aboutsummaryrefslogtreecommitdiff
path: root/sim/mips/sim-main.c
blob: f82b182550f4db7e834b3a72064b2f982313e8c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/*  Copyright (C) 1998, Cygnus Solutions

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

    */


#ifndef SIM_MAIN_C
#define SIM_MAIN_C

#include "sim-main.h"
#include "sim-assert.h"

#if !(WITH_IGEN)
#define SIM_MANIFESTS
#include "oengine.c"
#undef SIM_MANIFESTS
#endif


/*---------------------------------------------------------------------------*/
/*-- simulator engine -------------------------------------------------------*/
/*---------------------------------------------------------------------------*/

/* start-sanitize-sky */
#ifdef TARGET_SKY

/* Description from page A-22 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */

/* Translate a virtual address to a physical address and cache
   coherence algorithm describing the mechanism used to resolve the
   memory reference. Given the virtual address vAddr, and whether the
   reference is to Instructions ot Data (IorD), find the corresponding
   physical address (pAddr) and the cache coherence algorithm (CCA)
   used to resolve the reference. If the virtual address is in one of
   the unmapped address spaces the physical address and the CCA are
   determined directly by the virtual address. If the virtual address
   is in one of the mapped address spaces then the TLB is used to
   determine the physical address and access type; if the required
   translation is not present in the TLB or the desired access is not
   permitted the function fails and an exception is taken.

   NOTE: Normally (RAW == 0), when address translation fails, this
   function raises an exception and does not return. */

/* This implementation is for the MIPS R4000 family.  See MIPS RISC 
   Architecture, Kane & Heinrich, Chapter 4.  It is no good for any
   of the 2000, 3000, or 6000 family. 

   One possible error in the K&H book of note.  K&H has the PFN entry 
   in the TLB as being 24 bits.  The high-order 4 bits would seem to be 
   unused, as the PFN is only 20-bits long.  The 5900 manual shows
   this as a 20-bit field.  At any rate, the high order 4 bits are
   unused. 
*/



/* A place to remember the last cache hit.  */
static r4000_tlb_entry_t *last_hit = 0;

/* Try to match a single TLB entry.  Three possibilities.
   1.  No match, returns 0
   2.  Match w/o exception, pAddr and CCA set, returns 1
   3.  Match w/ exception, in which case tlb_try_match does not return.
*/
INLINE_SIM_MAIN (int)
tlb_try_match (SIM_DESC SD, sim_cpu *CPU, address_word cia, r4000_tlb_entry_t * entry, unsigned32 asid, unsigned32 vAddr, address_word * pAddr, int *CCA, int LorS)
{
  unsigned32 page_mask, vpn2_mask;
  page_mask = (entry->mask & 0x01ffe000);
  vpn2_mask = ~(page_mask | 0x00001fff);

  if ((vAddr & vpn2_mask) == (entry->hi & vpn2_mask)
      && ((entry->hi & TLB_HI_ASID_MASK) == asid
	  || (entry->hi & TLB_HI_G_MASK) != 0))
    {
      /* OK.  Now, do we match lo0, or lo1? */
      unsigned32 offset_mask, vpn_lo_mask, vpn_mask, lo;

      offset_mask = (page_mask >> 1) | 0xfff;
      vpn_lo_mask = offset_mask + 1;
      vpn_mask = ~(offset_mask);

      ASSERT(vpn_lo_mask == (-vpn2_mask) >> 1);
      ASSERT(vpn_mask ^ vpn_lo_mask == vpn2_mask);

      if ((vAddr & vpn_lo_mask) == 0)
	{
	  lo = entry->lo0;
	}
      else
	{
	  lo = entry->lo1;
	}

      /* Warn upon attempted use of scratchpad RAM */
      if(entry->lo0 & TLB_LO_S_MASK)
	{
	  sim_io_printf(SD,
			"Warning: no scratchpad RAM: virtual 0x%08x maps to physical 0x%08x.\n", 
			vAddr, (vAddr & offset_mask));

