aboutsummaryrefslogtreecommitdiff
path: root/sim/mn10300/interp.c
blob: 8959b40ff2c956917571a640fb39e01245c15745 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
#include "config.h"
#include <signal.h>

#include "sim-main.h"
#include "sim-options.h"
#include "sim-hw.h"

#include "bfd.h"
#include "sim-assert.h"


#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif

#include "bfd.h"


struct _state State;


/* simulation target board.  NULL=default configuration */
static char* board = NULL;

static DECLARE_OPTION_HANDLER (mn10300_option_handler);

enum {
  OPTION_BOARD = OPTION_START,
};

static SIM_RC
mn10300_option_handler (SIM_DESC sd,
			sim_cpu *cpu,
			int opt,
			char *arg,
			int is_command)
{
  int cpu_nr;
  switch (opt)
    {
    case OPTION_BOARD:
      {
	if (arg)
	  {
	    board = zalloc(strlen(arg) + 1);
	    strcpy(board, arg);
	  }
	return SIM_RC_OK;
      }
    }
  
  return SIM_RC_OK;
}

static const OPTION mn10300_options[] = 
{
#define BOARD_AM32 "stdeval1"
  { {"board", required_argument, NULL, OPTION_BOARD},
     '\0', "none" /* rely on compile-time string concatenation for other options */
           "|" BOARD_AM32
    , "Customize simulation for a particular board.", mn10300_option_handler },

  { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
};

/* For compatibility */
SIM_DESC simulator;

static sim_cia
mn10300_pc_get (sim_cpu *cpu)
{
  return PC;
}

static void
mn10300_pc_set (sim_cpu *cpu, sim_cia pc)
{
  PC = pc;
}

static int mn10300_reg_fetch (SIM_CPU *, int, unsigned char *, int);
static int mn10300_reg_store (SIM_CPU *, int, unsigned char *, int);

/* These default values correspond to expected usage for the chip.  */

SIM_DESC
sim_open (SIM_OPEN_KIND kind,
	  host_callback *cb,
	  struct bfd *abfd,
	  char **argv)
{
  int i;
  SIM_DESC sd = sim_state_alloc (kind, cb);

  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* The cpu data is kept in a separately allocated chunk of memory.  */
  if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
    return 0;

  /* for compatibility */
  simulator = sd;

  /* FIXME: should be better way of setting up interrupts.  For
     moment, only support watchpoints causing a breakpoint (gdb
     halt). */
  STATE_WATCHPOINTS (sd)->pc = &(PC);
  STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
  STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
  STATE_WATCHPOINTS (sd)->interrupt_names = NULL;

  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    return 0;
  sim_add_option_table (sd, NULL, mn10300_options);

  /* Allocate core managed memory */
  sim_do_command (sd, "memory region 0,0x100000");
  sim_do_command (sd, "memory region 0x40000000,0x200000");

  /* The parser will print an error message for us, so we silently return.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
	 file descriptor leaks, etc.  */
      sim_module_uninstall (sd);
      return 0;
    }

  if ( NULL != board
       && (strcmp(board, BOARD_AM32) == 0 ) )
    {
      /* environment */
      STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;

      sim_do_command (sd, "memory region 0x44000000,0x40000");
      sim_do_command (sd, "memory region 0x48000000,0x400000");

      /* device support for mn1030002 */
      /* interrupt controller */

      sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8");

      /* DEBUG: NMI input's */
      sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12");
      sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int");
      sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int");
      sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int");
      
      /* DEBUG: ACK input */
      sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4");
      sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int");
      
      /* DEBUG: LEVEL output */
      sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8");
      sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000");
      sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000");
      
      /* DEBUG: A bunch of interrupt inputs */
      sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32");
      sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int");
      sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int");
      sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int");
      sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int");
      sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int");
      sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int");
      sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int");
      sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int");
      
      /* processor interrupt device */
      
      /* the device */
      sim_hw_parse (sd, "/mn103cpu@0x20000000");
      sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
      
      /* DEBUG: ACK output wired upto a glue device */
      sim_hw_parse (sd, "/glue@0x20002000");
      sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4");
      sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000");
      
      /* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
      sim_hw_parse (sd, "/glue@0x20004000");
      sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12");
      sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu");
      sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu");
      sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu");
      
