1] == '?') {
	/* boolean */
	*space = '\0';
	device_tree_add_boolean(root, device_path, space[1] != '0');
      }
      else if (isdigit(space[1])) {
	/* integer */
	*space = '\0';
	device_tree_add_integer(root, device_path, strtoul(space+1, 0, 0));
      }
      else if (space[1] == '"') {
	/* quoted string */
	char *end = strchr(space+2, '\0');
	if (end[-1] == '"')
	  end[-1] = '\0';
	*space = '\0';
	device_tree_add_string(root, device_path, space + 2);
      }
      else {
	/* any thing else */
	*space = '\0';
	device_tree_add_string(root, device_path, space + 1);
      }
    }
  }
  fclose(description);
}


/* Given the file containing the `image', create a device tree that
   defines the machine to be modeled */

STATIC_INLINE_PSIM device_tree *
create_device_tree(const char *file_name,
		   core *memory)
{
  bfd *image;
  const device *core_device = core_device_create(memory);
  device_tree *root = device_tree_add_device(NULL, "/", core_device);

  bfd_init(); /* could be redundant but ... */

  /* open the file */
  image = bfd_openr(file_name, NULL);
  if (image == NULL) {
    bfd_perror("open failed:");
    error("nothing loaded\n");
  }

  /* check it is valid */
  if (!bfd_check_format(image, bfd_object)) {
    printf_filtered("create_device_tree() - FIXME - should check more bfd bits\n");
    printf_filtered("create_device_tree() - %s not an executable, assume device file\n", file_name);
    bfd_close(image);
    image = NULL;
  }

  /* depending on what was found about the file, load it */
  if (image != NULL) {
    if (bfd_get_start_address(image) < OEA_START_ADDRESS) {
      TRACE(trace_device_tree, ("create_device_tree() - hardware image\n"));
      create_hardware_device_tree(image, root);
    }
    else if (bfd_get_start_address(image) < OPENBOOT_START_ADDRESS) {
      TRACE(trace_device_tree, ("create_device_tree() - vea image\n"));
      create_vea_device_tree(image, root);
    }
    else {
      TRACE(trace_device_tree, ("create_device_tree() - openboot? image\n"));
      create_openboot_device_tree(image, root);
    }
    bfd_close(image);
  }
  else {
    TRACE(trace_device_tree, ("create_device_tree() - text image\n"));
    create_filed_device_tree(file_name, root);
  }

  return root;
}



INLINE_PSIM psim *
psim_create(const char *file_name)
{
  int cpu_nr;
  const char *env;
  psim *system;

  /* create things */
  system = ZALLOC(psim);
  system->events = event_queue_create();
  system->memory = core_create();
  system->monitor = mon_create();
  system->devices = create_device_tree(file_name, system->memory);
  for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++) {
    system->processors[cpu_nr] = cpu_create(system,
					    system->memory,
					    system->events,
					    mon_cpu(system->monitor,
						    cpu_nr),
					    cpu_nr);
  }

  /* fill in the missing real number of CPU's */
  system->nr_cpus = device_tree_find_integer(system->devices,
					     "/options/smp");

  /* fill in the missing TARGET BYTE ORDER information */
  current_target_byte_order = (device_tree_find_boolean(system->devices,
							"/options/little-endian?")
			       ? LITTLE_ENDIAN
			       : BIG_ENDIAN);
  if (CURRENT_TARGET_BYTE_ORDER != current_target_byte_order)
    error("target byte order conflict\n");

  /* fill in the missing HOST BYTE ORDER information */
  current_host_byte_order = (current_host_byte_order = 1,
			     (*(char*)(&current_host_byte_order)
			      ? LITTLE_ENDIAN
			      : BIG_ENDIAN));
  if (CURRENT_HOST_BYTE_ORDER != current_host_byte_order)
    error("host byte order conflict\n");

  /* fill in the missing OEA/VEA information */
  env = device_tree_find_string(system->devices,
				"/options/env");
  current_environment = ((strcmp(env, "user") == 0
			  || strcmp(env, "uea") == 0)
			 ? USER_ENVIRONMENT
			 : (strcmp(env, "virtual") == 0
			    || strcmp(env, "vea") == 0)
			 ? VIRTUAL_ENVIRONMENT
			 : (strcmp(env, "operating") == 0
			    || strcmp(env, "oea") == 0)
			 ? OPERATING_ENVIRONMENT
			 : 0);
  if (current_environment == 0)
    error("unreconized /options/env\n");
  if (CURRENT_ENVIRONMENT != current_environment)
    error("target environment conflict\n");

