aboutsummaryrefslogtreecommitdiff
path: root/sim/mips/interp.c
blob: 3b434f19552d1cf0367cb3db8058f080c7e44d43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
/*> interp.c <*/
/* Simulator for the MIPS architecture.

   This file is part of the MIPS sim

		THIS SOFTWARE IS NOT COPYRIGHTED

   Cygnus offers the following for use in the public domain.  Cygnus
   makes no warranty with regard to the software or it's performance
   and the user accepts the software "AS IS" with all faults.

   CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
   THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

   $Revision$
     $Author$
       $Date$             

NOTEs:

We only need to take account of the target endianness when moving data
between the simulator and the host. We do not need to worry about the
endianness of the host, since this sim code and GDB are executing in
the same process.

The IDT monitor (found on the VR4300 board), seems to lie about
register contents. It seems to treat the registers as sign-extended
32-bit values. This cause *REAL* problems when single-stepping 64-bit
code on the hardware.

*/

/* The TRACE and PROFILE manifests enable the provision of extra
   features. If they are not defined then a simpler (quicker)
   simulator is constructed without the required run-time checks,
   etc. */
#if 1 /* 0 to allow user build selection, 1 to force inclusion */
#define TRACE (1)
#define PROFILE (1)
#endif

#include "config.h"

#include <stdio.h>
#include <stdarg.h>
#include <ansidecl.h>
#include <signal.h>
#include <ctype.h>
#include <limits.h>
#include <math.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif

#include "getopt.h"
#include "libiberty.h"

#include "callback.h"   /* GDB simulator callback interface */
#include "remote-sim.h" /* GDB simulator interface */

#include "support.h"    /* internal support manifests */

#include "sysdep.h"

#ifndef PARAMS
#define PARAMS(x) 
#endif

char* pr_addr PARAMS ((SIM_ADDR addr));

#ifndef SIGBUS
#define SIGBUS SIGSEGV
#endif

/* Get the simulator engine description, without including the code: */
#define SIM_MANIFESTS
#include "engine.c"
#undef SIM_MANIFESTS

/* This variable holds the GDB view of the target endianness: */
extern int target_byte_order;

/* The following reserved instruction value is used when a simulator
   trap is required. NOTE: Care must be taken, since this value may be
   used in later revisions of the MIPS ISA. */
#define RSVD_INSTRUCTION           (0x00000005)
#define RSVD_INSTRUCTION_MASK      (0xFC00003F)

#define RSVD_INSTRUCTION_ARG_SHIFT 6
#define RSVD_INSTRUCTION_ARG_MASK  0xFFFFF  


/* NOTE: These numbers depend on the processor architecture being
   simulated: */
#define Interrupt               (0)
#define TLBModification         (1)
#define TLBLoad                 (2)
#define TLBStore                (3)
#define AddressLoad             (4)
#define AddressStore            (5)
#define InstructionFetch        (6)
#define DataReference           (7)
#define SystemCall              (8)
#define BreakPoint              (9)
#define ReservedInstruction     (10)
#define CoProcessorUnusable     (11)
#define IntegerOverflow         (12)    /* Arithmetic overflow (IDT monitor raises SIGFPE) */
#define Trap                    (13)
#define FPE                     (15)
#define Watch                   (23)

/* The following exception code is actually private to the simulator
   world. It is *NOT* a processor feature, and is used to signal
   run-time errors in the simulator. */
#define SimulatorFault      (0xFFFFFFFF)

/* The following are generic to all versions of the MIPS architecture
   to date: */
/* Memory Access Types (for CCA): */
#define Uncached                (0)
#define CachedNoncoherent       (1)
#define CachedCoherent          (2)
#define Cached                  (3)

#define isINSTRUCTION   (1 == 0) /* FALSE */
#define isDATA          (1 == 1) /* TRUE */

#define isLOAD          (1 == 0) /* FALSE */
#define isSTORE         (1 == 1) /* TRUE */

#define isREAL          (1 == 0) /* FALSE */
#define isRAW           (1 == 1) /* TRUE */

#define isTARGET        (1 == 0) /* FALSE */
#define isHOST          (1 == 1) /* TRUE */

/* The "AccessLength" specifications for Loads and Stores. NOTE: This
   is the number of bytes minus 1. */
#define AccessLength_BYTE       (0)
#define AccessLength_HALFWORD   (1)
#define AccessLength_TRIPLEBYTE (2)
#define AccessLength_WORD       (3)
#define AccessLength_QUINTIBYTE (4)
#define AccessLength_SEXTIBYTE  (5)
#define AccessLength_SEPTIBYTE  (6)
#define AccessLength_DOUBLEWORD (7)
#define AccessLength_QUADWORD   (15)

#if defined(HASFPU)
/* FPU registers must be one of the following types. All other values
   are reserved (and undefined). */
typedef enum {
 fmt_single  = 0,
 fmt_double  = 1,
 fmt_word    = 4,
 fmt_long    = 5,
 /* The following are well outside the normal acceptable format
    range, and are used in the register status vector. */
 fmt_unknown       = 0x10000000,
 fmt_uninterpreted = 0x20000000,
} FP_formats;
#endif /* HASFPU */

/* NOTE: We cannot avoid globals, since the GDB "sim_" interface does
   not allow a private variable to be passed around. This means that
   simulators under GDB can only be single-threaded. However, it would
   be possible for the simulators to be multi-threaded if GDB allowed
   for a private pointer to be maintained. i.e. a general "void **ptr"
   variable that GDB passed around in the argument list to all of
   sim_xxx() routines. It could be initialised to NULL by GDB, and
   then updated by sim_open() and used by the other sim_xxx() support
   functions. This would allow new features in the simulator world,
   like storing a context - continuing execution to gather a result,
   and then going back to the point where the context was saved and
   changing some state before continuing. i.e. the ability to perform
   UNDOs on simulations. It would also allow the simulation of
   shared-memory multi-processor systems. */

static host_callback *callback = NULL; /* handle onto the current callback structure */

/* This is nasty, since we have to rely on matching the register
   numbers used by GDB. Unfortunately, depending on the MIPS target
   GDB uses different register numbers. We cannot just include the
   relevant "gdb/tm.h" link, since GDB may not be configured before
   the sim world, and also the GDB header file requires too much other
   state. */
/* TODO: Sort out a scheme for *KNOWING* the mapping between real
   registers, and the numbers that GDB uses. At the moment due to the
   order that the tools are built, we cannot rely on a configured GDB
   world whilst constructing the simulator. This means we have to
   assume the GDB register number mapping. */
#ifndef TM_MIPS_H
#define LAST_EMBED_REGNUM (89)
#endif

/* To keep this default simulator simple, and fast, we use a direct
   vector of registers. The internal simulator engine then uses
   manifests to access the correct slot. */
static ut_reg registers[LAST_EMBED_REGNUM + 1];
static int register_widths[LAST_EMBED_REGNUM + 1];

#define GPR     (&registers[0])
#if defined(HASFPU)
#define FGRIDX  (38)
#define FGR     (&registers[FGRIDX])
#endif /* HASFPU */
#define LO      (registers[33])
#define HI      (registers[34])
#define PC      (registers[37])
#define CAUSE   (registers[36])
#define SRIDX   (32)
#define SR      (registers[SRIDX])      /* CPU status register */
#define FCR0IDX  (71)
#define FCR0    (registers[FCR0IDX])    /* really a 32bit register */
#define FCR31IDX (70)
#define FCR31   (registers[FCR31IDX])   /* really a 32bit register */
#define FCSR    (FCR31)
#define COCIDX  (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */

/* The following are pseudonyms for standard registers */
#define ZERO    (registers[0])
#define V0      (registers[2])
#define A0      (registers[4])
#define A1      (registers[5])
#define A2      (registers[6])
#define A3      (registers[7])
#define SP      (registers[29])
#define RA      (registers[31])


/* start-sanitize-r5900 */
/* 
The R5900 has 128 bit registers, but the hi 64 bits are only touched by 
multimedia (MMI) instructions.  The normal mips instructions just use the
lower 64 bits.  To avoid changing the older parts of the simulator to 
handle this weirdness, the high 64 bits of each register are kept in 
a separate array (registers1).  The high 64 bits of any register are by
convention refered by adding a '1' to the end of the normal register's 
name.  So LO still refers to the low 64 bits of the LO register, LO1
refers to the high 64 bits of that same register.
*/

/* The high part of each register */
static ut_reg registers1[LAST_EMBED_REGNUM + 1];

#define GPR1     (&registers1[0])

#define LO1      (registers1[33])
#define HI1      (registers1[34])