	  /* act as if this is a valid, read/write page. */ 
	  lo = TLB_LO_V_MASK | TLB_LO_D_MASK;

	  /* alternately, act as if this TLB entry is not a match */
	  /* return 0; */
	}

      if ((lo & TLB_LO_V_MASK) == 0)
	{
          COP0_BADVADDR = vAddr;
   	  COP0_CONTEXT_set_BADVPN2((vAddr & 0xffffe) >> 19);	/* Top 19 bits */
	  COP0_ENTRYHI = (vAddr & 0xffffe) | asid;
  	  COP0_RANDOM = rand()%(TLB_SIZE - COP0_WIRED) + COP0_WIRED;
	  if (LorS == isLOAD)
	    SignalExceptionTLBInvalidLoad ();
	  else
	    SignalExceptionTLBInvalidStore ();
	  ASSERT(0);	/* Signal should never return.  */
	}

      if ((lo & TLB_LO_D_MASK) == 0 && (LorS == isSTORE))
	{
          COP0_BADVADDR = vAddr;
   	  COP0_CONTEXT_set_BADVPN2((vAddr & 0xffffe) >> 19);	/* Top 19 bits */
	  COP0_ENTRYHI = (vAddr & 0xffffe) | asid;
  	  COP0_RANDOM = rand()%(TLB_SIZE - COP0_WIRED) + COP0_WIRED;
	  SignalExceptionTLBModification ();	
	  ASSERT(0);	/* Signal should never return.  */
	}

      /* Ignore lo.C rule for Cache access */

      *pAddr = (((lo & 0x03ffffc0) << 6) & (~offset_mask)) + (vAddr & offset_mask);
      *CCA = Uncached;		/* FOR NOW, no CCA support. */

      last_hit = entry;		/* Remember last hit. */

      return 1;			/* Match */
    }

  return 0;			/* No Match */
}

static void 
dump_tlb(SIM_DESC SD, sim_cpu *CPU, address_word cia) {

  int i;
  /* Now linear search for a match.  */

  for (i = 0; i < TLB_SIZE; i++)
    {
      sim_io_eprintf(SD, "%2d: %08x %08x %08x %08x\n", i, TLB[i].mask, TLB[i].hi,
		TLB[i].lo0, TLB[i].lo1);
    }
}


INLINE_SIM_MAIN (void)
tlb_lookup (SIM_DESC SD, sim_cpu * CPU, address_word cia, unsigned32 vAddr, address_word * pAddr, int *CCA, int LorS)
{
  r4000_tlb_entry_t *p;
  unsigned32 asid;
  int rc;

  asid = COP0_ENTRYHI & 0x000000ff;

  /* Test last hit first.  More code, but probably faster on average. */
  if (last_hit)
    {
      if (tlb_try_match (SD, CPU, cia, last_hit, asid, vAddr, pAddr, CCA, LorS))
	return;
    }

  /* Now linear search for a match.  */
  for (p = &TLB[0]; p < &TLB[TLB_SIZE]; p++)
    {
      if (tlb_try_match (SD, CPU, cia, p, asid, vAddr, pAddr, CCA, LorS))
	return;
    }

  /* No match, raise a TLB refill exception. */
  COP0_BADVADDR = vAddr;
  COP0_CONTEXT_set_BADVPN2((vAddr & 0xffffe) >> 19);	/* Top 19 bits */
  COP0_ENTRYHI = (vAddr & 0xffffe) | asid;
  COP0_RANDOM = rand()%(TLB_SIZE - COP0_WIRED) + COP0_WIRED;

#if 0
sim_io_eprintf(SD, "TLB Refill exception at address 0x%0x\n", vAddr);
dump_tlb(SD, CPU, cia);
#endif

  if (LorS == isLOAD)
    SignalExceptionTLBRefillLoad ();
  else
    SignalExceptionTLBRefillStore ();
  ASSERT(0);	/* Signal should never return.  */
}