  /* fill in the missing ALLIGNMENT information */
  current_alignment = (device_tree_find_boolean(system->devices,
						"/options/strict-alignment?")
		       ? STRICT_ALIGNMENT
		       : NONSTRICT_ALIGNMENT);
  if (CURRENT_ALIGNMENT != current_alignment)
    error("target alignment conflict\n");

  /* fill in the missing FLOATING POINT information */
  current_floating_point = (device_tree_find_boolean(system->devices,
						     "/options/floating-point?")
			    ? HARD_FLOATING_POINT
			    : SOFT_FLOATING_POINT);
  if (CURRENT_FLOATING_POINT != current_floating_point)
    error("target floating-point conflict\n");

  return system;
}


/* allow the simulation to stop/restart abnormaly */

STATIC_INLINE_PSIM void
psim_set_halt_and_restart(psim *system,
			  void *halt_jmp_buf,
			  void *restart_jmp_buf)
{
  system->path_to_halt = halt_jmp_buf;
  system->path_to_restart = restart_jmp_buf;
}

STATIC_INLINE_PSIM void
psim_clear_halt_and_restart(psim *system)
{
  system->path_to_halt = NULL;
  system->path_to_restart = NULL;
}

INLINE_PSIM void
psim_restart(psim *system,
	     int current_cpu)
{
  system->last_cpu = current_cpu;
  longjmp(*(jmp_buf*)(system->path_to_restart), current_cpu + 1);
}


INLINE_PSIM void
psim_halt(psim *system,
	  int current_cpu,
	  unsigned_word cia,
	  stop_reason reason,
	  int signal)
{
  system->last_cpu = current_cpu;
  system->halt_status.cpu_nr = current_cpu;
  system->halt_status.reason = reason;
  system->halt_status.signal = signal;
  system->halt_status.program_counter = cia;
  longjmp(*(jmp_buf*)(system->path_to_halt), current_cpu + 1);
}

INLINE_PSIM psim_status
psim_get_status(psim *system)
{
  return system->halt_status;
}


cpu *
psim_cpu(psim *system,
	 int cpu_nr)
{
  if (cpu_nr < 0 || cpu_nr >= system->nr_cpus)
    return NULL;
  else
    return system->processors[cpu_nr];
}


const device *
psim_device(psim *system,
	    const char *path)
{
  return device_tree_find_device(system->devices, path);
}



INLINE_PSIM void
psim_init(psim *system)
{
  int cpu_nr;

  /* scrub the monitor */
  mon_init(system->monitor, system->nr_cpus);

  /* scrub all the cpus */
  for (cpu_nr = 0; cpu_nr < system->nr_cpus; cpu_nr++)
    cpu_init(system->processors[cpu_nr]);

  /* init all the devices */
  device_tree_init(system->devices, system);

  /* force loop to restart */
  system->last_cpu = system->nr_cpus - 1;
}

INLINE_PSIM void
psim_stack(psim *system,
	   char **argv,
	   char **envp)
{
  /* pass the stack device the argv/envp and let it work out what to
     do with it */
  const device *stack_device = device_tree_find_device(system->devices,
						       "/init/stack");
  unsigned_word stack_pointer;
  psim_read_register(system, 0, &stack_pointer, "sp", cooked_transfer);
  stack_device->callback->ioctl(stack_device,
				system,
				NULL, /*cpu*/
				0, /*cia*/
				stack_pointer,
				argv,
				envp);
}



/* EXECUTE REAL CODE: 

   Unfortunatly, there are multiple cases to consider vis:

   	<icache> X <smp> X <events> X <keep-running-flag> X ...

   Consequently this function is written in multiple different ways */

STATIC_INLINE_PSIM void
run_until_stop(psim *system,
	       volatile int *keep_running)
{
  jmp_buf halt;
  jmp_buf restart;
  int cpu_nr;
#if WITH_IDECODE_CACHE_SIZE
  for (cpu_nr = 0; cpu_nr < system->nr_cpus; cpu_nr++)
    cpu_flush_icache(system->processors[cpu_nr]);
#endif
  psim_set_halt_and_restart(system, &halt, &restart);

#if (!WITH_IDECODE_CACHE_SIZE && WITH_SMP == 0)

  /* CASE 1: No instruction cache and no SMP.