#define BYTES_IN_MMI_REGS       (sizeof(registers[0])+sizeof(registers1[0]))
#define HALFWORDS_IN_MMI_REGS   (BYTES_IN_MMI_REGS/2)
#define WORDS_IN_MMI_REGS       (BYTES_IN_MMI_REGS/4)
#define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)

#define BYTES_IN_MIPS_REGS       (sizeof(registers[0]))
#define HALFWORDS_IN_MIPS_REGS   (BYTES_IN_MIPS_REGS/2)
#define WORDS_IN_MIPS_REGS       (BYTES_IN_MIPS_REGS/4)
#define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)


/*
SUB_REG_FETCH - return as lvalue some sub-part of a "register"
   T  - type of the sub part
   TC - # of T's in the mips part of the "register"
   I  - index (from 0) of desired sub part
   A  - low part of "register"
   A1 - high part of register
*/
#define SUB_REG_FETCH(T,TC,A,A1,I) (*(((T*)(((I) < (TC)) ? (A) : (A1))) + ((I) % (TC))))

/* 
GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R 
            where <type> has two letters:
                  1 is S=signed or U=unsigned
                  2 is B=byte H=halfword W=word D=doubleword 
*/

#define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed char,       BYTES_IN_MIPS_REGS,       A, A1, I)
#define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed short,      HALFWORDS_IN_MIPS_REGS,   A, A1, I)
#define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed int,        WORDS_IN_MIPS_REGS,       A, A1, I)
#define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed long long,  DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)

#define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned char,     BYTES_IN_MIPS_REGS,       A, A1, I)
#define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned short,    HALFWORDS_IN_MIPS_REGS,   A, A1, I)
#define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned int,      WORDS_IN_MIPS_REGS,       A, A1, I)
#define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned long long,DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)



#define GPR_SB(R,I) SUB_REG_SB(&registers[R], &registers1[R], I)
#define GPR_SH(R,I) SUB_REG_SH(&registers[R], &registers1[R], I)
#define GPR_SW(R,I) SUB_REG_SW(&registers[R], &registers1[R], I)
#define GPR_SD(R,I) SUB_REG_SD(&registers[R], &registers1[R], I)

#define GPR_UB(R,I) SUB_REG_UB(&registers[R], &registers1[R], I)
#define GPR_UH(R,I) SUB_REG_UH(&registers[R], &registers1[R], I)
#define GPR_UW(R,I) SUB_REG_UW(&registers[R], &registers1[R], I)
#define GPR_UD(R,I) SUB_REG_UD(&registers[R], &registers1[R], I)


#define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
#define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
#define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
#define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)

#define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
#define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
#define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
#define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)

#define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
#define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
#define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
#define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)

#define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
#define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
#define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
#define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)



#define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
#define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
#define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
#define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)

#define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
#define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
#define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
#define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)

#define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
#define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
#define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
#define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)

#define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
#define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
#define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
#define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
/* end-sanitize-r5900 */


/* start-sanitize-r5900 */
static ut_reg SA;        /* the shift amount register */
/* end-sanitize-r5900 */

static ut_reg EPC = 0; /* Exception PC */

#if defined(HASFPU)
/* Keep the current format state for each register: */
static FP_formats fpr_state[32];
#endif /* HASFPU */

/* The following are internal simulator state variables: */
static ut_reg IPC = 0; /* internal Instruction PC */
static ut_reg DSPC = 0;  /* delay-slot PC */


/* TODO : these should be the bitmasks for these bits within the
   status register. At the moment the following are VR4300
   bit-positions: */
#define status_KSU_mask  (0x3)          /* mask for KSU bits */
#define status_KSU_shift (3)            /* shift for field */
#define ksu_kernel       (0x0)
#define ksu_supervisor   (0x1)
#define ksu_user         (0x2)
#define ksu_unknown      (0x3)

#define status_RE        (1 << 25)      /* Reverse Endian in user mode */
#define status_FR        (1 << 26)      /* enables MIPS III additional FP registers */
#define status_SR        (1 << 20)      /* soft reset or NMI */
#define status_BEV       (1 << 22)      /* Location of general exception vectors */
#define status_TS        (1 << 21)      /* TLB shutdown has occurred */
#define status_ERL       (1 <<  2)      /* Error level */
#define status_RP        (1 << 27)      /* Reduced Power mode */

#define cause_BD        ((unsigned)1 << 31)     /* Exception in branch delay slot */

#if defined(HASFPU)
/* Macro to update FPSR condition-code field. This is complicated by
   the fact that there is a hole in the index range of the bits within
   the FCSR register. Also, the number of bits visible depends on the
   MIPS ISA version being supported. */
#define SETFCC(cc,v) {\
                    int bit = ((cc == 0) ? 23 : (24 + (cc)));\
                    FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
                  }
#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)

/* This should be the COC1 value at the start of the preceding
   instruction: */
#define PREVCOC1() ((state & simPCOC1) ? 1 : 0)
#endif /* HASFPU */

/* Standard FCRS bits: */
#define IR (0) /* Inexact Result */
#define UF (1) /* UnderFlow */
#define OF (2) /* OverFlow */
#define DZ (3) /* Division by Zero */
#define IO (4) /* Invalid Operation */
#define UO (5) /* Unimplemented Operation */

/* Get masks for individual flags: */
#if 1 /* SAFE version */
#define FP_FLAGS(b)  (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
#define FP_CAUSE(b)  (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
#else
#define FP_FLAGS(b)  (1 << ((b) + 2))
#define FP_ENABLE(b) (1 << ((b) + 7))
#define FP_CAUSE(b)  (1 << ((b) + 12))
#endif

#define FP_FS         (1 << 24) /* MIPS III onwards : Flush to Zero */

#define FP_MASK_RM    (0x3)
#define FP_SH_RM      (0)
#define FP_RM_NEAREST (0) /* Round to nearest        (Round) */
#define FP_RM_TOZERO  (1) /* Round to zero           (Trunc) */
#define FP_RM_TOPINF  (2) /* Round to Plus infinity  (Ceil) */
#define FP_RM_TOMINF  (3) /* Round to Minus infinity (Floor) */
#define GETRM()       (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)

/* Slots for delayed register updates. For the moment we just have a
   fixed number of slots (rather than a more generic, dynamic
   system). This keeps the simulator fast. However, we only allow for
   the register update to be delayed for a single instruction
   cycle. */
#define PSLOTS (5) /* Maximum number of instruction cycles */
static int    pending_in;
static int    pending_out;
static int    pending_total;
static int    pending_slot_count[PSLOTS];
static int    pending_slot_reg[PSLOTS];
static ut_reg pending_slot_value[PSLOTS];

/*---------------------------------------------------------------------------*/
/*-- GDB simulator interface ------------------------------------------------*/
/*---------------------------------------------------------------------------*/

static void dotrace PARAMS((FILE *tracefh,int type,SIM_ADDR address,int width,char *comment,...));
static void sim_warning PARAMS((char *fmt,...));
extern void sim_error PARAMS((char *fmt,...));
static void set_endianness PARAMS((void));
static void ColdReset PARAMS((void));
static int AddressTranslation PARAMS((uword64 vAddr,int IorD,int LorS,uword64 *pAddr,int *CCA,int host,int raw));
static void StoreMemory PARAMS((int CCA,int AccessLength,uword64 MemElem,uword64 MemElem1,uword64 pAddr,uword64 vAddr,int raw));
static void LoadMemory PARAMS((uword64*memvalp,uword64*memval1p,int CCA,int AccessLength,uword64 pAddr,uword64 vAddr,int IorD,int raw));
static void SignalException PARAMS((int exception,...));
static void simulate PARAMS((void));
static long getnum PARAMS((char *value));
extern void sim_size PARAMS((unsigned int newsize));
extern void sim_set_profile PARAMS((int frequency));
static unsigned int power2 PARAMS((unsigned int value));

/*---------------------------------------------------------------------------*/

/* The following are not used for MIPS IV onwards: */
#define PENDING_FILL(r,v) {\
/* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",pending_in,pending_out,pending_total); */\
                            if (pending_slot_reg[pending_in] != (LAST_EMBED_REGNUM + 1))\
                             sim_warning("Attempt to over-write pending value");\
                            pending_slot_count[pending_in] = 2;\
                            pending_slot_reg[pending_in] = (r);\
                            pending_slot_value[pending_in] = (uword64)(v);\
/*printf("DBG: FILL        reg %d value = 0x%s\n",(r),pr_addr(v));*/\
                            pending_total++;\
                            pending_in++;\
                            if (pending_in == PSLOTS)\
                             pending_in = 0;\
/*printf("DBG: FILL AFTER  pending_in = %d, pending_out = %d, pending_total = %d\n",pending_in,pending_out,pending_total);*/\
                          }

static int LLBIT = 0;
/* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
   read-write instructions. It is set when a linked load occurs. It is
   tested and cleared by the conditional store. It is cleared (during
   other CPU operations) when a store to the location would no longer
   be atomic. In particular, it is cleared by exception return
   instructions. */

static int HIACCESS = 0;
static int LOACCESS = 0;
static int HI1ACCESS = 0;
static int LO1ACCESS = 0;
/* The HIACCESS and LOACCESS counts are used to ensure that
   corruptions caused by using the HI or LO register to close to a
   following operation are spotted. */
static ut_reg HLPC = 0;