      /* REAL: The processor wired up to the real interrupt controller */
      sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int");
      sim_hw_parse (sd, "/mn103int > level level /mn103cpu");
      sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu");
      
      
      /* PAL */
      
      /* the device */
      sim_hw_parse (sd, "/pal@0x31000000");
      sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64");
      sim_hw_parse (sd, "/pal@0x31000000/poll? true");
      
      /* DEBUG: PAL wired up to a glue device */
      sim_hw_parse (sd, "/glue@0x31002000");
      sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16");
      sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
      sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000");
      sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000");
      sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
      sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
      sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
      
      /* REAL: The PAL wired up to the real interrupt controller */
      sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int");
      sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int");
      sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int");
      
      /* 8 and 16 bit timers */
      sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100 0x34004000 16");

      /* Hook timer interrupts up to interrupt controller */
      sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int");
      sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int");
      sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int");
      sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int");
      sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int");
      sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int");
      sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int");
      sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int");
      sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int");
      
      
      /* Serial devices 0,1,2 */
      sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48");
      sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true");
      
      /* Hook serial interrupts up to interrupt controller */
      sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int");
      sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int");
      sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-1-receive /mn103int");
      sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-1-transmit /mn103int");
      sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-2-receive /mn103int");
      sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-2-transmit /mn103int");
      
      sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8");

      /* Memory control registers */
      sim_do_command (sd, "memory region 0x32000020,0x30");
      /* Cache control register */
      sim_do_command (sd, "memory region 0x20000070,0x4");
      /* Cache purge regions */
      sim_do_command (sd, "memory region 0x28400000,0x800");
      sim_do_command (sd, "memory region 0x28401000,0x800");
      /* DMA registers */
      sim_do_command (sd, "memory region 0x32000100,0xF");
      sim_do_command (sd, "memory region 0x32000200,0xF");
      sim_do_command (sd, "memory region 0x32000400,0xF");
      sim_do_command (sd, "memory region 0x32000800,0xF");
    }
  else
    {
      if (board != NULL)
        {
	  sim_io_eprintf (sd, "Error: Board `%s' unknown.\n", board);
          return 0;
	}
    }
  
  

  /* check for/establish the a reference program image */
  if (sim_analyze_program (sd,
			   (STATE_PROG_ARGV (sd) != NULL
			    ? *STATE_PROG_ARGV (sd)
			    : NULL),
			   abfd) != SIM_RC_OK)
    {
      sim_module_uninstall (sd);
      return 0;
    }

  /* establish any remaining configuration options */
  if (sim_config (sd) != SIM_RC_OK)
    {
      sim_module_uninstall (sd);
      return 0;
    }

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
	 file descriptor leaks, etc.  */
      sim_module_uninstall (sd);
      return 0;
    }


  /* set machine specific configuration */
/*   STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */
/* 			     | PSW_CY | PSW_OV | PSW_S | PSW_Z); */

  /* CPU specific initialization.  */
  for (i = 0; i < MAX_NR_PROCESSORS; ++i)
    {
      SIM_CPU *cpu = STATE_CPU (sd, i);

      CPU_REG_FETCH (cpu) = mn10300_reg_fetch;
      CPU_REG_STORE (cpu) = mn10300_reg_store;
      CPU_PC_FETCH (cpu) = mn10300_pc_get;
      CPU_PC_STORE (cpu) = mn10300_pc_set;
    }

  return sd;
}

SIM_RC
sim_create_inferior (SIM_DESC sd,
		     struct bfd *prog_bfd,
		     char **argv,
		     char **env)
{
  memset (&State, 0, sizeof (State));
  if (prog_bfd != NULL) {
    PC = bfd_get_start_address (prog_bfd);
  } else {
    PC = 0;
  }
  CPU_PC_SET (STATE_CPU (sd, 0), (unsigned64) PC);

  if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_am33_2)
    PSW |= PSW_FE;

  return SIM_RC_OK;
}

/* FIXME These would more efficient to use than load_mem/store_mem,
   but need to be changed to use the memory map.  */

static int
mn10300_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  reg_t reg = State.regs[rn];
  uint8 *a = memory;
  a[0] = reg;
  a[1] = reg >> 8;
  a[2] = reg >> 16;
  a[3] = reg >> 24;
  return length;
}
 