     In this case, we can take advantage of the fact that the current
     instruction address does not need to be returned to the cpu
     object after every execution of an instruction.  Instead it only
     needs to be saved when either A. the main loop exits or B. a
     cpu-{halt,restart} call forces the loop to be re-entered.  The
     later functions always save the current cpu instruction
     address. */

  if (!setjmp(halt)) {
    do {
      if (!setjmp(restart)) {
	cpu *const processor = system->processors[0];
	unsigned_word cia = cpu_get_program_counter(processor);
	do {
	  if (WITH_EVENTS) {
	    if (event_queue_tick(system->events)) {
	      cpu_set_program_counter(processor, cia);
	      event_queue_process(system->events);
	      cia = cpu_get_program_counter(processor);
	    }
	  }
	  {
	    instruction_word const instruction
	      = vm_instruction_map_read(cpu_instruction_map(processor),
					processor, cia);
	    cia = idecode_issue(processor, instruction, cia);
	  }
	} while (keep_running == NULL || *keep_running);
	cpu_set_program_counter(processor, cia);
      }
    } while(keep_running == NULL || *keep_running);
  }
#endif


#if (WITH_IDECODE_CACHE_SIZE && WITH_SMP == 0)

  /* CASE 2: Instruction case but no SMP

     Here, the additional complexity comes from there being two
     different cache implementations.  A simple function address cache
     or a full cracked instruction cache */

  if (!setjmp(halt)) {
    do {
      if (!setjmp(restart)) {
	cpu *const processor = system->processors[0];
	unsigned_word cia = cpu_get_program_counter(processor);
	do {
	  if (WITH_EVENTS)
	    if (event_queue_tick(system->events)) {
	      cpu_set_program_counter(processor, cia);
	      event_queue_process(system->events);
	      cia = cpu_get_program_counter(processor);
	    }
	  { 
	    idecode_cache *const cache_entry = cpu_icache_entry(processor,
								cia);
	    if (cache_entry->address == cia) {
	      idecode_semantic *const semantic = cache_entry->semantic;
	      cia = semantic(processor, cache_entry, cia);
	    }
	    else {
	      instruction_word const instruction
		= vm_instruction_map_read(cpu_instruction_map(processor),
					  processor,
					  cia);
	      idecode_semantic *const semantic = idecode(processor,
							 instruction,
							 cia,
							 cache_entry);

	      mon_event(mon_event_icache_miss, processor, cia);
	      cache_entry->address = cia;
	      cache_entry->semantic = semantic;
	      cia = semantic(processor, cache_entry, cia);
	    }
	  }
	} while (keep_running == NULL || *keep_running);
	cpu_set_program_counter(processor, cia);
      }
    } while(keep_running == NULL || *keep_running);
  }
#endif


#if (!WITH_IDECODE_CACHE_SIZE && WITH_SMP > 0)

  /* CASE 3: No ICACHE but SMP

     The complexity here comes from needing to correctly restart the
     system when it is aborted.  In particular if cpu0 requests a
     restart, the next cpu is still cpu1.  Cpu0 being restarted after
     all the other CPU's and the event queue have been processed */

  if (!setjmp(halt)) {
    int first_cpu = setjmp(restart);
    if (first_cpu == 0)
      first_cpu = system->last_cpu + 1;
    do {
      int current_cpu;
      for (current_cpu = first_cpu, first_cpu = 0;
	   current_cpu < system->nr_cpus + (WITH_EVENTS ? 1 : 0);
	   current_cpu++) {
	if (WITH_EVENTS && current_cpu == system->nr_cpus) {
	  if (event_queue_tick(system->events))
	    event_queue_process(system->events);
	}
	else {
	  cpu *const processor = system->processors[current_cpu];
	  unsigned_word const cia = cpu_get_program_counter(processor);
	  instruction_word instruction =
	    vm_instruction_map_read(cpu_instruction_map(processor),
				    processor,
				    cia);
	  cpu_set_program_counter(processor,
				  idecode_issue(processor, instruction, cia));
	}
	if (!(keep_running == NULL || *keep_running)) {
	  system->last_cpu = current_cpu;
	  break;
	}
      }
    } while (keep_running == NULL || *keep_running);
  }
#endif

#if (WITH_IDECODE_CACHE_SIZE && WITH_SMP > 0)

  /* CASE 4: ICACHE and SMP ...