INLINE_SIM_MAIN (int)
address_translation (SIM_DESC SD,
		     sim_cpu * CPU,
		     address_word cia,
		     address_word vAddr,
		     int IorD,
		     int LorS,
		     address_word * pAddr,
		     int *CCA,
		     int raw)
{
  unsigned32 operating_mode;
  unsigned32 asid, vpn, offset, offset_bits;

#ifdef DEBUG
  sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
#endif

  vAddr &= 0xFFFFFFFF;

  /* Determine operating mode.  */
  operating_mode = SR_KSU;
  if (SR & status_ERL || SR & status_EXL)
    operating_mode = ksu_kernel;

  switch (operating_mode)
    {
    case ksu_unknown:
      sim_io_eprintf (SD, "Invalid operating mode SR.KSU == 0x3.  Treated as 0x0.\n");
      operating_mode = ksu_kernel;
      /* Fall-through */
    case ksu_kernel:
      /* Map and return for kseg0 and kseg1. */
      if ((vAddr & 0xc0000000) == 0x80000000)
	{
	  ASSERT (0x80000000 <= vAddr && vAddr < 0xc0000000);
	  if (vAddr < 0xa0000000)
	    {
	      /* kseg0: Unmapped, Cached */
	      *pAddr = vAddr - 0x80000000;
	      *CCA = Uncached;	/* For now, until cache model is supported. */
	      return -1;
	    }
	  else
	    {
	      /* kseg1: Unmapped, Uncached */
	      *pAddr = vAddr - 0xa0000000;
	      *CCA = Uncached;
	      return -1;
	    }
	}
      break;

    case ksu_supervisor:
      {
	/* Address error for 0x80000000->0xbfffffff and 0xe00000000->0xffffffff.  */
	unsigned32 top_three = vAddr & 0xe0000000;
	if (top_three != 0x00000000 && top_three != 0xc0000000)
	  {
	    if (LorS == isLOAD)
	      SignalExceptionAddressLoad ();
	    else
	      SignalExceptionAddressStore ();
	    ASSERT(0);	/* Signal should never return.  */
	  }
      }
      break;

    case ksu_user:
      {
	if (vAddr & 0x80000000)
	  {
	    if (LorS == isLOAD)
	      SignalExceptionAddressLoad ();
	    else
	      SignalExceptionAddressStore ();
	    ASSERT(0);  /* Signal should never return.  */
	  }
      }
      break;

    default:
      ASSERT(0);
    }

  /* OK.  If we got this far, we're ready to use the normal virtual->physical memory mapping.  */
  tlb_lookup (SD, CPU, cia, vAddr, pAddr, CCA, LorS);

  /* If the preceding call returns, a match was found, and CCA and pAddr have been set.  */
  return -1;
}

#else /* TARGET_SKY */
/* end-sanitize-sky */

/* Description from page A-22 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
/* Translate a virtual address to a physical address and cache
   coherence algorithm describing the mechanism used to resolve the
   memory reference. Given the virtual address vAddr, and whether the
   reference is to Instructions ot Data (IorD), find the corresponding
   physical address (pAddr) and the cache coherence algorithm (CCA)
   used to resolve the reference. If the virtual address is in one of
   the unmapped address spaces the physical address and the CCA are
   determined directly by the virtual address. If the virtual address
   is in one of the mapped address spaces then the TLB is used to
   determine the physical address and access type; if the required
   translation is not present in the TLB or the desired access is not
   permitted the function fails and an exception is taken.