static int
mn10300_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  uint8 *a = memory;
  State.regs[rn] = (a[3] << 24) + (a[2] << 16) + (a[1] << 8) + a[0];
  return length;
}

void
mn10300_core_signal (SIM_DESC sd,
		     sim_cpu *cpu,
		     sim_cia cia,
		     unsigned map,
		     int nr_bytes,
		     address_word addr,
		     transfer_type transfer,
		     sim_core_signals sig)
{
  const char *copy = (transfer == read_transfer ? "read" : "write");
  address_word ip = CIA_ADDR (cia);

  switch (sig)
    {
    case sim_core_unmapped_signal:
      sim_io_eprintf (sd, "mn10300-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
                      nr_bytes, copy, 
                      (unsigned long) addr, (unsigned long) ip);
      program_interrupt(sd, cpu, cia, SIM_SIGSEGV);
      break;

    case sim_core_unaligned_signal:
      sim_io_eprintf (sd, "mn10300-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
                      nr_bytes, copy, 
                      (unsigned long) addr, (unsigned long) ip);
      program_interrupt(sd, cpu, cia, SIM_SIGBUS);
      break;

    default:
      sim_engine_abort (sd, cpu, cia,
                        "mn10300_core_signal - internal error - bad switch");
    }
}


void
program_interrupt (SIM_DESC sd,
		   sim_cpu *cpu,
		   sim_cia cia,
		   SIM_SIGNAL sig)
{
  int status;
  struct hw *device;
  static int in_interrupt = 0;

#ifdef SIM_CPU_EXCEPTION_TRIGGER
  SIM_CPU_EXCEPTION_TRIGGER(sd,cpu,cia);
#endif

  /* avoid infinite recursion */
  if (in_interrupt)
    sim_io_printf (sd, "ERROR: recursion in program_interrupt during software exception dispatch.");
  else
    {
      in_interrupt = 1;
      /* copy NMI handler code from dv-mn103cpu.c */
      store_word (SP - 4, CPU_PC_GET (cpu));
      store_half (SP - 8, PSW);

      /* Set the SYSEF flag in NMICR by backdoor method.  See
	 dv-mn103int.c:write_icr().  This is necessary because
         software exceptions are not modelled by actually talking to
         the interrupt controller, so it cannot set its own SYSEF
         flag. */
     if ((NULL != board) && (strcmp(board, BOARD_AM32) == 0))
       store_byte (0x34000103, 0x04);
    }

  PSW &= ~PSW_IE;
  SP = SP - 8;
  CPU_PC_SET (cpu, 0x40000008);

  in_interrupt = 0;
  sim_engine_halt(sd, cpu, NULL, cia, sim_stopped, sig);
}


void
mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
{
  ASSERT(cpu != NULL);

  if(State.exc_suspended > 0)
    sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", State.exc_suspended); 

  CPU_PC_SET (cpu, cia);
  memcpy(State.exc_trigger_regs, State.regs, sizeof(State.exc_trigger_regs));
  State.exc_suspended = 0;
}

void
mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
{
  ASSERT(cpu != NULL);

  if(State.exc_suspended > 0)
    sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n", 
		   State.exc_suspended, exception); 

  memcpy(State.exc_suspend_regs, State.regs, sizeof(State.exc_suspend_regs));
  memcpy(State.regs, State.exc_trigger_regs, sizeof(State.regs));
  CPU_PC_SET (cpu, PC); /* copy PC back from new State.regs */
  State.exc_suspended = exception;
}

void
mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
{
  ASSERT(cpu != NULL);

  if(exception == 0 && State.exc_suspended > 0)
    {
      if(State.exc_suspended != SIGTRAP) /* warn not for breakpoints */
         sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
  		       State.exc_suspended); 
    }
  else if(exception != 0 && State.exc_suspended > 0)
    {
      if(exception != State.exc_suspended) 
	sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
		       State.exc_suspended, exception); 
      
      memcpy(State.regs, State.exc_suspend_regs, sizeof(State.regs)); 
      CPU_PC_SET (cpu, PC); /* copy PC back from new State.regs */
    }
  else if(exception != 0 && State.exc_suspended == 0)
    {
      sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception); 
    }
  State.exc_suspended = 0; 
}