     This time, everything goes wrong.  Need to restart loops
     correctly, need to save the program counter and finally need to
     keep track of each processors current address! */

  if (!setjmp(halt)) {
    int first_cpu = setjmp(restart);
    if (!first_cpu)
      first_cpu = system->last_cpu + 1;
    do {
      int current_cpu;
      for (current_cpu = first_cpu, first_cpu = 0;
	   current_cpu < system->nr_cpus + (WITH_EVENTS ? 1 : 0);
	   current_cpu++) {
	if (WITH_EVENTS && current_cpu == system->nr_cpus) {
	  if (event_queue_tick(system->events))
	    event_queue_process(system->events);
	}
	else {
	  cpu *processor = system->processors[current_cpu];
	  unsigned_word const cia = cpu_get_program_counter(processor);
	  idecode_cache *cache_entry = cpu_icache_entry(processor, cia);
	  if (cache_entry->address == cia) {
	    idecode_semantic *semantic = cache_entry->semantic;
	    cpu_set_program_counter(processor,
				    semantic(processor, cache_entry, cia));
	  }
	  else {
	    instruction_word instruction =
	      vm_instruction_map_read(cpu_instruction_map(processor),
				      processor,
				      cia);
	    idecode_semantic *semantic = idecode(processor,
						 instruction,
						 cia,
						 cache_entry);

	    mon_event(mon_event_icache_miss, system->processors[current_cpu], cia);
	    cache_entry->address = cia;
	    cache_entry->semantic = semantic;
	    cpu_set_program_counter(processor,
				    semantic(processor, cache_entry, cia));
	  }
	}
	if (!(keep_running == NULL || *keep_running))
	  break;
      }
    } while (keep_running == NULL || *keep_running);
  }
#endif

  psim_clear_halt_and_restart(system);
}


/* SIMULATE INSTRUCTIONS, various different ways of achieving the same
   thing */

INLINE_PSIM void
psim_step(psim *system)
{
  volatile int keep_running = 0;
  run_until_stop(system, &keep_running);
}

INLINE_PSIM void
psim_run(psim *system)
{
  run_until_stop(system, NULL);
}

INLINE_PSIM void
psim_run_until_stop(psim *system,
		    volatile int *keep_running)
{
  run_until_stop(system, keep_running);
}



/* storage manipulation functions */

INLINE_PSIM void
psim_read_register(psim *system,
		   int which_cpu,
		   void *buf,
		   const char reg[],
		   transfer_mode mode)
{
  register_descriptions description;
  char cooked_buf[sizeof(natural_word)];
  cpu *processor;

  /* find our processor */
  if (which_cpu == MAX_NR_PROCESSORS)
    which_cpu = system->last_cpu;
  if (which_cpu < 0 || which_cpu >= system->nr_cpus)
    error("psim_read_register() - invalid processor %d\n", which_cpu);
  processor = system->processors[which_cpu];

  /* find the register description */
  description = register_description(reg);
  if (description.type == reg_invalid)
    error("psim_read_register() invalid register name `%s'\n", reg);

  /* get the cooked value */
  switch (description.type) {

  case reg_gpr:
    *(gpreg*)cooked_buf = cpu_registers(processor)->gpr[description.index];
    break;

  case reg_spr:
    *(spreg*)cooked_buf = cpu_registers(processor)->spr[description.index];
    break;
    
  case reg_sr:
    *(sreg*)cooked_buf = cpu_registers(processor)->sr[description.index];
    break;

  case reg_fpr:
    *(fpreg*)cooked_buf = cpu_registers(processor)->fpr[description.index];
    break;

  case reg_pc:
    *(unsigned_word*)cooked_buf = cpu_get_program_counter(processor);
    break;

  case reg_cr:
    *(creg*)cooked_buf = cpu_registers(processor)->cr;
    break;

  case reg_msr:
    *(msreg*)cooked_buf = cpu_registers(processor)->msr;
    break;

  default:
    printf_filtered("psim_read_register(processor=0x%lx,buf=0x%lx,reg=%s) %s\n",
		    (unsigned long)processor, (unsigned long)buf, reg,
		    "read of this register unimplemented");
    break;

  }

  /* the PSIM internal values are in host order.  To fetch raw data,
     they need to be converted into target order and then returned */
  if (mode == raw_transfer) {
    /* FIXME - assumes that all registers are simple integers */
    switch (description.size) {
    case 1: 
      *(unsigned_1*)buf = H2T_1(*(unsigned_1*)cooked_buf);
      break;
    case 2:
      *(unsigned_2*)buf = H2T_2(*(unsigned_2*)cooked_buf);
      break;
    case 4:
      *(unsigned_4*)buf = H2T_4(*(unsigned_4*)cooked_buf);
      break;
    case 8:
      *(unsigned_8*)buf = H2T_8(*(unsigned_8*)cooked_buf);
      break;
    }
  }
  else {
    memcpy(buf/*dest*/, cooked_buf/*src*/, description.size);
  }

