aboutsummaryrefslogtreecommitdiff
path: root/sim/ppc/device_tree.c
blob: 3a0f60e26f64c7c4e1a4f4263710f464b85fa103 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/*  This file is part of the program psim.

    Copyright (C) 1994-1995, Andrew Cagney <cagney@highland.com.au>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 
    */


#ifndef _DEVICE_TREE_C_
#define _DEVICE_TREE_C_

#ifndef STATIC_INLINE_DEVICE_TREE
#define STATIC_INLINE_DEVICE_TREE STATIC_INLINE
#endif

#include <string.h>

#include "basics.h"
#include "device_tree.h"
#include "devices.h"

#include "bfd.h"

/* Any starting address less than this is assumed to be an OEA program
   rather than VEA.  */
#ifndef OEA_START_ADDRESS
#define	OEA_START_ADDRESS 4096
#endif

#ifndef OEA_MEMORY_SIZE
#define OEA_MEMORY_SIZE 0x100000
#endif

enum { clayton_memory_size = OEA_MEMORY_SIZE };

/* insert the address into the device_nodes sorted list of addresses */
INLINE_DEVICE_TREE void
device_node_add_address(device_node *node,
			unsigned_word lower_bound,
			unsigned size,
			device_access access,
			void *init)
{
  unsigned_word upper_bound = lower_bound + size;
  device_address *new_address;
  device_address **current_address;

  /* find the insertion point */
  current_address = &node->addresses;
  while (*current_address != NULL
	 && (*current_address)->upper_bound >= upper_bound) {
    current_address = &(*current_address)->next_address;
  }

  /* insert */
  new_address = ZALLOC(device_address);
  new_address->lower_bound = lower_bound;
  new_address->upper_bound = lower_bound + size;
  new_address->size = size;
  new_address->access = access;
  new_address->init = init;
  new_address->next_address = *current_address;
  *current_address = new_address;
}


/* create a new device tree optionally making it a child of the parent
   node */

INLINE_DEVICE_TREE device_node *
device_node_create(device_node *parent,
		   char *name,
		   device_type type,
		   device_callbacks *callbacks,
		   void *data)
{
  device_node *new_node;
  new_node = ZALLOC(device_node);
  new_node->parent = parent;
  new_node->name = name;
  new_node->type = type;
  new_node->callbacks = callbacks;
  new_node->data = data;
  if (parent != NULL) {
    new_node->sibling = parent->children;
    parent->children = new_node;
  }
  return new_node;
}


/* Binary file:

   The specified file is a binary, assume VEA is required, construct a
   fake device tree based on the addresses of the text / data segments
   requested by the binary */


/* Update the fake device tree so that memory is allocated for this
   section */
STATIC_INLINE_DEVICE_TREE void
update_memory_node_for_section(bfd *abfd,
			       asection *the_section,
			       PTR obj)
{
  unsigned_word section_vma;
  unsigned_word section_size;
  device_access section_access;
  void *section_init;
  device_node *memory = (device_node*)obj;

  /* skip the section if no memory to allocate */
  if (! (bfd_get_section_flags(abfd, the_section) & SEC_ALLOC))
    return;

  /* check/ignore any sections of size zero */
  section_size = bfd_get_section_size_before_reloc(the_section);
  if (section_size == 0)
    return;

  /* find where it is to go */
  section_vma = bfd_get_section_vma(abfd, the_section);

  TRACE(trace_device_tree,
	("name=%-7s, vma=0x%.8x, size=%6d, flags=%3x(%s%s%s%s )\n",
	 bfd_get_section_name(abfd, the_section),
	 section_vma, section_size,
	 bfd_get_section_flags(abfd, the_section),
	 bfd_get_section_flags(abfd, the_section) & SEC_LOAD ? " LOAD" : "",
	 bfd_get_section_flags(abfd, the_section) & SEC_CODE ? " CODE" : "",
	 bfd_get_section_flags(abfd, the_section) & SEC_DATA ? " DATA" : "",
	 bfd_get_section_flags(abfd, the_section) & SEC_ALLOC ? " ALLOC" : "",
	 bfd_get_section_flags(abfd, the_section) & SEC_READONLY ? " READONLY" : ""
	));

  if (bfd_get_section_flags(abfd, the_section) & SEC_LOAD) {
    section_init = zalloc(section_size);
    if (!bfd_get_section_contents(abfd,
				  the_section,
				  section_init, 0,
				  section_size)) {
      bfd_perror("core:load_section()");
      error("load of data failed");
      return;
    }
  }
  else {
    section_init = NULL;
  }

  /* determine the devices access */
  if (bfd_get_section_flags(abfd, the_section) & SEC_CODE)
    section_access = (device_is_readable | device_is_executable);
  else if (bfd_get_section_flags(abfd, the_section) & SEC_READONLY)
    section_access = device_is_readable;
  else
    section_access = (device_is_readable | device_is_writeable);