/* ??? The 4300 and a few other processors have interlocks on hi/lo register
   reads, and hence do not have this problem.  To avoid spurious warnings,
   we just disable this always.  */
#if 1
#define CHECKHILO(s)
#else
/* If either of the preceding two instructions have accessed the HI or
   LO registers, then the values they see should be
   undefined. However, to keep the simulator world simple, we just let
   them use the value read and raise a warning to notify the user: */
#define CHECKHILO(s)    {\
                          if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\
                            sim_warning("%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
                        }
#endif

/* NOTE: We keep the following status flags as bit values (1 for true,
   0 for false). This allows them to be used in binary boolean
   operations without worrying about what exactly the non-zero true
   value is. */

/* UserMode */
#define UserMode        ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)

/* BigEndianMem */
/* Hardware configuration. Affects endianness of LoadMemory and
   StoreMemory and the endianness of Kernel and Supervisor mode
   execution. The value is 0 for little-endian; 1 for big-endian. */
#define BigEndianMem    ((state & simBE) ? 1 : 0)

/* ByteSwapMem */
/* This is true if the host and target have different endianness.  */
#define ByteSwapMem (!(state & simHOSTBE) != !(state & simBE))

/* ReverseEndian */
/* This mode is selected if in User mode with the RE bit being set in
   SR (Status Register). It reverses the endianness of load and store
   instructions. */
#define ReverseEndian   (((SR & status_RE) && UserMode) ? 1 : 0)

/* BigEndianCPU */
/* The endianness for load and store instructions (0=little;1=big). In
   User mode this endianness may be switched by setting the state_RE
   bit in the SR register. Thus, BigEndianCPU may be computed as
   (BigEndianMem EOR ReverseEndian). */
#define BigEndianCPU    (BigEndianMem ^ ReverseEndian) /* Already bits */

#if !defined(FASTSIM) || defined(PROFILE)
/* At the moment these values will be the same, since we do not have
   access to the pipeline cycle count information from the simulator
   engine. */
static unsigned int instruction_fetches = 0;
static unsigned int instruction_fetch_overflow = 0;
static unsigned int pipeline_ticks = 0;
#endif

/* Flags in the "state" variable: */
#define simSTOP         (1 << 0)  /* 0 = execute; 1 = stop simulation */
#define simSTEP         (1 << 1)  /* 0 = run; 1 = single-step */
#define simHALTEX       (1 << 2)  /* 0 = run; 1 = halt on exception */
#define simHALTIN       (1 << 3)  /* 0 = run; 1 = halt on interrupt */
#define simTRACE        (1 << 8)  /* 0 = do nothing; 1 = trace address activity */
#define simPROFILE      (1 << 9)  /* 0 = do nothing; 1 = gather profiling samples */
#define simHOSTBE       (1 << 10) /* 0 = little-endian; 1 = big-endian (host endianness) */
/* Whilst simSTOP is not set, the simulator control loop should just
   keep simulating instructions. The simSTEP flag is used to force
   single-step execution. */
#define simBE           (1 << 16) /* 0 = little-endian; 1 = big-endian (target endianness) */
#define simPCOC0        (1 << 17) /* COC[1] from current */
#define simPCOC1        (1 << 18) /* COC[1] from previous */
#define simDELAYSLOT    (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
#define simSKIPNEXT     (1 << 25) /* 0 = do nothing; 1 = skip instruction */
#define simEXCEPTION    (1 << 26) /* 0 = no exception; 1 = exception has occurred */
#define simEXIT         (1 << 27) /* 0 = do nothing; 1 = run-time exit() processing */
#define simSIGINT	(1 << 28)  /* 0 = do nothing; 1 = SIGINT has occured */
#define simJALDELAYSLOT	(1 << 29) /* 1 = in jal delay slot */

static unsigned int state = 0;
static unsigned int rcexit = 0; /* _exit() reason code holder */

#define DELAYSLOT()     {\
                          if (state & simDELAYSLOT)\
                            sim_warning("Delay slot already activated (branch in delay slot?)");\
                          state |= simDELAYSLOT;\
                        }

#define JALDELAYSLOT()	{\
			  DELAYSLOT ();\
			  state |= simJALDELAYSLOT;\
			}

#define NULLIFY()       {\
                          state &= ~simDELAYSLOT;\
                          state |= simSKIPNEXT;\
                        }

#define INDELAYSLOT()	((state & simDELAYSLOT) != 0)
#define INJALDELAYSLOT() ((state & simJALDELAYSLOT) != 0)

#define K0BASE  (0x80000000)
#define K0SIZE  (0x20000000)
#define K1BASE  (0xA0000000)
#define K1SIZE  (0x20000000)

/* Very simple memory model to start with: */
static unsigned char *membank = NULL;
static ut_reg membank_base = K1BASE;
/* The ddb.ld linker script loads text at K1BASE+1MB, and the idt.ld linker
   script loads text at K1BASE+128KB.  We allocate 2MB, so that we have a
   minimum of 1 MB available for the user process.  We must have memory
   above _end in order for sbrk to work.  */
static unsigned membank_size = (2 << 20);

/* Simple run-time monitor support */
static unsigned char *monitor = NULL;
static ut_reg monitor_base = 0xBFC00000;
static unsigned monitor_size = (1 << 11); /* power-of-2 */

static char *logfile = NULL; /* logging disabled by default */
static FILE *logfh = NULL;

#if defined(TRACE)
static char *tracefile = "trace.din"; /* default filename for trace log */
static FILE *tracefh = NULL;
static void open_trace PARAMS((void));
#endif /* TRACE */

#if defined(PROFILE)
static unsigned profile_frequency = 256;
static unsigned profile_nsamples = (128 << 10);
static unsigned short *profile_hist = NULL;
static ut_reg profile_minpc;
static ut_reg profile_maxpc;
static int profile_shift = 0; /* address shift amount */
#endif /* PROFILE */

/* The following are used to provide shortcuts to the required version
   of host<->target copying. This avoids run-time conditionals, which
   would slow the simulator throughput. */
typedef unsigned int (*fnptr_read_word) PARAMS((unsigned char *memory));
typedef unsigned int (*fnptr_swap_word) PARAMS((unsigned int data));
typedef uword64 (*fnptr_read_long) PARAMS((unsigned char *memory));
typedef uword64 (*fnptr_swap_long) PARAMS((uword64 data));

static fnptr_read_word host_read_word;
static fnptr_read_long host_read_long;
static fnptr_swap_word host_swap_word;
static fnptr_swap_long host_swap_long;

/*---------------------------------------------------------------------------*/
/*-- GDB simulator interface ------------------------------------------------*/
/*---------------------------------------------------------------------------*/

SIM_DESC
sim_open (argv)
     char **argv;
{
  if (callback == NULL) {
    fprintf(stderr,"SIM Error: sim_open() called without callbacks attached\n");
    return 0;
  }

  /* The following ensures that the standard file handles for stdin,
     stdout and stderr are initialised: */
  callback->init(callback);

  state = 0;
  CHECKSIM();
  if (state & simEXCEPTION) {
    fprintf(stderr,"This simulator is not suitable for this host configuration\n");
    exit(1);
  }

  {
    int data = 0x12;
    if (*((char *)&data) != 0x12)
     state |= simHOSTBE; /* big-endian host */
  }

  set_endianness ();

#if defined(HASFPU)
  /* Check that the host FPU conforms to IEEE 754-1985 for the SINGLE
     and DOUBLE binary formats. This is a bit nasty, requiring that we
     trust the explicit manifests held in the source: */
  {
    unsigned int s[2];
    s[state & simHOSTBE ? 0 : 1] = 0x40805A5A;
    s[state & simHOSTBE ? 1 : 0] = 0x00000000;

    /* TODO: We need to cope with the simulated target and the host
       not having the same endianness. This will require the high and
       low words of a (double) to be swapped when converting between
       the host and the simulated target. */

    if (((float)4.01102924346923828125 != *(float *)(s + ((state & simHOSTBE) ? 0 : 1))) || ((double)523.2939453125 != *(double *)s)) {
      fprintf(stderr,"The host executing the simulator does not seem to have IEEE 754-1985 std FP\n");
      fprintf(stderr,"*(float *)s = %.20f (4.01102924346923828125)\n",*(float *)s);
      fprintf(stderr,"*(double *)s = %.20f (523.2939453125)\n",*(double *)s);
      exit(1);
    }
  }
#endif /* HASFPU */

