aboutsummaryrefslogtreecommitdiff
path: root/sim/ppc/idecode_expression.h
blob: 4248716b0a78fb893db5b581c75eb22e7a73f288 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*  This file is part of the program psim.

    Copyright (C) 1994-1995, Andrew Cagney <cagney@highland.com.au>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 
    */


/* 32bit target expressions:

   Each calculation is performed three times using each of the
   signed64, unsigned64 and long integer types.  The macro ALU_END
   (in _ALU_RESULT_VAL) then selects which of the three alternative
   results will be used in the final assignment of the target
   register.  As this selection is determined at compile time by
   fields in the instruction (OE, EA, Rc) the compiler has sufficient
   information to firstly simplify the selection code into a single
   case and then back anotate the equations and hence eliminate any
   resulting dead code.  That dead code being the calculations that,
   as it turned out were not in the end needed.

   64bit arrithemetic is used firstly because it allows the use of
   gcc's efficient long long operators (typically efficiently output
   inline) and secondly because the resultant answer will contain in
   the low 32bits the answer while in the high 32bits is either carry
   or status information. */

/* 64bit target expressions:

   Unfortunatly 128bit arrithemetic isn't that common.  Consequently
   the 32/64 bit trick can not be used.  Instead all calculations are
   required to retain carry/overflow information in separate
   variables.  Even with this restriction it is still possible for the
   trick of letting the compiler discard the calculation of unneeded
   values */


/* Macro's to type cast 32bit constants to 64bits */
#define SIGNED64(val)   ((signed64)(signed32)(val))
#define UNSIGNED64(val) ((unsigned64)(unsigned32)(val))


/* Start a section of ALU code */

#define ALU_BEGIN(val) \
{ \
  natural_word alu_val; \
  unsigned64 alu_carry_val; \
  signed64 alu_overflow_val; \
  ALU_SET(val)


/* assign the result to the target register */

#define ALU_END(TARG,CA,OE,Rc) \
{ /* select the result to use */ \
  signed_word const alu_result = _ALU_RESULT_VAL(CA,OE,Rc); \
  /* determine the overflow bit if needed */ \
  if (OE) { \
    if ((((unsigned64)(alu_overflow_val & BIT64(0))) \
	 >> 32) \
        == (alu_overflow_val & BIT32(0))) \
      XER &= (~xer_overflow); \
    else \
      XER |= (xer_summary_overflow | xer_overflow); \
  } \
  /* Update the carry bit if needed */ \
  if (CA) { \
    XER = ((XER & ~xer_carry) \
           | SHUFFLED32((alu_carry_val >> 32), 31, xer_carry_bit)); \
    /* if (alu_carry_val & BIT64(31)) \
         XER |= (xer_carry); \
       else \
         XER &= (~xer_carry); */ \
  } \
  ITRACE(trace_alu, (" Result = %ld (0x%lx), XER = %ld\n", \
		     (long)alu_result, (long)alu_result, (long)XER)); \
  /* Update the Result Conditions if needed */ \
  CR0_COMPARE(alu_result, 0, Rc); \
  /* assign targ same */ \
  TARG = alu_result; \
}}

/* select the result from the different options */

#define _ALU_RESULT_VAL(CA,OE,Rc) (WITH_TARGET_WORD_BITSIZE == 64 \
				   ? alu_val \
				   : (OE \
				      ? alu_overflow_val \
				      : (CA \
					 ? alu_carry_val \
					 : alu_val)))


/* More basic alu operations */
#if (WITH_TARGET_WORD_BITSIZE == 64)
#define ALU_SET(val) \
do { \
  alu_val = val; \
  alu_carry_val = ((unsigned64)alu_val) >> 32; \
  alu_overflow_val = ((signed64)alu_val) >> 32; \
} while (0)
#endif
#if (WITH_TARGET_WORD_BITSIZE == 32)
#define ALU_SET(val) \
do { \
  alu_val = val; \
  alu_carry_val = (unsigned32)(alu_val); \
  alu_overflow_val = (signed32)(alu_val); \
} while (0)
#endif