   NOTE: Normally (RAW == 0), when address translation fails, this
   function raises an exception and does not return. */

INLINE_SIM_MAIN
(int)
address_translation (SIM_DESC sd,
		     sim_cpu * cpu,
		     address_word cia,
		     address_word vAddr,
		     int IorD,
		     int LorS,
		     address_word * pAddr,
		     int *CCA,
		     int raw)
{
  int res = -1;			/* TRUE : Assume good return */

#ifdef DEBUG
  sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
#endif

  /* Check that the address is valid for this memory model */

  /* For a simple (flat) memory model, we simply pass virtual
     addressess through (mostly) unchanged. */
  vAddr &= 0xFFFFFFFF;

  *pAddr = vAddr;		/* default for isTARGET */
  *CCA = Uncached;		/* not used for isHOST */

  return (res);
}

/* start-sanitize-sky */
#endif /* !TARGET_SKY */
/* end-sanitize-sky */


/* Description from page A-23 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
/* Prefetch data from memory. Prefetch is an advisory instruction for
   which an implementation specific action is taken. The action taken
   may increase performance, but must not change the meaning of the
   program, or alter architecturally-visible state. */

INLINE_SIM_MAIN (void)
prefetch (SIM_DESC sd,
	  sim_cpu *cpu,
	  address_word cia,
	  int CCA,
	  address_word pAddr,
	  address_word vAddr,
	  int DATA,
	  int hint)
{
#ifdef DEBUG
  sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
#endif /* DEBUG */

  /* For our simple memory model we do nothing */
  return;
}

/* Description from page A-22 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
/* Load a value from memory. Use the cache and main memory as
   specified in the Cache Coherence Algorithm (CCA) and the sort of
   access (IorD) to find the contents of AccessLength memory bytes
   starting at physical location pAddr. The data is returned in the
   fixed width naturally-aligned memory element (MemElem). The
   low-order two (or three) bits of the address and the AccessLength
   indicate which of the bytes within MemElem needs to be given to the
   processor. If the memory access type of the reference is uncached
   then only the referenced bytes are read from memory and valid
   within the memory element. If the access type is cached, and the
   data is not present in cache, an implementation specific size and
   alignment block of memory is read and loaded into the cache to
   satisfy a load reference. At a minimum, the block is the entire
   memory element. */
INLINE_SIM_MAIN (void)
load_memory (SIM_DESC SD,
	     sim_cpu *CPU,
	     address_word cia,
	     uword64* memvalp,
	     uword64* memval1p,
	     int CCA,
	     unsigned int AccessLength,
	     address_word pAddr,
	     address_word vAddr,
	     int IorD)
{
  uword64 value = 0;
  uword64 value1 = 0;

#ifdef DEBUG
  sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
#endif /* DEBUG */

#if defined(WARN_MEM)
  if (CCA != uncached)
    sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
#endif /* WARN_MEM */

#if !(WITH_IGEN)
  /* IGEN performs this test in ifetch16() / ifetch32() */
  /* If instruction fetch then we need to check that the two lo-order
     bits are zero, otherwise raise a InstructionFetch exception: */
  if ((IorD == isINSTRUCTION)
      && ((pAddr & 0x3) != 0)
      && (((pAddr & 0x1) != 0) || ((vAddr & 0x1) == 0)))
    SignalExceptionInstructionFetch ();
#endif

  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
    {
      /* In reality this should be a Bus Error */
      sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
		    AccessLength,
		    (LOADDRMASK + 1) << 3,
		    pr_addr (pAddr));
    }

#if defined(TRACE)
  dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
#endif /* TRACE */
  
  /* Read the specified number of bytes from memory.  Adjust for
     host/target byte ordering/ Align the least significant byte
     read. */