/* This is called when an FP instruction is issued when the FP unit is
   disabled, i.e., the FE bit of PSW is zero.  It raises interrupt
   code 0x1c0.  */
void
fpu_disabled_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
{
  sim_io_eprintf(sd, "FPU disabled exception\n");
  program_interrupt (sd, cpu, cia, SIM_SIGFPE);
}

/* This is called when the FP unit is enabled but one of the
   unimplemented insns is issued.  It raises interrupt code 0x1c8.  */
void
fpu_unimp_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
{
  sim_io_eprintf(sd, "Unimplemented FPU instruction exception\n");
  program_interrupt (sd, cpu, cia, SIM_SIGFPE);
}

/* This is called at the end of any FP insns that may have triggered
   FP exceptions.  If no exception is enabled, it returns immediately.
   Otherwise, it raises an exception code 0x1d0.  */
void
fpu_check_signal_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
{
  if ((FPCR & EC_MASK) == 0)
    return;

  sim_io_eprintf(sd, "FPU %s%s%s%s%s exception\n",
		 (FPCR & EC_V) ? "V" : "",
		 (FPCR & EC_Z) ? "Z" : "",
		 (FPCR & EC_O) ? "O" : "",
		 (FPCR & EC_U) ? "U" : "",
		 (FPCR & EC_I) ? "I" : "");
  program_interrupt (sd, cpu, cia, SIM_SIGFPE);
}

/* Convert a 32-bit single-precision FP value in the target platform
   format to a sim_fpu value.  */
static void
reg2val_32 (const void *reg, sim_fpu *val)
{
  FS2FPU (*(reg_t *)reg, *val);
}

/* Round the given sim_fpu value to single precision, following the
   target platform rounding and denormalization conventions.  On
   AM33/2.0, round_near is the only rounding mode.  */
static int
round_32 (sim_fpu *val)
{
  return sim_fpu_round_32 (val, sim_fpu_round_near, sim_fpu_denorm_zero);
}

/* Convert a sim_fpu value to the 32-bit single-precision target
   representation.  */
static void
val2reg_32 (const sim_fpu *val, void *reg)
{
  FPU2FS (*val, *(reg_t *)reg);
}

/* Define the 32-bit single-precision conversion and rounding uniform
   interface.  */
const struct fp_prec_t
fp_single_prec = {
  reg2val_32, round_32, val2reg_32
};

/* Convert a 64-bit double-precision FP value in the target platform
   format to a sim_fpu value.  */
static void
reg2val_64 (const void *reg, sim_fpu *val)
{
  FD2FPU (*(dword *)reg, *val);
}

/* Round the given sim_fpu value to double precision, following the
   target platform rounding and denormalization conventions.  On
   AM33/2.0, round_near is the only rounding mode.  */
static int
round_64 (sim_fpu *val)
{
  return sim_fpu_round_64 (val, sim_fpu_round_near, sim_fpu_denorm_zero);
}

/* Convert a sim_fpu value to the 64-bit double-precision target
   representation.  */
static void
val2reg_64 (const sim_fpu *val, void *reg)
{
  FPU2FD (*val, *(dword *)reg);
}

/* Define the 64-bit single-precision conversion and rounding uniform
   interface.  */
const struct fp_prec_t
fp_double_prec = {
  reg2val_64, round_64, val2reg_64
};

/* Define shortcuts to the uniform interface operations.  */
#define REG2VAL(reg,val) (*ops->reg2val) (reg,val)
#define ROUND(val) (*ops->round) (val)
#define VAL2REG(val,reg) (*ops->val2reg) (val,reg)

/* Check whether overflow, underflow or inexact exceptions should be
   raised.  */
static int
fpu_status_ok (sim_fpu_status stat)
{
  if ((stat & sim_fpu_status_overflow)
      && (FPCR & EE_O))
    FPCR |= EC_O;
  else if ((stat & (sim_fpu_status_underflow | sim_fpu_status_denorm))
	   && (FPCR & EE_U))
    FPCR |= EC_U;
  else if ((stat & (sim_fpu_status_inexact | sim_fpu_status_rounded))
	   && (FPCR & EE_I))
    FPCR |= EC_I;
  else if (stat & ~ (sim_fpu_status_overflow
		     | sim_fpu_status_underflow
		     | sim_fpu_status_denorm
		     | sim_fpu_status_inexact
		     | sim_fpu_status_rounded))
    abort ();
  else
    return 1;
  return 0;
}