#if (WITH_TARGET_WORD_BITSIZE == 64)
#define ALU_ADD(val) \
do { \
  unsigned64 alu_lo = (UNSIGNED64(alu_val) \
		       + UNSIGNED64(val)); \
  signed alu_carry = ((alu_lo & BIT(31)) != 0); \
  alu_carry_val = (alu_carry_val \
		   + UNSIGNED64(EXTRACTED(val, 0, 31)) \
		   + alu_carry); \
  alu_overflow_val = (alu_overflow_val \
		      + SIGNED64(EXTRACTED(val, 0, 31)) \
		      + alu_carry); \
  alu_val = alu_val + val; \
} while (0)
#endif
#if (WITH_TARGET_WORD_BITSIZE == 32)
#define ALU_ADD(val) \
do { \
  alu_val += val; \
  alu_carry_val += (unsigned32)(val); \
  alu_overflow_val += (signed32)(val); \
} while (0)
#endif


#if (WITH_TARGET_WORD_BITSIZE == 64)
#define ALU_ADD_CA \
do { \
  signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
  ALU_ADD(carry); \
} while (0)
#endif
#if (WITH_TARGET_WORD_BITSIZE == 32)
#define ALU_ADD_CA \
do { \
  signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
  ALU_ADD(carry); \
} while (0)
#endif


#if 0
#if (WITH_TARGET_WORD_BITSIZE == 64)
#endif
#if (WITH_TARGET_WORD_BITSIZE == 32)
#define ALU_SUB(val) \
do { \
  alu_val -= val; \
  alu_carry_val -= (unsigned32)(val); \
  alu_overflow_val -= (signed32)(val); \
} while (0)
#endif
#endif

#if (WITH_TARGET_WORD_BITSIZE == 64)
#endif
#if (WITH_TARGET_WORD_BITSIZE == 32)
#define ALU_OR(val) \
do { \
  alu_val |= val; \
  alu_carry_val = (unsigned32)(alu_val); \
  alu_overflow_val = (signed32)(alu_val); \
} while (0)
#endif


#if (WITH_TARGET_WORD_BITSIZE == 64)
#endif
#if (WITH_TARGET_WORD_BITSIZE == 32)
#define ALU_XOR(val) \
do { \
  alu_val ^= val; \
  alu_carry_val = (unsigned32)(alu_val); \
  alu_overflow_val = (signed32)(alu_val); \
} while (0)
#endif


#if 0
#if (WITH_TARGET_WORD_BITSIZE == 64)
#endif
#if (WITH_TARGET_WORD_BITSIZE == 32)
#define ALU_NEGATE \
do { \
  alu_val = -alu_val; \
  alu_carry_val = -alu_carry_val; \
  alu_overflow_val = -alu_overflow_val; \
} while(0)
#endif
#endif


#if (WITH_TARGET_WORD_BITSIZE == 64)
#endif
#if (WITH_TARGET_WORD_BITSIZE == 32)
#define ALU_AND(val) \
do { \
  alu_val &= val; \
  alu_carry_val = (unsigned32)(alu_val); \
  alu_overflow_val = (signed32)(alu_val); \
} while (0)
#endif


#if (WITH_TARGET_WORD_BITSIZE == 64)
#define ALU_NOT \
do { \
  signed64 new_alu_val = ~alu_val; \
  ALU_SET(new_alu_val); \
} while (0)
#endif
#if (WITH_TARGET_WORD_BITSIZE == 32)
#define ALU_NOT \
do { \
  signed new_alu_val = ~alu_val; \
  ALU_SET(new_alu_val); \
} while(0)
#endif


/* Macros for updating the condition register */

#define CR1_UPDATE(Rc) \
do { \
  if (Rc) { \
    CR_SET(1, EXTRACTED32(FPSCR, fpscr_fx_bit, fpscr_ox_bit)); \
  } \
} while (0)


#define _DO_CR_COMPARE(LHS, RHS) \
(((LHS) < (RHS)) \
 ? cr_i_negative \
 : (((LHS) > (RHS)) \
    ? cr_i_positive \
    : cr_i_zero))

#define CR_SET(REG, VAL) MBLIT32(CR, REG*4, REG*4+3, VAL)
#define CR_SET_XER_SO(REG, VAL) \
do { \
  creg new_bits = ((XER & xer_summary_overflow) \
                   ? (cr_i_summary_overflow | VAL) \
                   : VAL); \
  CR_SET(REG, new_bits); \
} while(0)