  switch (AccessLength)
    {
    case AccessLength_QUADWORD :
      {
	unsigned_16 val = sim_core_read_aligned_16 (CPU, NULL_CIA, read_map, pAddr);
	value1 = VH8_16 (val);
	value = VL8_16 (val);
	break;
      }
    case AccessLength_DOUBLEWORD :
      value = sim_core_read_aligned_8 (CPU, NULL_CIA,
				       read_map, pAddr);
      break;
    case AccessLength_SEPTIBYTE :
      value = sim_core_read_misaligned_7 (CPU, NULL_CIA,
					  read_map, pAddr);
      break;
    case AccessLength_SEXTIBYTE :
      value = sim_core_read_misaligned_6 (CPU, NULL_CIA,
					  read_map, pAddr);
      break;
    case AccessLength_QUINTIBYTE :
      value = sim_core_read_misaligned_5 (CPU, NULL_CIA,
					  read_map, pAddr);
      break;
    case AccessLength_WORD :
      value = sim_core_read_aligned_4 (CPU, NULL_CIA,
				       read_map, pAddr);
      break;
    case AccessLength_TRIPLEBYTE :
      value = sim_core_read_misaligned_3 (CPU, NULL_CIA,
					  read_map, pAddr);
      break;
    case AccessLength_HALFWORD :
      value = sim_core_read_aligned_2 (CPU, NULL_CIA,
				       read_map, pAddr);
      break;
    case AccessLength_BYTE :
      value = sim_core_read_aligned_1 (CPU, NULL_CIA,
				       read_map, pAddr);
      break;
    default:
      abort ();
    }
  
#ifdef DEBUG
  printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
	 (int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
#endif /* DEBUG */
  
  /* See also store_memory. Position data in correct byte lanes. */
  if (AccessLength <= LOADDRMASK)
    {
      if (BigEndianMem)
	/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
	   shifted to the most significant byte position.  */
	value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
      else
	/* For little endian target, byte (pAddr&LOADDRMASK == 0)
	   is already in the correct postition. */
	value <<= ((pAddr & LOADDRMASK) * 8);
    }
  
#ifdef DEBUG
  printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
	 pr_uword64(value1),pr_uword64(value));
#endif /* DEBUG */
  
  *memvalp = value;
  if (memval1p) *memval1p = value1;
}


/* Description from page A-23 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
/* Store a value to memory. The specified data is stored into the
   physical location pAddr using the memory hierarchy (data caches and
   main memory) as specified by the Cache Coherence Algorithm
   (CCA). The MemElem contains the data for an aligned, fixed-width
   memory element (word for 32-bit processors, doubleword for 64-bit
   processors), though only the bytes that will actually be stored to
   memory need to be valid. The low-order two (or three) bits of pAddr
   and the AccessLength field indicates which of the bytes within the
   MemElem data should actually be stored; only these bytes in memory
   will be changed. */

INLINE_SIM_MAIN (void)
store_memory (SIM_DESC SD,
	      sim_cpu *CPU,
	      address_word cia,
	      int CCA,
	      unsigned int AccessLength,
	      uword64 MemElem,
	      uword64 MemElem1,   /* High order 64 bits */
	      address_word pAddr,
	      address_word vAddr)
{
#ifdef DEBUG
  sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
#endif /* DEBUG */
  
#if defined(WARN_MEM)
  if (CCA != uncached)
    sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
#endif /* WARN_MEM */
  
  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
    sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
		  AccessLength,
		  (LOADDRMASK + 1) << 3,
		  pr_addr(pAddr));
  
#if defined(TRACE)
  dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
#endif /* TRACE */
  
#ifdef DEBUG
  printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
#endif /* DEBUG */
  
  /* See also load_memory. Position data in correct byte lanes. */
  if (AccessLength <= LOADDRMASK)
    {
      if (BigEndianMem)
	/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
	   shifted to the most significant byte position.  */
	MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
      else
	/* For little endian target, byte (pAddr&LOADDRMASK == 0)
	   is already in the correct postition. */
	MemElem >>= ((pAddr & LOADDRMASK) * 8);
    }
  