/* Implement a 32/64 bit reciprocal square root, signaling FP
   exceptions when appropriate.  */
void
fpu_rsqrt (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	   const void *reg_in, void *reg_out, const struct fp_prec_t *ops)
{
  sim_fpu in, med, out;

  REG2VAL (reg_in, &in);
  ROUND (&in);
  FPCR &= ~ EC_MASK;
  switch (sim_fpu_is (&in))
    {
    case SIM_FPU_IS_SNAN:
    case SIM_FPU_IS_NNUMBER:
    case SIM_FPU_IS_NINF:
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	VAL2REG (&sim_fpu_qnan, reg_out);
      break;
	    
    case SIM_FPU_IS_QNAN:
      VAL2REG (&sim_fpu_qnan, reg_out);
      break;

    case SIM_FPU_IS_PINF:
      VAL2REG (&sim_fpu_zero, reg_out);
      break;

    case SIM_FPU_IS_PNUMBER:
      {
	/* Since we don't have a function to compute rsqrt directly,
	   use sqrt and inv.  */
	sim_fpu_status stat = 0;
	stat |= sim_fpu_sqrt (&med, &in);
	stat |= sim_fpu_inv (&out, &med);
	stat |= ROUND (&out);
	if (fpu_status_ok (stat))
	  VAL2REG (&out, reg_out);
      }
      break;

    case SIM_FPU_IS_NZERO:
    case SIM_FPU_IS_PZERO:
      if (FPCR & EE_Z)
	FPCR |= EC_Z;
      else
	{
	  /* Generate an INF with the same sign.  */
	  sim_fpu_inv (&out, &in);
	  VAL2REG (&out, reg_out);
	}
      break;

    default:
      abort ();
    }

  fpu_check_signal_exception (sd, cpu, cia);
}

static inline reg_t
cmp2fcc (int res)
{
  switch (res)
    {
    case SIM_FPU_IS_SNAN:
    case SIM_FPU_IS_QNAN:
      return FCC_U;
      
    case SIM_FPU_IS_NINF:
    case SIM_FPU_IS_NNUMBER:
    case SIM_FPU_IS_NDENORM:
      return FCC_L;
      
    case SIM_FPU_IS_PINF:
    case SIM_FPU_IS_PNUMBER:
    case SIM_FPU_IS_PDENORM:
      return FCC_G;
      
    case SIM_FPU_IS_NZERO:
    case SIM_FPU_IS_PZERO:
      return FCC_E;
      
    default:
      abort ();
    }
}

/* Implement a 32/64 bit FP compare, setting the FPCR status and/or
   exception bits as specified.  */
void
fpu_cmp (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	 const void *reg_in1, const void *reg_in2,
	 const struct fp_prec_t *ops)
{
  sim_fpu m, n;

  REG2VAL (reg_in1, &m);
  REG2VAL (reg_in2, &n);
  FPCR &= ~ EC_MASK;
  FPCR &= ~ FCC_MASK;
  ROUND (&m);
  ROUND (&n);
  if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n))
    {
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	FPCR |= FCC_U;
    }
  else
    FPCR |= cmp2fcc (sim_fpu_cmp (&m, &n));

  fpu_check_signal_exception (sd, cpu, cia);
}

/* Implement a 32/64 bit FP add, setting FP exception bits when
   appropriate.  */
void
fpu_add (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	 const void *reg_in1, const void *reg_in2,
	 void *reg_out, const struct fp_prec_t *ops)
{
  sim_fpu m, n, r;

