1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
|
/* Simulator for the MIPS architecture.
This file is part of the MIPS sim
THIS SOFTWARE IS NOT COPYRIGHTED
Cygnus offers the following for use in the public domain. Cygnus
makes no warranty with regard to the software or it's performance
and the user accepts the software "AS IS" with all faults.
CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
$Revision$
$Date$
*/
#ifndef SIM_MAIN_C
#define SIM_MAIN_C
#include "sim-main.h"
#if !(WITH_IGEN)
#define SIM_MANIFESTS
#include "oengine.c"
#undef SIM_MANIFESTS
#endif
/*---------------------------------------------------------------------------*/
/*-- simulator engine -------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
(revision 3.1) */
/* Translate a virtual address to a physical address and cache
coherence algorithm describing the mechanism used to resolve the
memory reference. Given the virtual address vAddr, and whether the
reference is to Instructions ot Data (IorD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA)
used to resolve the reference. If the virtual address is in one of
the unmapped address spaces the physical address and the CCA are
determined directly by the virtual address. If the virtual address
is in one of the mapped address spaces then the TLB is used to
determine the physical address and access type; if the required
translation is not present in the TLB or the desired access is not
permitted the function fails and an exception is taken.
NOTE: Normally (RAW == 0), when address translation fails, this
function raises an exception and does not return. */
INLINE_SIM_MAIN (int)
address_translation (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
address_word vAddr,
int IorD,
int LorS,
address_word *pAddr,
int *CCA,
int raw)
{
int res = -1; /* TRUE : Assume good return */
#ifdef DEBUG
sim_io_printf(sd,"AddressTranslation(0x%s,%s,%s,...);\n",pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"),(LorS ? "iSTORE" : "isLOAD"));
#endif
/* Check that the address is valid for this memory model */
/* For a simple (flat) memory model, we simply pass virtual
addressess through (mostly) unchanged. */
vAddr &= 0xFFFFFFFF;
*pAddr = vAddr; /* default for isTARGET */
*CCA = Uncached; /* not used for isHOST */
return(res);
}
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
(revision 3.1) */
/* Prefetch data from memory. Prefetch is an advisory instruction for
which an implementation specific action is taken. The action taken
may increase performance, but must not change the meaning of the
program, or alter architecturally-visible state. */
INLINE_SIM_MAIN (void)
prefetch (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int CCA,
address_word pAddr,
address_word vAddr,
int DATA,
int hint)
{
#ifdef DEBUG
sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
#endif /* DEBUG */
/* For our simple memory model we do nothing */
return;
}
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
(revision 3.1) */
/* Load a value from memory. Use the cache and main memory as
specified in the Cache Coherence Algorithm (CCA) and the sort of
access (IorD) to find the contents of AccessLength memory bytes
starting at physical location pAddr. The data is returned in the
fixed width naturally-aligned memory element (MemElem). The
low-order two (or three) bits of the address and the AccessLength
indicate which of the bytes within MemElem needs to be given to the
processor. If the memory access type of the reference is uncached
then only the referenced bytes are read from memory and valid
within the memory element. If the access type is cached, and the
data is not present in cache, an implementation specific size and
alignment block of memory is read and loaded into the cache to
satisfy a load reference. At a minimum, the block is the entire
memory element. */
INLINE_SIM_MAIN (void)
load_memory (SIM_DESC SD,
sim_cpu *CPU,
address_word cia,
uword64* memvalp,
uword64* memval1p,
int CCA,
unsigned int AccessLength,
address_word pAddr,
address_word vAddr,
int IorD)
{
uword64 value = 0;
uword64 value1 = 0;
#ifdef DEBUG
sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
#endif /* DEBUG */
#if defined(WARN_MEM)
if (CCA != uncached)
sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
#endif /* WARN_MEM */
/* If instruction fetch then we need to check that the two lo-order
bits are zero, otherwise raise a InstructionFetch exception: */
if ((IorD == isINSTRUCTION)
&& ((pAddr & 0x3) != 0)
&& (((pAddr & 0x1) != 0) || ((vAddr & 0x1) == 0)))
SignalExceptionInstructionFetch ();
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
{
/* In reality this should be a Bus Error */
sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
AccessLength,
(LOADDRMASK + 1) << 3,
pr_addr (pAddr));
}
#if defined(TRACE)
dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
#endif /* TRACE */
/* Read the specified number of bytes from memory. Adjust for
host/target byte ordering/ Align the least significant byte
read. */
switch (AccessLength)
{
case AccessLength_QUADWORD :
{
unsigned_16 val = sim_core_read_aligned_16 (CPU, NULL_CIA, read_map, pAddr);
value1 = VH8_16 (val);
value = VL8_16 (val);
break;
}
case AccessLength_DOUBLEWORD :
value = sim_core_read_aligned_8 (CPU, NULL_CIA,
read_map, pAddr);
break;
case AccessLength_SEPTIBYTE :
value = sim_core_read_misaligned_7 (CPU, NULL_CIA,
read_map, pAddr);
break;
case AccessLength_SEXTIBYTE :
value = sim_core_read_misaligned_6 (CPU, NULL_CIA,
read_map, pAddr);
break;
case AccessLength_QUINTIBYTE :
value = sim_core_read_misaligned_5 (CPU, NULL_CIA,
read_map, pAddr);
break;
case AccessLength_WORD :
value = sim_core_read_aligned_4 (CPU, NULL_CIA,
read_map, pAddr);
break;
case AccessLength_TRIPLEBYTE :
value = sim_core_read_misaligned_3 (CPU, NULL_CIA,
read_map, pAddr);
break;
case AccessLength_HALFWORD :
value = sim_core_read_aligned_2 (CPU, NULL_CIA,
read_map, pAddr);
break;
case AccessLength_BYTE :
value = sim_core_read_aligned_1 (CPU, NULL_CIA,
read_map, pAddr);
break;
default:
abort ();
}
#ifdef DEBUG
printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
(int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
#endif /* DEBUG */
/* See also store_memory. Position data in correct byte lanes. */
if (AccessLength <= LOADDRMASK)
{
if (BigEndianMem)
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
shifted to the most significant byte position. */
value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
else
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
is already in the correct postition. */
value <<= ((pAddr & LOADDRMASK) * 8);
}
#ifdef DEBUG
printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
pr_uword64(value1),pr_uword64(value));
#endif /* DEBUG */
*memvalp = value;
if (memval1p) *memval1p = value1;
}
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
(revision 3.1) */
/* Store a value to memory. The specified data is stored into the
physical location pAddr using the memory hierarchy (data caches and
main memory) as specified by the Cache Coherence Algorithm
(CCA). The MemElem contains the data for an aligned, fixed-width
memory element (word for 32-bit processors, doubleword for 64-bit
processors), though only the bytes that will actually be stored to
memory need to be valid. The low-order two (or three) bits of pAddr
and the AccessLength field indicates which of the bytes within the
MemElem data should actually be stored; only these bytes in memory
will be changed. */
INLINE_SIM_MAIN (void)
store_memory (SIM_DESC SD,
sim_cpu *CPU,
address_word cia,
int CCA,
unsigned int AccessLength,
uword64 MemElem,
uword64 MemElem1, /* High order 64 bits */
address_word pAddr,
address_word vAddr)
{
#ifdef DEBUG
sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
#endif /* DEBUG */
#if defined(WARN_MEM)
if (CCA != uncached)
sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
#endif /* WARN_MEM */
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
AccessLength,
(LOADDRMASK + 1) << 3,
pr_addr(pAddr));
#if defined(TRACE)
dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
#endif /* TRACE */
#ifdef DEBUG
printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
#endif /* DEBUG */
/* See also load_memory. Position data in correct byte lanes. */
if (AccessLength <= LOADDRMASK)
{
if (BigEndianMem)
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
shifted to the most significant byte position. */
MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
else
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
is already in the correct postition. */
MemElem >>= ((pAddr & LOADDRMASK) * 8);
}
#ifdef DEBUG
printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
#endif /* DEBUG */
switch (AccessLength)
{
case AccessLength_QUADWORD :
{
unsigned_16 val = U16_8 (MemElem1, MemElem);
sim_core_write_aligned_16 (CPU, NULL_CIA, write_map, pAddr, val);
break;
}
case AccessLength_DOUBLEWORD :
sim_core_write_aligned_8 (CPU, NULL_CIA,
write_map, pAddr, MemElem);
break;
case AccessLength_SEPTIBYTE :
sim_core_write_misaligned_7 (CPU, NULL_CIA,
write_map, pAddr, MemElem);
break;
case AccessLength_SEXTIBYTE :
sim_core_write_misaligned_6 (CPU, NULL_CIA,
write_map, pAddr, MemElem);
break;
case AccessLength_QUINTIBYTE :
sim_core_write_misaligned_5 (CPU, NULL_CIA,
write_map, pAddr, MemElem);
break;