  /* This is NASTY, in that we are assuming the size of specific
     registers: */
  {
    int rn;
    for (rn = 0; (rn < (LAST_EMBED_REGNUM + 1)); rn++) {
      if (rn < 32)
       register_widths[rn] = GPRLEN;
      else if ((rn >= FGRIDX) && (rn < (FGRIDX + 32)))
       register_widths[rn] = GPRLEN;
      else if ((rn >= 33) && (rn <= 37))
       register_widths[rn] = GPRLEN;
      else if ((rn == SRIDX) || (rn == FCR0IDX) || (rn == FCR31IDX) || ((rn >= 72) && (rn <= 89)))
       register_widths[rn] = 32;
      else
       register_widths[rn] = 0;
    }
  }

  /* It would be good if we could select particular named MIPS
     architecture simulators. However, having a pre-built, fixed
     engine would mean including multiple engines. If the simulator is
     changed to a run-time conditional version, then the ability to
     select a particular architecture would be straightforward. */
  {
    int c;
    char *cline;
    int argc;
    static struct option cmdline[] = {
      {"help",     0,0,'h'},
      {"log",      1,0,'l'},
      {"name",     1,0,'n'},
      {"profile",  0,0,'p'},
      {"size",     1,0,'s'},
      {"trace",    0,0,'t'},
      {"tracefile",1,0,'z'},
      {"frequency",1,0,'y'},
      {"samples",  1,0,'x'},
      {0,     0,0,0}
    };

    for (argc = 0; argv[argc]; argc++);

    while (1) {
      int option_index = 0;

      c = getopt_long(argc,argv,"hn:s:tp",cmdline,&option_index);
      if (c == -1)
       break;

      switch (c) {
       case 'h':
        callback->printf_filtered(callback,"Usage:\n\t\
target sim [-h] [--log=<file>] [--name=<model>] [--size=<amount>]");
#if defined(TRACE)
        callback->printf_filtered(callback," [-t [--tracefile=<name>]]");
#endif /* TRACE */
#if defined(PROFILE)
        callback->printf_filtered(callback," [-p [--frequency=<count>] [--samples=<count>]]");
#endif /* PROFILE */
        callback->printf_filtered(callback,"\n");
        break;

       case 'l':
        if (optarg != NULL) {
          char *tmp;
          tmp = (char *)malloc(strlen(optarg) + 1);
          if (tmp == NULL)
           callback->printf_filtered(callback,"Failed to allocate buffer for logfile name \"%s\"\n",optarg);
          else {
            strcpy(tmp,optarg);
            logfile = tmp;
          }
        }
        break;

       case 'n':
        callback->printf_filtered(callback,"Explicit model selection not yet available (Ignoring \"%s\")\n",optarg);
        break;

       case 's':
        membank_size = (unsigned)getnum(optarg);
        break;

       case 't':
#if defined(TRACE)
        /* Eventually the simTRACE flag could be treated as a toggle, to
           allow external control of the program points being traced
           (i.e. only from main onwards, excluding the run-time setup,
           etc.). */
        state |= simTRACE;
#else /* !TRACE */
        fprintf(stderr,"\
Simulator constructed without tracing support (for performance).\n\
Re-compile simulator with \"-DTRACE\" to enable this option.\n");
#endif /* !TRACE */
        break;

       case 'z':
#if defined(TRACE)
        if (optarg != NULL) {
          char *tmp;
          tmp = (char *)malloc(strlen(optarg) + 1);
          if (tmp == NULL)
           callback->printf_filtered(callback,"Failed to allocate buffer for tracefile name \"%s\"\n",optarg);
          else {
            strcpy(tmp,optarg);
            tracefile = tmp;
            callback->printf_filtered(callback,"Placing trace information into file \"%s\"\n",tracefile);
          }
        }
#endif /* TRACE */
        break;

       case 'p':
#if defined(PROFILE)
        state |= simPROFILE;
#else /* !PROFILE */
        fprintf(stderr,"\
Simulator constructed without profiling support (for performance).\n\
Re-compile simulator with \"-DPROFILE\" to enable this option.\n");
#endif /* !PROFILE */
        break;

       case 'x':
#if defined(PROFILE)
        profile_nsamples = (unsigned)getnum(optarg);
#endif /* PROFILE */
        break;

       case 'y':
#if defined(PROFILE)
        sim_set_profile((int)getnum(optarg));
#endif /* PROFILE */
        break;

       default:
        callback->printf_filtered(callback,"Warning: Simulator getopt returned unrecognised code 0x%08X\n",c);
       case '?':
        break;
      }
    }

#if 0
    if (optind < argc) {
      callback->printf_filtered(callback,"Warning: Ignoring spurious non-option arguments ");
      while (optind < argc)
       callback->printf_filtered(callback,"\"%s\" ",argv[optind++]);
      callback->printf_filtered(callback,"\n");
    }
#endif
  }

  if (logfile != NULL) {
    if (strcmp(logfile,"-") == 0)
     logfh = stdout;
    else {
      logfh = fopen(logfile,"wb+");
      if (logfh == NULL) {
        callback->printf_filtered(callback,"Failed to create file \"%s\", writing log information to stderr.\n",tracefile);
        logfh = stderr;
      }
    }
  }

  /* If the host has "mmap" available we could use it to provide a
     very large virtual address space for the simulator, since memory
     would only be allocated within the "mmap" space as it is
     accessed. This can also be linked to the architecture specific
     support, required to simulate the MMU. */
  sim_size(membank_size);
  /* NOTE: The above will also have enabled any profiling state */

  ColdReset();
  /* If we were providing a more complete I/O, co-processor or memory
     simulation, we should perform any "device" initialisation at this
     point. This can include pre-loading memory areas with particular
     patterns (e.g. simulating ROM monitors). */

  /* We can start writing to the memory, now that the processor has
     been reset: */
  monitor = (unsigned char *)calloc(1,monitor_size);
  if (!monitor) {
    fprintf(stderr,"Not enough VM for monitor simulation (%d bytes)\n",monitor_size);
  } else {
    unsigned loop;
    /* Entry into the IDT monitor is via fixed address vectors, and
       not using machine instructions. To avoid clashing with use of
       the MIPS TRAP system, we place our own (simulator specific)
       "undefined" instructions into the relevant vector slots. */
    for (loop = 0; (loop < monitor_size); loop += 4) {
      uword64 vaddr = (monitor_base + loop);
      uword64 paddr;
      int cca;
      if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isRAW))
       StoreMemory(cca,AccessLength_WORD,(RSVD_INSTRUCTION | (((loop >> 2) & RSVD_INSTRUCTION_ARG_MASK) << RSVD_INSTRUCTION_ARG_SHIFT)),0,paddr,vaddr,isRAW);
    }
    /* The PMON monitor uses the same address space, but rather than
       branching into it the address of a routine is loaded. We can
       cheat for the moment, and direct the PMON routine to IDT style
       instructions within the monitor space. This relies on the IDT
       monitor not using the locations from 0xBFC00500 onwards as its
       entry points.*/
    for (loop = 0; (loop < 24); loop++)
      {
        uword64 vaddr = (monitor_base + 0x500 + (loop * 4));
        uword64 paddr;
        int cca;
        unsigned int value = ((0x500 - 8) / 8); /* default UNDEFINED reason code */
        switch (loop)
          {
            case 0: /* read */
              value = 7;
              break;

            case 1: /* write */
              value = 8;
              break;

            case 2: /* open */
              value = 6;
              break;

            case 3: /* close */
              value = 10;
              break;

            case 5: /* printf */
              value = ((0x500 - 16) / 8); /* not an IDT reason code */
              break;

            case 8: /* cliexit */
              value = 17;
              break;

            case 11: /* flush_cache */
              value = 28;
              break;
          }
	    /* FIXME - should monitor_base be SIM_ADDR?? */
        value = ((unsigned int)monitor_base + (value * 8));
        if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isRAW))
          StoreMemory(cca,AccessLength_WORD,value,0,paddr,vaddr,isRAW);
        else
          sim_error("Failed to write to monitor space 0x%s",pr_addr(vaddr));

	/* The LSI MiniRISC PMON has its vectors at 0x200, not 0x500.  */
	vaddr -= 0x300;
        if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isRAW))
          StoreMemory(cca,AccessLength_WORD,value,0,paddr,vaddr,isRAW);
        else
          sim_error("Failed to write to monitor space 0x%s",pr_addr(vaddr));
      }
  }