  REG2VAL (reg_in1, &m);
  REG2VAL (reg_in2, &n);
  ROUND (&m);
  ROUND (&n);
  FPCR &= ~ EC_MASK;
  if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
      || (sim_fpu_is (&m) == SIM_FPU_IS_PINF
	  && sim_fpu_is (&n) == SIM_FPU_IS_NINF)
      || (sim_fpu_is (&m) == SIM_FPU_IS_NINF
	  && sim_fpu_is (&n) == SIM_FPU_IS_PINF))
    {
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	VAL2REG (&sim_fpu_qnan, reg_out);
    }
  else
    {
      sim_fpu_status stat = sim_fpu_add (&r, &m, &n);
      stat |= ROUND (&r);
      if (fpu_status_ok (stat))
	VAL2REG (&r, reg_out);
    }
  
  fpu_check_signal_exception (sd, cpu, cia);
}

/* Implement a 32/64 bit FP sub, setting FP exception bits when
   appropriate.  */
void
fpu_sub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	 const void *reg_in1, const void *reg_in2,
	 void *reg_out, const struct fp_prec_t *ops)
{
  sim_fpu m, n, r;

  REG2VAL (reg_in1, &m);
  REG2VAL (reg_in2, &n);
  ROUND (&m);
  ROUND (&n);
  FPCR &= ~ EC_MASK;
  if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
      || (sim_fpu_is (&m) == SIM_FPU_IS_PINF
	  && sim_fpu_is (&n) == SIM_FPU_IS_PINF)
      || (sim_fpu_is (&m) == SIM_FPU_IS_NINF
	  && sim_fpu_is (&n) == SIM_FPU_IS_NINF))
    {
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	VAL2REG (&sim_fpu_qnan, reg_out);
    }
  else
    {
      sim_fpu_status stat = sim_fpu_sub (&r, &m, &n);
      stat |= ROUND (&r);
      if (fpu_status_ok (stat))
	VAL2REG (&r, reg_out);
    }
  
  fpu_check_signal_exception (sd, cpu, cia);
}

/* Implement a 32/64 bit FP mul, setting FP exception bits when
   appropriate.  */
void
fpu_mul (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	 const void *reg_in1, const void *reg_in2,
	 void *reg_out, const struct fp_prec_t *ops)
{
  sim_fpu m, n, r;

  REG2VAL (reg_in1, &m);
  REG2VAL (reg_in2, &n);
  ROUND (&m);
  ROUND (&n);
  FPCR &= ~ EC_MASK;
  if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
      || (sim_fpu_is_infinity (&m) && sim_fpu_is_zero (&n))
      || (sim_fpu_is_zero (&m) && sim_fpu_is_infinity (&n)))
    {
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	VAL2REG (&sim_fpu_qnan, reg_out);
    }
  else
    {
      sim_fpu_status stat = sim_fpu_mul (&r, &m, &n);
      stat |= ROUND (&r);
      if (fpu_status_ok (stat))
	VAL2REG (&r, reg_out);
    }
  
  fpu_check_signal_exception (sd, cpu, cia);
}

/* Implement a 32/64 bit FP div, setting FP exception bits when
   appropriate.  */
void
fpu_div (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	 const void *reg_in1, const void *reg_in2,
	 void *reg_out, const struct fp_prec_t *ops)
{
  sim_fpu m, n, r;

  REG2VAL (reg_in1, &m);
  REG2VAL (reg_in2, &n);
  ROUND (&m);
  ROUND (&n);
  FPCR &= ~ EC_MASK;
  if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
      || (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n))
      || (sim_fpu_is_zero (&m) && sim_fpu_is_zero (&n)))
    {
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	VAL2REG (&sim_fpu_qnan, reg_out);
    }
  else if (sim_fpu_is_number (&m) && sim_fpu_is_zero (&n)
	   && (FPCR & EE_Z))
    FPCR |= EC_Z;
  else
    {
      sim_fpu_status stat = sim_fpu_div (&r, &m, &n);
      stat |= ROUND (&r);
      if (fpu_status_ok (stat))
	VAL2REG (&r, reg_out);
    }
  
  fpu_check_signal_exception (sd, cpu, cia);
}

/* Implement a 32/64 bit FP madd, setting FP exception bits when
   appropriate.  */
void
fpu_fmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	   const void *reg_in1, const void *reg_in2, const void *reg_in3,
	   void *reg_out, const struct fp_prec_t *ops)
{
  sim_fpu m1, m2, m, n, r;