case AccessLength_WORD :
sim_core_write_aligned_4 (CPU, NULL_CIA,
write_map, pAddr, MemElem);
break;
case AccessLength_TRIPLEBYTE :
sim_core_write_misaligned_3 (CPU, NULL_CIA,
write_map, pAddr, MemElem);
break;
case AccessLength_HALFWORD :
sim_core_write_aligned_2 (CPU, NULL_CIA,
write_map, pAddr, MemElem);
break;
case AccessLength_BYTE :
sim_core_write_aligned_1 (CPU, NULL_CIA,
write_map, pAddr, MemElem);
break;
default:
abort ();
}
return;
}
INLINE_SIM_MAIN (unsigned32)
ifetch32 (SIM_DESC SD,
sim_cpu *CPU,
address_word cia,
address_word vaddr)
{
/* Copy the action of the LW instruction */
address_word reverse = (ReverseEndian ? (LOADDRMASK >> 2) : 0);
address_word bigend = (BigEndianCPU ? (LOADDRMASK >> 2) : 0);
unsigned64 value;
address_word paddr;
unsigned32 instruction;
unsigned byte;
int cca;
AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &cca, isTARGET, isREAL);
paddr = ((paddr & ~LOADDRMASK) | ((paddr & LOADDRMASK) ^ (reverse << 2)));
LoadMemory (&value, NULL, cca, AccessLength_WORD, paddr, vaddr, isINSTRUCTION, isREAL);
byte = ((vaddr & LOADDRMASK) ^ (bigend << 2));
instruction = ((value >> (8 * byte)) & 0xFFFFFFFF);
return instruction;
}
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Order loads and stores to synchronise shared memory. Perform the
action necessary to make the effects of groups of synchronizable
loads and stores indicated by stype occur in the same order for all
processors. */
INLINE_SIM_MAIN (void)
sync_operation (SIM_DESC sd,
sim_cpu *cpu,
address_word cia,
int stype)
{
#ifdef DEBUG
sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
#endif /* DEBUG */
return;
}
INLINE_SIM_MAIN (void)
cache_op (SIM_DESC SD,
sim_cpu *CPU,
address_word cia,
int op,
address_word pAddr,
address_word vAddr,
unsigned int instruction)
{
#if 1 /* stop warning message being displayed (we should really just remove the code) */
static int icache_warning = 1;
static int dcache_warning = 1;
#else
static int icache_warning = 0;
static int dcache_warning = 0;
#endif
/* If CP0 is not useable (User or Supervisor mode) and the CP0
enable bit in the Status Register is clear - a coprocessor
unusable exception is taken. */
#if 0
sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
#endif
switch (op & 0x3) {
case 0: /* instruction cache */
switch (op >> 2) {
case 0: /* Index Invalidate */
case 1: /* Index Load Tag */
case 2: /* Index Store Tag */
case 4: /* Hit Invalidate */
case 5: /* Fill */
case 6: /* Hit Writeback */
if (!icache_warning)
{
sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2));
icache_warning = 1;
}
break;
default:
SignalException(ReservedInstruction,instruction);
break;
}
break;
case 1: /* data cache */
switch (op >> 2) {
case 0: /* Index Writeback Invalidate */
case 1: /* Index Load Tag */
case 2: /* Index Store Tag */
case 3: /* Create Dirty */
case 4: /* Hit Invalidate */
case 5: /* Hit Writeback Invalidate */
case 6: /* Hit Writeback */
if (!dcache_warning)
{
sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2));
dcache_warning = 1;
}
break;
default:
SignalException(ReservedInstruction,instruction);
break;
}
break;
default: /* unrecognised cache ID */
SignalException(ReservedInstruction,instruction);
break;
}
return;
}
INLINE_SIM_MAIN (void)
pending_tick (SIM_DESC SD,
sim_cpu *CPU,
address_word cia)
{
if (PENDING_TRACE)
sim_io_printf (SD, "PENDING_DRAIN - pending_in = %d, pending_out = %d, pending_total = %d\n", PENDING_IN, PENDING_OUT, PENDING_TOTAL);
if (PENDING_OUT != PENDING_IN)
{
int loop;
int index = PENDING_OUT;
int total = PENDING_TOTAL;
if (PENDING_TOTAL == 0)
sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n");
for (loop = 0; (loop < total); loop++)
{
if (PENDING_SLOT_DEST[index] != NULL)
{
PENDING_SLOT_DELAY[index] -= 1;
if (PENDING_SLOT_DELAY[index] == 0)
{
if (PENDING_SLOT_BIT[index] >= 0)
switch (PENDING_SLOT_SIZE[index])
{
case 32:
if (PENDING_SLOT_VALUE[index])
*(unsigned32*)PENDING_SLOT_DEST[index] |=
BIT32 (PENDING_SLOT_BIT[index]);
else
*(unsigned32*)PENDING_SLOT_DEST[index] &=
BIT32 (PENDING_SLOT_BIT[index]);
break;
case 64:
if (PENDING_SLOT_VALUE[index])
*(unsigned64*)PENDING_SLOT_DEST[index] |=
BIT64 (PENDING_SLOT_BIT[index]);
else
*(unsigned64*)PENDING_SLOT_DEST[index] &=
BIT64 (PENDING_SLOT_BIT[index]);
break;
break;
}
else
switch (PENDING_SLOT_SIZE[index])
{
case 32:
*(unsigned32*)PENDING_SLOT_DEST[index] =
PENDING_SLOT_VALUE[index];
break;
case 64:
*(unsigned64*)PENDING_SLOT_DEST[index] =
PENDING_SLOT_VALUE[index];
break;
}
}
if (PENDING_OUT == index)
{
PENDING_SLOT_DEST[index] = NULL;
PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
PENDING_TOTAL--;
}
}
}
index = (index + 1) % PSLOTS;
}
}
#endif
|