#if defined(TRACE)
  if (state & simTRACE)
    open_trace();
#endif /* TRACE */

  /* fudge our descriptor for now */
  return (SIM_DESC) 1;
}

#if defined(TRACE)
static void
open_trace()
{
  tracefh = fopen(tracefile,"wb+");
  if (tracefh == NULL)
    {
      sim_warning("Failed to create file \"%s\", writing trace information to stderr.",tracefile);
      tracefh = stderr;
  }
}
#endif /* TRACE */

/* For the profile writing, we write the data in the host
   endianness. This unfortunately means we are assuming that the
   profile file we create is processed on the same host executing the
   simulator. The gmon.out file format should either have an explicit
   endianness, or a method of encoding the endianness in the file
   header. */
static int
writeout32(fh,val)
     FILE *fh;
     unsigned int val;
{
  char buff[4];
  int res = 1;

  if (state & simHOSTBE) {
    buff[3] = ((val >>  0) & 0xFF);
    buff[2] = ((val >>  8) & 0xFF);
    buff[1] = ((val >> 16) & 0xFF);
    buff[0] = ((val >> 24) & 0xFF);
  } else {
    buff[0] = ((val >>  0) & 0xFF);
    buff[1] = ((val >>  8) & 0xFF);
    buff[2] = ((val >> 16) & 0xFF);
    buff[3] = ((val >> 24) & 0xFF);
  }
  if (fwrite(buff,4,1,fh) != 1) {
    sim_warning("Failed to write 4bytes to the profile file");
    res = 0;
  }
  return(res);
}

static int
writeout16(fh,val)
     FILE *fh;
     unsigned short val;
{
  char buff[2];
  int res = 1;
  if (state & simHOSTBE) {
    buff[1] = ((val >>  0) & 0xFF);
    buff[0] = ((val >>  8) & 0xFF);
  } else {
    buff[0] = ((val >>  0) & 0xFF);
    buff[1] = ((val >>  8) & 0xFF);
  }
  if (fwrite(buff,2,1,fh) != 1) {
    sim_warning("Failed to write 2bytes to the profile file");
    res = 0;
  }
  return(res);
}

void
sim_close (sd, quitting)
     SIM_DESC sd;
     int quitting;
{
#ifdef DEBUG
  printf("DBG: sim_close: entered (quitting = %d)\n",quitting);
#endif

  /* Cannot assume sim_kill() has been called */
  /* "quitting" is non-zero if we cannot hang on errors */

  /* Ensure that any resources allocated through the callback
     mechanism are released: */
  callback->shutdown(callback);

#if defined(PROFILE)
  if ((state & simPROFILE) && (profile_hist != NULL)) {
    unsigned short *p = profile_hist;
    FILE *pf = fopen("gmon.out","wb");
    unsigned loop;

    if (pf == NULL)
     sim_warning("Failed to open \"gmon.out\" profile file");
    else {
      int ok;
#ifdef DEBUG
      printf("DBG: minpc = 0x%s\n",pr_addr(profile_minpc));
      printf("DBG: maxpc = 0x%s\n",pr_addr(profile_maxpc));
#endif /* DEBUG */
      ok = writeout32(pf,(unsigned int)profile_minpc);
      if (ok)
       ok = writeout32(pf,(unsigned int)profile_maxpc);
      if (ok)
       ok = writeout32(pf,(profile_nsamples * 2) + 12); /* size of sample buffer (+ header) */
#ifdef DEBUG
      printf("DBG: nsamples = %d (size = 0x%08X)\n",profile_nsamples,((profile_nsamples * 2) + 12));
#endif /* DEBUG */
      for (loop = 0; (ok && (loop < profile_nsamples)); loop++) {
        ok = writeout16(pf,profile_hist[loop]);
        if (!ok)
         break;
      }

      fclose(pf);
    }

    free(profile_hist);
    profile_hist = NULL;
    state &= ~simPROFILE;
  }
#endif /* PROFILE */

#if defined(TRACE)
  if (tracefh != NULL && tracefh != stderr)
   fclose(tracefh);
  tracefh = NULL;
  state &= ~simTRACE;
#endif /* TRACE */

  if (logfh != NULL && logfh != stdout && logfh != stderr)
   fclose(logfh);
  logfh = NULL;

  if (membank)
   free(membank); /* cfree not available on all hosts */
  membank = NULL;

  return;
}

void
control_c (sig, code, scp, addr)
     int sig;
     int code;
     char *scp;
     char *addr;
{
  state |= (simSTOP | simSIGINT);
}

void
sim_resume (sd,step,signal_number)
     SIM_DESC sd;
     int step, signal_number;
{
  void (*prev) ();

#ifdef DEBUG
  printf("DBG: sim_resume entered: step = %d, signal = %d (membank = 0x%08X)\n",step,signal_number,membank);
#endif /* DEBUG */

  if (step)
   state |= simSTEP; /* execute only a single instruction */
  else
   state &= ~(simSTOP | simSTEP); /* execute until event */

  state |= (simHALTEX | simHALTIN); /* treat interrupt event as exception */

  /* Start executing instructions from the current state (set
     explicitly by register updates, or by sim_create_inferior): */

  prev = signal (SIGINT, control_c);

  simulate();

  signal (SIGINT, prev);

  return;
}

int
sim_write (sd,addr,buffer,size)
     SIM_DESC sd;
     SIM_ADDR addr;
     unsigned char *buffer;
     int size;
{
  int index = size;
  uword64 vaddr = (uword64)addr;

  /* Return the number of bytes written, or zero if error. */
#ifdef DEBUG
  callback->printf_filtered(callback,"sim_write(0x%s,buffer,%d);\n",pr_addr(addr),size);
#endif

  /* We provide raw read and write routines, since we do not want to
     count the GDB memory accesses in our statistics gathering. */

  /* There is a lot of code duplication in the individual blocks
     below, but the variables are declared locally to a block to give
     the optimiser the best chance of improving the code. We have to
     perform slow byte reads from the host memory, to ensure that we
     get the data into the correct endianness for the (simulated)
     target memory world. */

  /* Mask count to get odd byte, odd halfword, and odd word out of the
     way. We can then perform doubleword transfers to and from the
     simulator memory for optimum performance. */
  if (index && (index & 1)) {
    uword64 paddr;
    int cca;
    if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isRAW)) {
      uword64 value = ((uword64)(*buffer++));
      StoreMemory(cca,AccessLength_BYTE,value,0,paddr,vaddr,isRAW);
    }
    vaddr++;
    index &= ~1; /* logical operations usually quicker than arithmetic on RISC systems */
  }
  if (index && (index & 2)) {
    uword64 paddr;
    int cca;
    if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isRAW)) {
      uword64 value;
      /* We need to perform the following magic to ensure that that
         bytes are written into same byte positions in the target memory
         world, regardless of the endianness of the host. */
      if (BigEndianMem) {
        value =  ((uword64)(*buffer++) << 8);
        value |= ((uword64)(*buffer++) << 0);
      } else {
        value =  ((uword64)(*buffer++) << 0);
        value |= ((uword64)(*buffer++) << 8);
      }
      StoreMemory(cca,AccessLength_HALFWORD,value,0,paddr,vaddr,isRAW);
    }
    vaddr += 2;
    index &= ~2;
  }
  if (index && (index & 4)) {
    uword64 paddr;
    int cca;
    if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isRAW)) {
      uword64 value;
      if (BigEndianMem) {
        value =  ((uword64)(*buffer++) << 24);
        value |= ((uword64)(*buffer++) << 16);
        value |= ((uword64)(*buffer++) << 8);
        value |= ((uword64)(*buffer++) << 0);
      } else {
        value =  ((uword64)(*buffer++) << 0);
        value |= ((uword64)(*buffer++) << 8);
        value |= ((uword64)(*buffer++) << 16);
        value |= ((uword64)(*buffer++) << 24);
      }
      StoreMemory(cca,AccessLength_WORD,value,0,paddr,vaddr,isRAW);
    }
    vaddr += 4;
    index &= ~4;
  }
  for (;index; index -= 8) {
    uword64 paddr;
    int cca;
    if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isRAW)) {
      uword64 value;
      if (BigEndianMem) {
        value =  ((uword64)(*buffer++) << 56);
        value |= ((uword64)(*buffer++) << 48);
        value |= ((uword64)(*buffer++) << 40);
        value |= ((uword64)(*buffer++) << 32);
        value |= ((uword64)(*buffer++) << 24);
        value |= ((uword64)(*buffer++) << 16);
        value |= ((uword64)(*buffer++) << 8);
        value |= ((uword64)(*buffer++) << 0);
      } else {
        value =  ((uword64)(*buffer++) << 0);
        value |= ((uword64)(*buffer++) << 8);
        value |= ((uword64)(*buffer++) << 16);
        value |= ((uword64)(*buffer++) << 24);
        value |= ((uword64)(*buffer++) << 32);
        value |= ((uword64)(*buffer++) << 40);
        value |= ((uword64)(*buffer++) << 48);
        value |= ((uword64)(*buffer++) << 56);
      }
      StoreMemory(cca,AccessLength_DOUBLEWORD,value,0,paddr,vaddr,isRAW);
    }
    vaddr += 8;
  }

  return(size);
}

int
sim_read (sd,addr,buffer,size)
     SIM_DESC sd;
     SIM_ADDR addr;
     unsigned char *buffer;
     int size;
{
  int index;