  REG2VAL (reg_in1, &m1);
  REG2VAL (reg_in2, &m2);
  REG2VAL (reg_in3, &n);
  ROUND (&m1);
  ROUND (&m2);
  ROUND (&n);
  FPCR &= ~ EC_MASK;
  if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
      || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
      || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
    {
    invalid_operands:
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	VAL2REG (&sim_fpu_qnan, reg_out);
    }
  else
    {
      sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);

      if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
	  && sim_fpu_sign (&m) != sim_fpu_sign (&n))
	goto invalid_operands;

      stat |= sim_fpu_add (&r, &m, &n);
      stat |= ROUND (&r);
      if (fpu_status_ok (stat))
	VAL2REG (&r, reg_out);
    }
  
  fpu_check_signal_exception (sd, cpu, cia);
}

/* Implement a 32/64 bit FP msub, setting FP exception bits when
   appropriate.  */
void
fpu_fmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	   const void *reg_in1, const void *reg_in2, const void *reg_in3,
	   void *reg_out, const struct fp_prec_t *ops)
{
  sim_fpu m1, m2, m, n, r;

  REG2VAL (reg_in1, &m1);
  REG2VAL (reg_in2, &m2);
  REG2VAL (reg_in3, &n);
  ROUND (&m1);
  ROUND (&m2);
  ROUND (&n);
  FPCR &= ~ EC_MASK;
  if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
      || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
      || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
    {
    invalid_operands:
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	VAL2REG (&sim_fpu_qnan, reg_out);
    }
  else
    {
      sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);

      if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
	  && sim_fpu_sign (&m) == sim_fpu_sign (&n))
	goto invalid_operands;

      stat |= sim_fpu_sub (&r, &m, &n);
      stat |= ROUND (&r);
      if (fpu_status_ok (stat))
	VAL2REG (&r, reg_out);
    }
  
  fpu_check_signal_exception (sd, cpu, cia);
}

/* Implement a 32/64 bit FP nmadd, setting FP exception bits when
   appropriate.  */
void
fpu_fnmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	    const void *reg_in1, const void *reg_in2, const void *reg_in3,
	    void *reg_out, const struct fp_prec_t *ops)
{
  sim_fpu m1, m2, m, mm, n, r;

  REG2VAL (reg_in1, &m1);
  REG2VAL (reg_in2, &m2);
  REG2VAL (reg_in3, &n);
  ROUND (&m1);
  ROUND (&m2);
  ROUND (&n);
  FPCR &= ~ EC_MASK;
  if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
      || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
      || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
    {
    invalid_operands:
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	VAL2REG (&sim_fpu_qnan, reg_out);
    }
  else
    {
      sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);

      if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
	  && sim_fpu_sign (&m) == sim_fpu_sign (&n))
	goto invalid_operands;

      stat |= sim_fpu_neg (&mm, &m);
      stat |= sim_fpu_add (&r, &mm, &n);
      stat |= ROUND (&r);
      if (fpu_status_ok (stat))
	VAL2REG (&r, reg_out);
    }
  
  fpu_check_signal_exception (sd, cpu, cia);
}

/* Implement a 32/64 bit FP nmsub, setting FP exception bits when
   appropriate.  */
void
fpu_fnmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
	    const void *reg_in1, const void *reg_in2, const void *reg_in3,
	    void *reg_out, const struct fp_prec_t *ops)
{
  sim_fpu m1, m2, m, mm, n, r;

  REG2VAL (reg_in1, &m1);
  REG2VAL (reg_in2, &m2);
  REG2VAL (reg_in3, &n);
  ROUND (&m1);
  ROUND (&m2);
  ROUND (&n);
  FPCR &= ~ EC_MASK;
  if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
      || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
      || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
    {
    invalid_operands:
      if (FPCR & EE_V)
	FPCR |= EC_V;
      else
	VAL2REG (&sim_fpu_qnan, reg_out);
    }
  else
    {
      sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);

      if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
	  && sim_fpu_sign (&m) != sim_fpu_sign (&n))
	goto invalid_operands;

      stat |= sim_fpu_neg (&mm, &m);
      stat |= sim_fpu_sub (&r, &mm, &n);
      stat |= ROUND (&r);
      if (fpu_status_ok (stat))
	VAL2REG (&r, reg_out);
    }
  
  fpu_check_signal_exception (sd, cpu, cia);
}