#define CR_COMPARE(REG, LHS, RHS) \
do { \
  creg new_bits = ((XER & xer_summary_overflow) \
                   ? (cr_i_summary_overflow | _DO_CR_COMPARE(LHS,RHS)) \
                   : _DO_CR_COMPARE(LHS,RHS)); \
  CR_SET(REG, new_bits); \
} while (0)

#define CR0_COMPARE(LHS, RHS, Rc) \
do { \
  if (Rc) { \
    CR_COMPARE(0, LHS, RHS); \
    ITRACE(trace_alu, \
	   ("CR=0x%08lx, LHS=%ld, RHS=%ld\n", \
	    (unsigned long)CR, (long)LHS, (long)RHS)); \
  } \
} while (0)



/* Bring data in from the cold */

#define MEM(SIGN, EA, NR_BYTES) \
((SIGN##_##NR_BYTES) vm_data_map_read_##NR_BYTES(cpu_data_map(processor), EA, \
						 processor, cia)) \

#define STORE(EA, NR_BYTES, VAL) \
do { \
  vm_data_map_write_##NR_BYTES(cpu_data_map(processor), EA, VAL, \
			       processor, cia); \
} while (0)


/* some FPSCR update macros */

#define FPSCR_BEGIN \
FPSCR &= ~fpscr_reserved_20; \
{ \
  fpscreg old_fpscr __attribute__((__unused__)) = FPSCR

#define FPSCR_END(Rc) { \
  CR1_UPDATE(Rc); \
  if (FPSCR & fpscr_reserved_20) { \
    FPSCR &= ~fpscr_reserved_20; \
    program_interrupt(processor, cia, \
                      floating_point_enabled_program_interrupt); \
  } \
}}

#define FPSCR_SET_FPCC(VAL) MBLIT32(FPSCR, fpscr_fpcc_bit, fpscr_fpcc_bit+3, VAL)

/* Handle various exceptions */

#define FPSCR_OR_VX(VAL) \
do { \
  FPSCR |= (VAL); \
  FPSCR |= fpscr_fx; \
  if (FPSCR & fpscr_ve) \
    FPSCR |= fpscr_fex | fpscr_reserved_20; \
  FPSCR |= fpscr_vx; \
} while (0)

#define FPSCR_SET_OX(COND) \
do { \
  if (COND) { \
    FPSCR |= fpscr_ox; \
    FPSCR |= fpscr_fx; \
    if (FPSCR & fpscr_oe) \
      FPSCR |= fpscr_fex | fpscr_reserved_20; \
  } \
  else \
    FPSCR &= ~fpscr_ox; \
} while (0)

#define FPSCR_SET_UX(COND) \
do { \
  if (COND) { \
    FPSCR |= fpscr_ux; \
    FPSCR |= fpscr_fx; \
    if (FPSCR & fpscr_ue) \
      FPSCR |= fpscr_fex | fpscr_reserved_20; \
  } \
  else \
    FPSCR &= ~fpscr_ux; \
} while (0)

#define FPSCR_SET_ZX(COND) \
do { \
  if (COND) { \
    FPSCR |= fpscr_zx; \
    FPSCR |= fpscr_fx; \
    if (FPSCR & fpscr_ze) \
      FPSCR |= fpscr_fex | fpscr_reserved_20; \
  } \
  else \
    FPSCR &= ~fpscr_zx; \
} while (0)

#define FPSCR_SET_XX(COND) \
do { \
  if (COND) { \
    FPSCR |= fpscr_xx; \
    FPSCR |= fpscr_fx; \
    if (FPSCR & fpscr_xe) \
      FPSCR |= fpscr_fex | fpscr_reserved_20; \
  } \
} while (0)

#define FPSCR_SET_FR(COND) \
do { \
  if (COND) \
    FPSCR |= fpscr_fr; \
  else \
    FPSCR &= ~fpscr_fr; \
} while (0)

#define FPSCR_SET_FI(COND) \
do { \
  if (COND) \
    FPSCR |= fpscr_fi; \
  else \
    FPSCR &= ~fpscr_fi; \
} while (0)

#define FPSCR_SET_FPRF(VAL) \
do { \
  FPSCR = (FPSCR & ~fpscr_fprf) | (VAL); \
} while (0)