  /* Return the number of bytes read, or zero if error. */
#ifdef DEBUG
  callback->printf_filtered(callback,"sim_read(0x%s,buffer,%d);\n",pr_addr(addr),size);
#endif /* DEBUG */

  /* TODO: Perform same optimisation as the sim_write() code
     above. NOTE: This will require a bit more work since we will need
     to ensure that the source physical address is doubleword aligned
     before, and then deal with trailing bytes. */
  for (index = 0; (index < size); index++) {
    uword64 vaddr,paddr,value;
    int cca;
    vaddr = (uword64)addr + index;
    if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&cca,isTARGET,isRAW)) {
      LoadMemory(&value,NULL,cca,AccessLength_BYTE,paddr,vaddr,isDATA,isRAW);
      buffer[index] = (unsigned char)(value&0xFF);
    } else
     break;
  }

  return(index);
}

void
sim_store_register (sd,rn,memory)
     SIM_DESC sd;
     int rn;
     unsigned char *memory;
{
#ifdef DEBUG
  callback->printf_filtered(callback,"sim_store_register(%d,*memory=0x%s);\n",rn,pr_addr(*((SIM_ADDR *)memory)));
#endif /* DEBUG */

  /* Unfortunately this suffers from the same problem as the register
     numbering one. We need to know what the width of each logical
     register number is for the architecture being simulated. */
  if (register_widths[rn] == 0)
   sim_warning("Invalid register width for %d (register store ignored)",rn);
  else {
    if (register_widths[rn] == 32)
     registers[rn] = host_read_word(memory);
    else
     registers[rn] = host_read_long(memory);
  }

  return;
}

void
sim_fetch_register (sd,rn,memory)
     SIM_DESC sd;
     int rn;
     unsigned char *memory;
{
#ifdef DEBUG
  callback->printf_filtered(callback,"sim_fetch_register(%d=0x%s,mem) : place simulator registers into memory\n",rn,pr_addr(registers[rn]));
#endif /* DEBUG */

  if (register_widths[rn] == 0)
   sim_warning("Invalid register width for %d (register fetch ignored)",rn);
  else {
    if (register_widths[rn] == 32)
     *((unsigned int *)memory) = host_swap_word((unsigned int)(registers[rn] & 0xFFFFFFFF));
    else /* 64bit register */
     *((uword64 *)memory) = host_swap_long(registers[rn]);
  }
  return;
}

void
sim_stop_reason (sd,reason,sigrc)
     SIM_DESC sd;
     enum sim_stop *reason;
     int *sigrc;
{
/* We can have "*reason = {sim_exited, sim_stopped, sim_signalled}", so
	sim_exited        *sigrc = argument to exit()
	sim_stopped       *sigrc = exception number
	sim_signalled     *sigrc = signal number
*/
  if (state & simEXCEPTION) {
    /* If "sim_signalled" is used, GDB expects normal SIGNAL numbers,
       and not the MIPS specific exception codes. */
#if 1
    /* For some reason, sending GDB a sim_signalled reason cause it to
       terminate out. */
    *reason = sim_stopped;
#else
    *reason = sim_signalled;
#endif
    switch ((CAUSE >> 2) & 0x1F) {
      case Interrupt:
       *sigrc = SIGINT; /* wrong type of interrupt, but it will do for the moment */
       break;

      case TLBModification:
      case TLBLoad:
      case TLBStore:
      case AddressLoad:
      case AddressStore:
      case InstructionFetch:
      case DataReference:
       *sigrc = SIGBUS;
       break;

      case ReservedInstruction:
      case CoProcessorUnusable:
       *sigrc = SIGILL;
       break;

      case IntegerOverflow:
      case FPE:
       *sigrc = SIGFPE;
       break;

      case Trap:
      case Watch:
      case SystemCall:
      case BreakPoint:
       *sigrc = SIGTRAP;
       break;

      default : /* Unknown internal exception */
       *sigrc = SIGQUIT;
       break;
    }
  } else if (state & simEXIT) {
#if DEBUG
    printf("DBG: simEXIT (%d)\n",rcexit);
#endif
    *reason = sim_exited;
    *sigrc = rcexit;
  } else if (state & simSIGINT) {
    *reason = sim_stopped;
    *sigrc = SIGINT;
  } else { /* assume single-stepping */
    *reason = sim_stopped;
    *sigrc = SIGTRAP;
  }
  state &= ~(simEXCEPTION | simEXIT | simSIGINT);
  return;
}

void
sim_info (sd,verbose)
     SIM_DESC sd;
     int verbose;
{
  /* Accessed from the GDB "info files" command: */

  callback->printf_filtered(callback,"MIPS %d-bit simulator\n",(PROCESSOR_64BIT ? 64 : 32));

  callback->printf_filtered(callback,"%s endian memory model\n",(state & simBE ? "Big" : "Little"));

  callback->printf_filtered(callback,"0x%08X bytes of memory at 0x%s\n",(unsigned int)membank_size,pr_addr(membank_base));

#if !defined(FASTSIM)
  if (instruction_fetch_overflow != 0)
    callback->printf_filtered(callback,"Instruction fetches = 0x%08X%08X\n",instruction_fetch_overflow,instruction_fetches);
  else
    callback->printf_filtered(callback,"Instruction fetches = %d\n",instruction_fetches);
  callback->printf_filtered(callback,"Pipeline ticks = %d\n",pipeline_ticks);
  /* It would be a useful feature, if when performing multi-cycle
     simulations (rather than single-stepping) we keep the start and
     end times of the execution, so that we can give a performance
     figure for the simulator. */
#endif /* !FASTSIM */

  /* print information pertaining to MIPS ISA and architecture being simulated */
  /* things that may be interesting */
  /* instructions executed - if available */
  /* cycles executed - if available */
  /* pipeline stalls - if available */
  /* virtual time taken */
  /* profiling size */
  /* profiling frequency */
  /* profile minpc */
  /* profile maxpc */

  return;
}

int
sim_load (sd,prog,from_tty)
     SIM_DESC sd;
     char *prog;
     int from_tty;
{
  /* Return non-zero if the caller should handle the load. Zero if
     we have loaded the image. */
  return(-1);
}

void
sim_create_inferior (sd, start_address,argv,env)
     SIM_DESC sd;
     SIM_ADDR start_address;
     char **argv;
     char **env;
{
#ifdef DEBUG
  printf("DBG: sim_create_inferior entered: start_address = 0x%s\n",pr_addr(start_address));
#endif /* DEBUG */

  /* Prepare to execute the program to be simulated */
  /* argv and env are NULL terminated lists of pointers */

#if 1
  PC = (uword64)start_address;
#else
  /* TODO: Sort this properly. SIM_ADDR may already be a 64bit value: */
  PC = SIGNEXTEND(start_address,32);
#endif
  /* NOTE: GDB normally sets the PC explicitly. However, this call is
     used by other clients of the simulator. */

  if (argv || env) {
#if 0 /* def DEBUG */
    callback->printf_filtered(callback,"sim_create_inferior() : passed arguments ignored\n");
    {
     char **cptr;
     for (cptr = argv; (cptr && *cptr); cptr++)
      printf("DBG: arg \"%s\"\n",*cptr);
    }
#endif /* DEBUG */
    /* We should really place the argv slot values into the argument
       registers, and onto the stack as required. However, this
       assumes that we have a stack defined, which is not necessarily
       true at the moment. */
  }

  return;
}

void
sim_kill (sd)
     SIM_DESC sd;
{
#if 1
  /* This routine should be for terminating any existing simulation
     thread. Since we are single-threaded only at the moment, this is
     not an issue. It should *NOT* be used to terminate the
     simulator. */
#else /* do *NOT* call sim_close */
  sim_close(sd, 1); /* Do not hang on errors */
  /* This would also be the point where any memory mapped areas used
     by the simulator should be released. */
#endif
  return;
}

ut_reg
sim_get_quit_code ()
{
  /* The standard MIPS PCS (Procedure Calling Standard) uses V0(r2) as
     the function return value. However, it may be more correct for
     this to return the argument to the exit() function (if
     called). */
  return(V0);
}

void
sim_set_callbacks (sd,p)
     SIM_DESC sd;
     host_callback *p;
{
  callback = p;
  return;
}

typedef enum {e_terminate,e_help,e_setmemsize,e_reset} e_cmds;

static struct t_sim_command {
 e_cmds id;
 const char *name;
 const char *help;
} sim_commands[] = {
  {e_help,      "help",           ": Show MIPS simulator private commands"},
  {e_setmemsize,"set-memory-size","<n> : Specify amount of memory simulated"},
  {e_reset,     "reset-system",   ": Reset the simulated processor"},
  {e_terminate, NULL}
};

void
sim_do_command (sd,cmd)
     SIM_DESC sd;
     char *cmd;
{
  struct t_sim_command *cptr;

  if (callback == NULL) {
    fprintf(stderr,"Simulator not enabled: \"target sim\" should be used to activate\n");
    return;
  }

  if (!(cmd && *cmd != '\0'))
   cmd = "help";