#ifdef DEBUG
  printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
#endif /* DEBUG */
  
  switch (AccessLength)
    {
    case AccessLength_QUADWORD :
      {
	unsigned_16 val = U16_8 (MemElem1, MemElem);
	sim_core_write_aligned_16 (CPU, NULL_CIA, write_map, pAddr, val);
	break;
      }
    case AccessLength_DOUBLEWORD :
      sim_core_write_aligned_8 (CPU, NULL_CIA,
				write_map, pAddr, MemElem);
      break;
    case AccessLength_SEPTIBYTE :
      sim_core_write_misaligned_7 (CPU, NULL_CIA,
				   write_map, pAddr, MemElem);
      break;
    case AccessLength_SEXTIBYTE :
      sim_core_write_misaligned_6 (CPU, NULL_CIA,
				   write_map, pAddr, MemElem);
      break;
    case AccessLength_QUINTIBYTE :
      sim_core_write_misaligned_5 (CPU, NULL_CIA,
				   write_map, pAddr, MemElem);
      break;
    case AccessLength_WORD :
      sim_core_write_aligned_4 (CPU, NULL_CIA,
				write_map, pAddr, MemElem);
      break;
    case AccessLength_TRIPLEBYTE :
      sim_core_write_misaligned_3 (CPU, NULL_CIA,
				   write_map, pAddr, MemElem);
      break;
    case AccessLength_HALFWORD :
      sim_core_write_aligned_2 (CPU, NULL_CIA,
				write_map, pAddr, MemElem);
      break;
    case AccessLength_BYTE :
      sim_core_write_aligned_1 (CPU, NULL_CIA,
				write_map, pAddr, MemElem);
      break;
    default:
      abort ();
    }	
  
  return;
}


INLINE_SIM_MAIN (unsigned32)
ifetch32 (SIM_DESC SD,
	  sim_cpu *CPU,
	  address_word cia,
	  address_word vaddr)
{
  /* Copy the action of the LW instruction */
  address_word mask = LOADDRMASK;
  address_word access = AccessLength_WORD;
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  unsigned int byte;
  address_word paddr;
  int uncached;
  unsigned64 memval;

  if ((vaddr & access) != 0)
    SignalExceptionInstructionFetch ();
  AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
  byte = ((vaddr & mask) ^ bigendiancpu);
  return (memval >> (8 * byte));
}


INLINE_SIM_MAIN (unsigned16)
ifetch16 (SIM_DESC SD,
	  sim_cpu *CPU,
	  address_word cia,
	  address_word vaddr)
{
  /* Copy the action of the LH instruction */
  address_word mask = LOADDRMASK;
  address_word access = AccessLength_HALFWORD;
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  unsigned int byte;
  address_word paddr;
  int uncached;
  unsigned64 memval;

  if ((vaddr & access) != 0)
    SignalExceptionInstructionFetch ();
  AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
  byte = ((vaddr & mask) ^ bigendiancpu);
  return (memval >> (8 * byte));
}



/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Order loads and stores to synchronise shared memory. Perform the
   action necessary to make the effects of groups of synchronizable
   loads and stores indicated by stype occur in the same order for all
   processors. */
INLINE_SIM_MAIN (void)
sync_operation (SIM_DESC sd,
		sim_cpu *cpu,
		address_word cia,
		int stype)
{
#ifdef DEBUG
  sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
#endif /* DEBUG */
  return;
}

INLINE_SIM_MAIN (void)
cache_op (SIM_DESC SD,
	  sim_cpu *CPU,
	  address_word cia,
	  int op,
	  address_word pAddr,
	  address_word vAddr,
	  unsigned int instruction)
{
#if 1 /* stop warning message being displayed (we should really just remove the code) */
  static int icache_warning = 1;
  static int dcache_warning = 1;
#else
  static int icache_warning = 0;
  static int dcache_warning = 0;
#endif