}



INLINE_PSIM void
psim_write_register(psim *system,
		    int which_cpu,
		    const void *buf,
		    const char reg[],
		    transfer_mode mode)
{
  cpu *processor;
  register_descriptions description;
  char cooked_buf[sizeof(natural_word)];

  /* find our processor */
  if (which_cpu == MAX_NR_PROCESSORS)
    which_cpu = system->last_cpu;
  if (which_cpu == -1) {
    int i;
    for (i = 0; i < system->nr_cpus; i++)
      psim_write_register(system, i, buf, reg, mode);
    return;
  }
  else if (which_cpu < 0 || which_cpu >= system->nr_cpus) {
    error("psim_read_register() - invalid processor %d\n", which_cpu);
  }

  processor = system->processors[which_cpu];

  /* find the description of the register */
  description = register_description(reg);
  if (description.type == reg_invalid)
    error("psim_write_register() invalid register name %s\n", reg);

  /* If the data is comming in raw (target order), need to cook it
     into host order before putting it into PSIM's internal structures */
  if (mode == raw_transfer) {
    switch (description.size) {
    case 1: 
      *(unsigned_1*)cooked_buf = T2H_1(*(unsigned_1*)buf);
      break;
    case 2:
      *(unsigned_2*)cooked_buf = T2H_2(*(unsigned_2*)buf);
      break;
    case 4:
      *(unsigned_4*)cooked_buf = T2H_4(*(unsigned_4*)buf);
      break;
    case 8:
      *(unsigned_8*)cooked_buf = T2H_8(*(unsigned_8*)buf);
      break;
    }
  }
  else {
    memcpy(cooked_buf/*dest*/, buf/*src*/, description.size);
  }

  /* put the cooked value into the register */
  switch (description.type) {

  case reg_gpr:
    cpu_registers(processor)->gpr[description.index] = *(gpreg*)cooked_buf;
    break;

  case reg_fpr:
    cpu_registers(processor)->fpr[description.index] = *(fpreg*)cooked_buf;
    break;

  case reg_pc:
    cpu_set_program_counter(processor, *(unsigned_word*)cooked_buf);
    break;

  case reg_spr:
    cpu_registers(processor)->spr[description.index] = *(spreg*)cooked_buf;
    break;

  case reg_sr:
    cpu_registers(processor)->sr[description.index] = *(sreg*)cooked_buf;
    break;

  case reg_cr:
    cpu_registers(processor)->cr = *(creg*)cooked_buf;
    break;

  case reg_msr:
    cpu_registers(processor)->msr = *(msreg*)cooked_buf;
    break;

  default:
    printf_filtered("psim_write_register(processor=0x%lx,cooked_buf=0x%lx,reg=%s) %s\n",
		    (unsigned long)processor, (unsigned long)cooked_buf, reg,
		    "read of this register unimplemented");
    break;

  }

}



INLINE_PSIM unsigned
psim_read_memory(psim *system,
		 int which_cpu,
		 void *buffer,
		 unsigned_word vaddr,
		 unsigned nr_bytes)
{
  cpu *processor;
  if (which_cpu == MAX_NR_PROCESSORS)
    which_cpu = system->last_cpu;
  if (which_cpu < 0 || which_cpu >= system->nr_cpus)
    error("psim_read_memory() invalid cpu\n");
  processor = system->processors[which_cpu];
  return vm_data_map_read_buffer(cpu_data_map(processor),
				 buffer, vaddr, nr_bytes);
}


INLINE_PSIM unsigned
psim_write_memory(psim *system,
		  int which_cpu,
		  const void *buffer,
		  unsigned_word vaddr,
		  unsigned nr_bytes,
		  int violate_read_only_section)
{
  cpu *processor;
  if (which_cpu == MAX_NR_PROCESSORS)
    which_cpu = system->last_cpu;
  if (which_cpu < 0 || which_cpu >= system->nr_cpus)
    error("psim_read_memory() invalid cpu\n");
  processor = system->processors[which_cpu];
  return vm_data_map_write_buffer(cpu_data_map(processor),
				  buffer, vaddr, nr_bytes, 1);
}


INLINE_PSIM void
psim_print_info(psim *system,
		int verbose)
{
  mon_print_info(system, system->monitor, verbose);
}


#endif /* _PSIM_C_ */