  /* NOTE: Accessed from the GDB "sim" commmand: */
  for (cptr = sim_commands; cptr && cptr->name; cptr++)
   if (strncmp(cmd,cptr->name,strlen(cptr->name)) == 0) {
     cmd += strlen(cptr->name);
     switch (cptr->id) {
       case e_help: /* no arguments */
        { /* no arguments */
          struct t_sim_command *lptr;
          callback->printf_filtered(callback,"List of MIPS simulator commands:\n");
          for (lptr = sim_commands; lptr->name; lptr++)
           callback->printf_filtered(callback,"%s %s\n",lptr->name,lptr->help);
        }
        break;

       case e_setmemsize: /* memory size argument */
        {
          unsigned int newsize = (unsigned int)getnum(cmd);
          sim_size(newsize);
        }
        break;

       case e_reset: /* no arguments */
        ColdReset();
        /* NOTE: See the comments in sim_open() relating to device
           initialisation. */
        break;

       default:
        callback->printf_filtered(callback,"FATAL: Matched \"%s\", but failed to match command id %d.\n",cmd,cptr->id);
        break;
     }
     break;
   }

  if (!(cptr->name))
    callback->printf_filtered(callback,"Error: \"%s\" is not a valid MIPS simulator command.\n",cmd);

  return;
}

/*---------------------------------------------------------------------------*/
/* NOTE: The following routines do not seem to be used by GDB at the
   moment. However, they may be useful to the standalone simulator
   world. */


/* The profiling format is described in the "gmon_out.h" header file */
void
sim_set_profile (n)
     int n;
{
#if defined(PROFILE)
  profile_frequency = n;
  state |= simPROFILE;
#endif /* PROFILE */
  return;
}

void
sim_set_profile_size (n)
     int n;
{
#if defined(PROFILE)
  if (state & simPROFILE) {
    int bsize;

    /* Since we KNOW that the memory banks are a power-of-2 in size: */
    profile_nsamples = power2(n);
    profile_minpc = membank_base;
    profile_maxpc = (membank_base + membank_size);

    /* Just in-case we are sampling every address: NOTE: The shift
       right of 2 is because we only have word-aligned PC addresses. */
    if (profile_nsamples > (membank_size >> 2))
     profile_nsamples = (membank_size >> 2);

    /* Since we are dealing with power-of-2 values: */
    profile_shift = (((membank_size >> 2) / profile_nsamples) - 1);

    bsize = (profile_nsamples * sizeof(unsigned short));
    if (profile_hist == NULL)
     profile_hist = (unsigned short *)calloc(64,(bsize / 64));
    else
     profile_hist = (unsigned short *)realloc(profile_hist,bsize);
    if (profile_hist == NULL) {
      sim_warning("Failed to allocate VM for profiling buffer (0x%08X bytes)",bsize);
      state &= ~simPROFILE;
    }
  }
#endif /* PROFILE */

  return;
}

void
sim_size(newsize)
     unsigned int newsize;
{
  char *new;
  /* Used by "run", and internally, to set the simulated memory size */
  if (newsize == 0) {
    callback->printf_filtered(callback,"Zero not valid: Memory size still 0x%08X bytes\n",membank_size);
    return;
  }
  newsize = power2(newsize);
  if (membank == NULL)
   new = (char *)calloc(64,(membank_size / 64));
  else
   new = (char *)realloc(membank,newsize);
  if (new == NULL) {
    if (membank == NULL)
     sim_error("Not enough VM for simulation memory of 0x%08X bytes",membank_size);
    else
     sim_warning("Failed to resize memory (still 0x%08X bytes)",membank_size);
  } else {
    membank_size = (unsigned)newsize;
    membank = new;
#if defined(PROFILE)
    /* Ensure that we sample across the new memory range */
    sim_set_profile_size(profile_nsamples);
#endif /* PROFILE */
  }

  return;
}

int
sim_trace(sd)
     SIM_DESC sd;
{
  /* This routine is called by the "run" program, when detailed
     execution information is required. Rather than executing a single
     instruction, and looping around externally... we just start
     simulating, returning TRUE when the simulator stops (for whatever
     reason). */

#if defined(TRACE)
  /* Ensure tracing is enabled, if available */
  if (tracefh == NULL)
    {
      open_trace();
      state |= simTRACE;
    }
#endif /* TRACE */

  state &= ~(simSTOP | simSTEP); /* execute until event */
  state |= (simHALTEX | simHALTIN); /* treat interrupt event as exception */
  /* Start executing instructions from the current state (set
     explicitly by register updates, or by sim_create_inferior): */
  simulate();

  return(1);
}

/*---------------------------------------------------------------------------*/
/*-- Private simulator support interface ------------------------------------*/
/*---------------------------------------------------------------------------*/

/* Simple monitor interface (currently setup for the IDT and PMON monitors) */
static void
sim_monitor(reason)
     unsigned int reason;
{
#ifdef DEBUG
  printf("DBG: sim_monitor: entered (reason = %d)\n",reason);
#endif /* DEBUG */

  /* The IDT monitor actually allows two instructions per vector
     slot. However, the simulator currently causes a trap on each
     individual instruction. We cheat, and lose the bottom bit. */
  reason >>= 1;

  /* The following callback functions are available, however the
     monitor we are simulating does not make use of them: get_errno,
     isatty, lseek, rename, system, time and unlink */
  switch (reason) {
    case 6: /* int open(char *path,int flags) */
      {
        uword64 paddr;
        int cca;
        if (AddressTranslation(A0,isDATA,isLOAD,&paddr,&cca,isHOST,isREAL))
         V0 = callback->open(callback,(char *)((int)paddr),(int)A1);
        else
         sim_error("Attempt to pass pointer that does not reference simulated memory");
      }
      break;

    case 7: /* int read(int file,char *ptr,int len) */
      {
        uword64 paddr;
        int cca;
        if (AddressTranslation(A1,isDATA,isLOAD,&paddr,&cca,isHOST,isREAL))
         V0 = callback->read(callback,(int)A0,(char *)((int)paddr),(int)A2);
        else
         sim_error("Attempt to pass pointer that does not reference simulated memory");
      }
      break;

    case 8: /* int write(int file,char *ptr,int len) */
      {
        uword64 paddr;
        int cca;
        if (AddressTranslation(A1,isDATA,isLOAD,&paddr,&cca,isHOST,isREAL))
         V0 = callback->write(callback,(int)A0,(const char *)((int)paddr),(int)A2);
        else
         sim_error("Attempt to pass pointer that does not reference simulated memory");
      }
      break;

    case 10: /* int close(int file) */
      V0 = callback->close(callback,(int)A0);
      break;

    case 11: /* char inbyte(void) */
      {
        char tmp;
        if (callback->read_stdin(callback,&tmp,sizeof(char)) != sizeof(char)) {
          sim_error("Invalid return from character read");
          V0 = (ut_reg)-1;
        }
        else
         V0 = (ut_reg)tmp;
      }
      break;

    case 12: /* void outbyte(char chr) : write a byte to "stdout" */
      {
        char tmp = (char)(A0 & 0xFF);
        callback->write_stdout(callback,&tmp,sizeof(char));
      }
      break;

    case 17: /* void _exit() */
      sim_warning("sim_monitor(17): _exit(int reason) to be coded");
      state |= (simSTOP | simEXIT); /* stop executing code */
      rcexit = (unsigned int)(A0 & 0xFFFFFFFF);
      break;

    case 28 : /* PMON flush_cache */
      break;

    case 55: /* void get_mem_info(unsigned int *ptr) */
      /* in:  A0 = pointer to three word memory location */
      /* out: [A0 + 0] = size */
      /*      [A0 + 4] = instruction cache size */
      /*      [A0 + 8] = data cache size */
      {
        uword64 vaddr = A0;
        uword64 paddr, value;
        int cca;
        int failed = 0;