  /* If CP0 is not useable (User or Supervisor mode) and the CP0
     enable bit in the Status Register is clear - a coprocessor
     unusable exception is taken. */
#if 0
  sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
#endif

  switch (op & 0x3) {
    case 0: /* instruction cache */
      switch (op >> 2) {
        case 0: /* Index Invalidate */
        case 1: /* Index Load Tag */
        case 2: /* Index Store Tag */
        case 4: /* Hit Invalidate */
        case 5: /* Fill */
        case 6: /* Hit Writeback */
          if (!icache_warning)
            {
              sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2));
              icache_warning = 1;
            }
          break;

        default:
          SignalException(ReservedInstruction,instruction);
          break;
      }
      break;

    case 1: /* data cache */
      switch (op >> 2) {
        case 0: /* Index Writeback Invalidate */
        case 1: /* Index Load Tag */
        case 2: /* Index Store Tag */
        case 3: /* Create Dirty */
        case 4: /* Hit Invalidate */
        case 5: /* Hit Writeback Invalidate */
        case 6: /* Hit Writeback */ 
          if (!dcache_warning)
            {
              sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2));
              dcache_warning = 1;
            }
          break;

        default:
          SignalException(ReservedInstruction,instruction);
          break;
      }
      break;

    default: /* unrecognised cache ID */
      SignalException(ReservedInstruction,instruction);
      break;
  }

  return;
}


INLINE_SIM_MAIN (void)
pending_tick (SIM_DESC SD,
	      sim_cpu *CPU,
	      address_word cia)
{
  if (PENDING_TRACE)							
    sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL); 
  if (PENDING_OUT != PENDING_IN)					
    {									
      int loop;							
      int index = PENDING_OUT;					
      int total = PENDING_TOTAL;					
      if (PENDING_TOTAL == 0)						
	sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n"); 
      for (loop = 0, index = PENDING_OUT;
	   (loop < total);
	   loop++, index = (index + 1) % PSLOTS)
	{								
	  if (PENDING_SLOT_DEST[index] != NULL)			
	    {								
	      PENDING_SLOT_DELAY[index] -= 1;				
	      if (PENDING_SLOT_DELAY[index] == 0)			
		{							
		  if (PENDING_TRACE)
		    sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
				    index,
				    (unsigned long) PENDING_SLOT_DEST[index],
				    PENDING_SLOT_BIT[index],
				    (unsigned long) PENDING_SLOT_VALUE[index],
				    PENDING_SLOT_SIZE[index]);
		  if (PENDING_SLOT_BIT[index] >= 0)			
		    switch (PENDING_SLOT_SIZE[index])                 
		      {						
		      case 4:
			if (PENDING_SLOT_VALUE[index])		
			  *(unsigned32*)PENDING_SLOT_DEST[index] |= 	
			    BIT32 (PENDING_SLOT_BIT[index]);		
			else						
			  *(unsigned32*)PENDING_SLOT_DEST[index] &= 	
			    BIT32 (PENDING_SLOT_BIT[index]);		
			break;					
		      case 8:					
			if (PENDING_SLOT_VALUE[index])		
			  *(unsigned64*)PENDING_SLOT_DEST[index] |= 	
			    BIT64 (PENDING_SLOT_BIT[index]);		
			else						
			  *(unsigned64*)PENDING_SLOT_DEST[index] &= 	
			    BIT64 (PENDING_SLOT_BIT[index]);		
			break;					
		      }
		  else
		    switch (PENDING_SLOT_SIZE[index])                 
		      {						
		      case 4:					
			*(unsigned32*)PENDING_SLOT_DEST[index] = 	
			  PENDING_SLOT_VALUE[index];			
			break;					
		      case 8:					
			*(unsigned64*)PENDING_SLOT_DEST[index] = 	
			  PENDING_SLOT_VALUE[index];			
			break;					
		      }							
		  if (PENDING_OUT == index)
		    {
		      PENDING_SLOT_DEST[index] = NULL;
		      PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
		      PENDING_TOTAL--;
		    }
		}							
	      else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0)
		sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
				index, PENDING_SLOT_DELAY[index],
				(unsigned long) PENDING_SLOT_DEST[index],
				PENDING_SLOT_BIT[index],
				(unsigned long) PENDING_SLOT_VALUE[index],
				PENDING_SLOT_SIZE[index]);

	    }								
	}								
    }									
}


#endif