aboutsummaryrefslogtreecommitdiff
path: root/sim/ppc/hw_nvram.c
blob: 4c87d05d9be78806796b53b5f3bf3a46f4ef1caa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*  This file is part of the program psim.

    Copyright (C) 1994-1996, Andrew Cagney <cagney@highland.com.au>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 
    */


#ifndef _HW_NVRAM_C_
#define _HW_NVRAM_C_

#ifndef STATIC_INLINE_HW_NVRAM
#define STATIC_INLINE_HW_NVRAM STATIC_INLINE
#endif

#include "device_table.h"

#ifdef HAVE_TIME_H
#include <time.h>
#endif

#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif

/* DEVICE


   nvram - non-volatile memory with clock


   DESCRIPTION


   This device implements a small byte addressable non-volatile
   memory.  The top 8 bytes of this memory include a real-time clock.


   PROPERTIES


   reg = <address> <size> (required)

   Specify the address/size of this device within its parents address
   space.


   timezone = <integer> (optional)

   Adjustment to the hosts current GMT (in seconds) that should be
   applied when updating the NVRAM's clock.  If no timezone is
   specified, zero (GMT or UCT) is assumed.


   */

typedef struct _hw_nvram_device {
  unsigned8 *memory;
  unsigned sizeof_memory;
#ifdef HAVE_TIME_H
  time_t host_time;
#else
  long host_time;
#endif
  unsigned timezone;
  /* useful */
  unsigned addr_year;
  unsigned addr_month;
  unsigned addr_date;
  unsigned addr_day;
  unsigned addr_hour;
  unsigned addr_minutes;
  unsigned addr_seconds;
  unsigned addr_control;
} hw_nvram_device;

static void *
hw_nvram_create(const char *name,
		const device_unit *unit_address,
		const char *args)
{
  hw_nvram_device *nvram = ZALLOC(hw_nvram_device);
  return nvram;
}

typedef struct _hw_nvram_reg_spec {
  unsigned32 base;
  unsigned32 size;
} hw_nvram_reg_spec;

static void
hw_nvram_init_address(device *me)
{
  hw_nvram_device *nvram = (hw_nvram_device*)device_data(me);
  
  /* use the generic init code to attach this device to its parent bus */
  generic_device_init_address(me);

  /* find the first non zero reg property and use that as the device
     size */
  if (nvram->sizeof_memory == 0) {
    reg_property_spec reg;
    int reg_nr;
    for (reg_nr = 0;
	 device_find_reg_array_property(me, "reg", reg_nr, &reg);
	 reg_nr++) {
      unsigned attach_size;
      if (device_size_to_attach_size(device_parent(me),
				     &reg.size, &attach_size,
				     me)) {
	nvram->sizeof_memory = attach_size;
	break;
      }
    }
    if (nvram->sizeof_memory == 0)
      device_error(me, "reg property must contain a non-zero phys-addr:size tupple");
    if (nvram->sizeof_memory < 8)
      device_error(me, "NVRAM must be at least 8 bytes in size");
  }

  /* initialize the hw_nvram */
  if (nvram->memory == NULL) {
    nvram->memory = zalloc(nvram->sizeof_memory);
  }
  else
    memset(nvram->memory, nvram->sizeof_memory, 0);
  
  if (device_find_property(me, "timezone") == NULL)
    nvram->timezone = 0;
  else
    nvram->timezone = device_find_integer_property(me, "timezone");
  
  nvram->addr_year = nvram->sizeof_memory - 1;
  nvram->addr_month = nvram->sizeof_memory - 2;
  nvram->addr_date = nvram->sizeof_memory - 3;
  nvram->addr_day = nvram->sizeof_memory - 4;
  nvram->addr_hour = nvram->sizeof_memory - 5;
  nvram->addr_minutes = nvram->sizeof_memory - 6;
  nvram->addr_seconds = nvram->sizeof_memory - 7;
  nvram->addr_control = nvram->sizeof_memory - 8;
  
}

static int
hw_nvram_bcd(int val)
{
  val = val % 100;
  if (val < 0)
    val += 100;
  return ((val / 10) << 4) + (val % 10);
}


/* If reached an update interval and allowed, update the clock within
   the hw_nvram.  While this function could be implemented using events
   it isn't on the assumption that the HW_NVRAM will hardly ever be
   referenced and hence there is little need in keeping the clock
   continually up-to-date */

static void
hw_nvram_update_clock(hw_nvram_device *nvram,
		      cpu *processor)
{
#ifdef HAVE_TIME_H
  if (!(nvram->memory[nvram->addr_control] & 0xc0)) {
    time_t host_time = time(NULL);
    if (nvram->host_time != host_time) {
      time_t nvtime = host_time + nvram->timezone;
      struct tm *clock = gmtime(&nvtime);
      nvram->host_time = host_time;
      nvram->memory[nvram->addr_year] = hw_nvram_bcd(clock->tm_year);
      nvram->memory[nvram->addr_month] = hw_nvram_bcd(clock->tm_mon + 1);
      nvram->memory[nvram->addr_date] = hw_nvram_bcd(clock->tm_mday);
      nvram->memory[nvram->addr_day] = hw_nvram_bcd(clock->tm_wday + 1);
      nvram->memory[nvram->addr_hour] = hw_nvram_bcd(clock->tm_hour);
      nvram->memory[nvram->addr_minutes] = hw_nvram_bcd(clock->tm_min);
      nvram->memory[nvram->addr_seconds] = hw_nvram_bcd(clock->tm_sec);
    }
  }
#else
  error("fixme - where do I find out GMT\n");
#endif
}

static void
hw_nvram_set_clock(hw_nvram_device *nvram, cpu *processor)
{
  error ("fixme - how do I set the localtime\n");
}

static unsigned
hw_nvram_io_read_buffer(device *me,
			void *dest,
			int space,
			unsigned_word addr,
			unsigned nr_bytes,
			cpu *processor,
			unsigned_word cia)
{
  int i;
  hw_nvram_device *nvram = (hw_nvram_device*)device_data(me);
  for (i = 0; i < nr_bytes; i++) {
    unsigned address = (addr + i) % nvram->sizeof_memory;
    unsigned8 data = nvram->memory[address];
    hw_nvram_update_clock(nvram, processor);
    ((unsigned8*)dest)[i] = data;
  }
  return nr_bytes;
}

static unsigned
hw_nvram_io_write_buffer(device *me,
			 const void *source,
			 int space,
			 unsigned_word addr,
			 unsigned nr_bytes,
			 cpu *processor,
			 unsigned_word cia)
{
  int i;
  hw_nvram_device *nvram = (hw_nvram_device*)device_data(me);
  for (i = 0; i < nr_bytes; i++) {
    unsigned address = (addr + i) % nvram->sizeof_memory;
    unsigned8 data = ((unsigned8*)source)[i];
    if (address == nvram->addr_control
	&& (data & 0x80) == 0
	&& (nvram->memory[address] & 0x80) == 0x80)
      hw_nvram_set_clock(nvram, processor);
    else
      hw_nvram_update_clock(nvram, processor);
    nvram->memory[address] = data;
  }
  return nr_bytes;
}

static device_callbacks const hw_nvram_callbacks = {
  { hw_nvram_init_address, },
  { NULL, }, /* address */
  { hw_nvram_io_read_buffer, hw_nvram_io_write_buffer }, /* IO */
};

const device_descriptor hw_nvram_device_descriptor[] = {
  { "nvram", hw_nvram_create, &hw_nvram_callbacks },
  { NULL },
};

#endif /* _HW_NVRAM_C_ */