  /* find our memory and add this section to its list of addresses */
  device_node_add_address(memory,
			  section_vma,
			  section_size,
			  section_access,
			  section_init);
}


/* construct the device tree from the executable */

STATIC_INLINE_DEVICE_TREE device_node *
create_option_device_node(device_node *root,
			  bfd *image)
{
  int oea = (bfd_get_start_address(image) < OEA_START_ADDRESS);
  int elf = (image->xvec->flavour == bfd_target_elf_flavour);
  device_node *option_node;
  
  /* the option node and than its members */
  option_node = device_node_create(root, "options", options_device,
				   NULL, NULL);

  /* which endian are we ? */
  device_node_create(option_node,
		     "little-endian?",
		     boolean_type_device,
		     NULL,
		     (void*)(image->xvec->byteorder_big_p ? 0 : -1));

  /* what is the initial entry point */
  device_node_create(option_node,
		     "program-counter",
		     integer_type_device,
		     NULL,
		     (void*)(bfd_get_start_address(image)));

  /* address of top of boot stack */
  TRACE(trace_tbd, ("create_optioin_device_node() - TBD - NT/OpenBoot?\n"));
  device_node_create(option_node,
		     "stack-pointer",
		     integer_type_device,
		     NULL,
		     (void *)((oea)
			     ? clayton_memory_size /* OEA */
			     : ((elf)
				? 0xe0000000 /* elf */
				: 0x20000000 /* xcoff */)));

  /* execution environment */
  device_node_create(option_node,
		     "vea?",
		     boolean_type_device,
		     NULL,
		     (void *)((oea) ? 0 : -1));

  /* what type of binary */
  TRACE(trace_tbd, ("create_optioin_device_node() - TBD - NT/OpenBoot?\n"));
  device_node_create(option_node,
		     "elf?",
		     boolean_type_device,
		     NULL,
		     (void *)((elf) ? -1 : 0));

  /* must all memory transfers be naturally aligned? */
  device_node_create(option_node,
		     "aligned?",
		     boolean_type_device,
		     NULL,
		     (void*)((WITH_ALIGNMENT == NONSTRICT_ALIGNMENT
			      || image->xvec->byteorder_big_p
			      || !oea)
			     ? 0
			     : -1));


  return option_node;
}


/* clatyon is a simple machine that does not require interrupts or any
   thing else */

STATIC_INLINE_DEVICE_TREE device_node *
create_clayton_device_tree(bfd *image)
{
  device_node *root;
  device_node *io_node;
  device_node *data_node;
  device_node *memory_node;

  /* the root */
  root = ZALLOC(device_node);

  /* memory - clayton has 2mb of RAM at location 0 */
  memory_node = device_node_create(root,
				   "memory",
				   memory_device,
				   NULL,
				   NULL);
  device_node_add_address(memory_node, 0x0, clayton_memory_size,
			  (device_is_readable
			   | device_is_writeable
			   | device_is_executable),
			  NULL);

  /* io address space */
  io_node = device_node_create(root, "io", bus_device, NULL, NULL);

  /* and IO devices */
  find_device_descriptor("console")
    ->creator(io_node, "console@0x400000,0");
  find_device_descriptor("halt")
    ->creator(io_node, "halt@0x500000,0");
  find_device_descriptor("icu")
    ->creator(io_node, "icu@0x600000,0");

  /* data to load */
  data_node = device_node_create(root, "image", data_device, NULL, NULL);
  bfd_map_over_sections(image,
			update_memory_node_for_section,
			(PTR)data_node);

  /* options */
  create_option_device_node(root, image);

  return root;
}


/* user mode executable build up a device tree that reflects this */

STATIC_INLINE_DEVICE_TREE device_node *
create_vea_device_tree(bfd *image)
{
  device_node *root;
  device_node *memory_node;
  device_node *option_node;

  /* the root */
  root = ZALLOC(device_node);

  /* memory */
  memory_node = device_node_create(root, "memory", memory_device,
				   NULL, NULL);
  bfd_map_over_sections(image,
			update_memory_node_for_section,
			(PTR)memory_node);
  /* options - only endian so far */
  option_node = create_option_device_node(root, image);

  return root;
}


/* create a device tree from the specified file */
INLINE_DEVICE_TREE device_node *
device_tree_create(const char *file_name)
{
  bfd *image;
  device_node *tree;

  bfd_init(); /* could be redundant but ... */

  /* open the file */
  image = bfd_openr(file_name, NULL);
  if (image == NULL) {
    bfd_perror("open failed:");
    error("nothing loaded\n");
    return NULL;
  }

  /* check it is valid */
  if (!bfd_check_format(image, bfd_object)) {
    printf_filtered("create_device_tree() - FIXME - should check more bfd bits\n");
    printf_filtered("create_device_tree() - %s not an executable, assume device file\n", file_name);
    bfd_close(image);
    image = NULL;
  }

  /* depending on what was found about the file, load it */
  if (image != NULL) {
    if (bfd_get_start_address(image) == 0) {
      TRACE(trace_device_tree, ("create_device_tree() - clayton image\n"));
      tree = create_clayton_device_tree(image);
    }
    else if (bfd_get_start_address(image) > 0) {
      TRACE(trace_device_tree, ("create_device_tree() - vea image\n"));
      tree = create_vea_device_tree(image);
    }
    bfd_close(image);
  }
  else {
    error("TBD - create_device_tree() text file defining device tree\n");
    tree = NULL;
  }

  return tree;
}


/* traverse a device tree applying prefix/postfix functions to it */

INLINE_DEVICE_TREE void
device_tree_traverse(device_node *root,
		     device_tree_traverse_function *prefix,
		     device_tree_traverse_function *postfix,
		     void *data)
{
  device_node *child;
  if (prefix != NULL)
    prefix(root, data);
  for (child = root->children; child != NULL; child = child->sibling) {
    device_tree_traverse(child, prefix, postfix, data);
  }
  if (postfix != NULL)
    postfix(root, data);
}


/* query the device tree */

INLINE_DEVICE_TREE device_node *
device_tree_find_node(device_node *root,
		      const char *path)
{
  char *chp;
  int name_len;
  device_node *child;

  /* strip off any leading `/', `../' or `./' */
  while (1) {
    if (strncmp(path, "/", strlen("/")) == 0) {
      while (root->parent != NULL)
	root = root->parent;
      path += strlen("/");
    }
    else if (strncmp(path, "./", strlen("./")) == 0) {
      root = root;
      path += strlen("./");
    }
    else if (strncmp(path, "../", strlen("../")) == 0) {
      if (root->parent != NULL)
	root = root->parent;
      path += strlen("../");
    }
    else {
      break;
    }
  }

  /* find the qualified (with @) and unqualified names in the path */
  chp = strchr(path, '/');
  name_len = (chp == NULL
	      ? strlen(path)
	      : chp - path);

  /* search through children for a match */
  for (child = root->children;
       child != NULL;
       child = child->sibling) {
    if (strncmp(path, child->name, name_len) == 0
	&& (strlen(child->name) == name_len
	    || strchr(child->name, '@') == child->name + name_len)) {
      if (path[name_len] == '\0')
	return child;
      else
	return device_tree_find_node(child, path + name_len + 1);
    }
  }
  return NULL;
}

INLINE_DEVICE_TREE device_node *device_tree_find_next_node
(device_node *root,
 const char *path,
 device_node *last);

INLINE_DEVICE_TREE signed_word
device_tree_find_int(device_node *root,
		     const char *path)
{
  device_node *int_node = device_tree_find_node(root, path);
  if (int_node == NULL) {
    error("device_tree_find_int() - node %s does not exist\n", path);
    return 0;
  }
  else if (int_node->type != integer_type_device) {
    error("device_tree_find_int() - node %s is not an int\n", path);
    return 0;
  }
  else {
    return (signed_word)(int_node->data);
  }
}


INLINE_DEVICE_TREE const char *device_tree_find_string
(device_node *root,
 const char *path);

INLINE_DEVICE_TREE int
device_tree_find_boolean(device_node *root,
			 const char *path)
{
  device_node *int_node = device_tree_find_node(root, path);
  if (int_node == NULL) {
    error("device_tree_find_boolean() - node %s does not exist\n", path);
    return 0;
  }
  else if (int_node->type != boolean_type_device) {
    error("device_tree_find_boolean() - node %s is not a boolean\n", path);
    return 0;
  }
  else {
    return (signed_word)(int_node->data);
  }
}


INLINE_DEVICE_TREE void *device_tree_find_bytes
(device_node *root,
 const char *path);

/* dump out a device node and addresses */

INLINE_DEVICE_TREE void
device_tree_dump(device_node *device,
		 void *ignore_data_argument)
{
  printf_filtered("(device_node@0x%x\n", device);
  printf_filtered(" (parent 0x%x)\n", device->parent);
  printf_filtered(" (children 0x%x)\n", device->children);
  printf_filtered(" (sibling 0x%x)\n", device->sibling);
  printf_filtered(" (name %s)\n", device->name ? device->name : "(null)");
  printf_filtered(" (type %d)\n", device->type);
  printf_filtered(" (handlers 0x%x)\n", device->callbacks);
  printf_filtered(" (addresses %d)\n", device->addresses);
  printf_filtered(" (data %d)\n", device->data);
  printf_filtered(")\n");
}

#endif /* _DEVICE_TREE_C_ */