        /* NOTE: We use RAW memory writes here, but since we are not
           gathering statistics for the monitor calls we are simulating,
           it is not an issue. */

        /* Memory size */
        if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isREAL)) {
          value = (uword64)membank_size;
          StoreMemory(cca,AccessLength_WORD,value,0,paddr,vaddr,isRAW);
          /* We re-do the address translations, in-case the block
             overlaps a memory boundary: */
          value = 0;
          vaddr += (AccessLength_WORD + 1);
          if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isREAL)) {
            StoreMemory(cca,AccessLength_WORD,0,value,paddr,vaddr,isRAW);
            vaddr += (AccessLength_WORD + 1);
            if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&cca,isTARGET,isREAL))
             StoreMemory(cca,AccessLength_WORD,value,0,paddr,vaddr,isRAW);
            else
             failed = -1;
          } else
           failed = -1;
        } else
         failed = -1;

        if (failed)
         sim_error("Invalid pointer passed into monitor call");
      }
      break;

    case 158 : /* PMON printf */
      /* in:  A0 = pointer to format string */
      /*      A1 = optional argument 1 */
      /*      A2 = optional argument 2 */
      /*      A3 = optional argument 3 */
      /* out: void */
      /* The following is based on the PMON printf source */
      {
        uword64 paddr;
        int cca;
        /* This isn't the quickest way, since we call the host print
           routine for every character almost. But it does avoid
           having to allocate and manage a temporary string buffer. */
        if (AddressTranslation(A0,isDATA,isLOAD,&paddr,&cca,isHOST,isREAL)) {
          char *s = (char *)((int)paddr);
          ut_reg *ap = &A1; /* 1st argument */
          /* TODO: Include check that we only use three arguments (A1, A2 and A3) */
          for (; *s;) {
            if (*s == '%') {
              char tmp[40];
              enum {FMT_RJUST, FMT_LJUST, FMT_RJUST0, FMT_CENTER} fmt = FMT_RJUST;
              int width = 0, trunc = 0, haddot = 0, longlong = 0;
              int base = 10;
              s++;
              for (; *s; s++) {
                if (strchr ("dobxXulscefg%", *s))
                  break;
		else if (*s == '-')
                  fmt = FMT_LJUST;
		else if (*s == '0')
                  fmt = FMT_RJUST0;
		else if (*s == '~')
                  fmt = FMT_CENTER;
		else if (*s == '*') {
                  if (haddot)
                    trunc = (int)*ap++;
                  else
                    width = (int)*ap++;
		} else if (*s >= '1' && *s <= '9') {
                  char *t;
                  unsigned int n;
                  for (t = s; isdigit (*s); s++);
                  strncpy (tmp, t, s - t);
                  tmp[s - t] = '\0';
                  n = (unsigned int)strtol(tmp,NULL,10);
                  if (haddot)
                   trunc = n;
                  else
                   width = n;
                  s--;
		} else if (*s == '.')
                  haddot = 1;
              }
              if (*s == '%') {
                callback->printf_filtered(callback,"%%");
              } else if (*s == 's') {
                if ((int)*ap != 0) {
                  if (AddressTranslation(*ap++,isDATA,isLOAD,&paddr,&cca,isHOST,isREAL)) {
                    char *p = (char *)((int)paddr);;
                    callback->printf_filtered(callback,p);
                  } else {
                    ap++;
                    sim_error("Attempt to pass pointer that does not reference simulated memory");
                  }
                }
		else
                  callback->printf_filtered(callback,"(null)");
              } else if (*s == 'c') {
                int n = (int)*ap++;
		callback->printf_filtered(callback,"%c",n);
              } else {
		if (*s == 'l') {
                  if (*++s == 'l') {
                    longlong = 1;
                    ++s;
                  }
		}
		if (strchr ("dobxXu", *s)) {
                  word64 lv = (word64) *ap++;
                  if (*s == 'b')
                    callback->printf_filtered(callback,"<binary not supported>");
                  else {
                    sprintf(tmp,"%%%s%c",longlong ? "ll" : "",*s);
                    if (longlong)
                      callback->printf_filtered(callback,tmp,lv);
                    else
                      callback->printf_filtered(callback,tmp,(int)lv);
                  }
		} else if (strchr ("eEfgG", *s)) {
#ifdef _MSC_VER /* MSVC version 2.x can't convert from uword64 directly */
                  double dbl = (double)((word64)*ap++);
#else
                  double dbl = (double)*ap++;
#endif
                  sprintf(tmp,"%%%d.%d%c",width,trunc,*s);
                  callback->printf_filtered(callback,tmp,dbl);
                  trunc = 0;
		}
              }
              s++;
            } else
             callback->printf_filtered(callback,"%c",*s++);
          }
        } else
         sim_error("Attempt to pass pointer that does not reference simulated memory");
      }
      break;

    default:
      sim_warning("TODO: sim_monitor(%d) : PC = 0x%s",reason,pr_addr(IPC));
      sim_warning("(Arguments : A0 = 0x%s : A1 = 0x%s : A2 = 0x%s : A3 = 0x%s)",pr_addr(A0),pr_addr(A1),pr_addr(A2),pr_addr(A3));
      break;
  }
  return;
}

/* Store a word into memory.  */

static void
store_word (vaddr, val)
     uword64 vaddr;
     t_reg val;
{
  uword64 paddr;
  int uncached;

  if ((vaddr & 3) != 0)
    SignalException (AddressStore);
  else
    {
      if (AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached,
			      isTARGET, isREAL))
	{
	  const uword64 mask = 7;
	  uword64 memval;
	  unsigned int byte;

	  paddr = (paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2));
	  byte = (vaddr & mask) ^ (BigEndianCPU << 2);
	  memval = ((uword64) val) << (8 * byte);
	  StoreMemory (uncached, AccessLength_WORD, memval, 0, paddr, vaddr,
		       isREAL);
	}
    }
}

/* Load a word from memory.  */

static t_reg
load_word (vaddr)
     uword64 vaddr;
{
  if ((vaddr & 3) != 0)
    SignalException (AddressLoad);
  else
    {
      uword64 paddr;
      int uncached;

      if (AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached,
			      isTARGET, isREAL))
	{
	  const uword64 mask = 0x7;
	  const unsigned int reverse = ReverseEndian ? 1 : 0;
	  const unsigned int bigend = BigEndianCPU ? 1 : 0;
	  uword64 memval;
	  unsigned int byte;

	  paddr = (paddr & ~mask) | ((paddr & mask) ^ (reverse << 2));
	  LoadMemory (&memval,NULL,uncached, AccessLength_WORD, paddr, vaddr,
			       isDATA, isREAL);
	  byte = (vaddr & mask) ^ (bigend << 2);
	  return SIGNEXTEND (((memval >> (8 * byte)) & 0xffffffff), 32);
	}
    }

  return 0;
}

/* Simulate the mips16 entry and exit pseudo-instructions.  These
   would normally be handled by the reserved instruction exception
   code, but for ease of simulation we just handle them directly.  */

static void
mips16_entry (insn)
     unsigned int insn;
{
  int aregs, sregs, rreg;

#ifdef DEBUG
  printf("DBG: mips16_entry: entered (insn = 0x%08X)\n",insn);
#endif /* DEBUG */

  aregs = (insn & 0x700) >> 8;
  sregs = (insn & 0x0c0) >> 6;
  rreg =  (insn & 0x020) >> 5;

  /* This should be checked by the caller.  */
  if (sregs == 3)
    abort ();

  if (aregs < 5)
    {
      int i;
      t_reg tsp;

      /* This is the entry pseudo-instruction.  */

      for (i = 0; i < aregs; i++)
	store_word ((uword64) (SP + 4 * i), registers[i + 4]);

      tsp = SP;
      SP -= 32;

      if (rreg)
	{
	  tsp -= 4;
	  store_word ((uword64) tsp, RA);
	}

      for (i = 0; i < sregs; i++)
	{
	  tsp -= 4;
	  store_word ((uword64) tsp, registers[16 + i]);
	}
    }
  else
    {
      int i;
      t_reg tsp;

      /* This is the exit pseudo-instruction.  */

      tsp = SP + 32;

      if (rreg)
	{
	  tsp -= 4;
	  RA = load_word ((uword64) tsp);
	}

      for (i = 0; i < sregs; i++)
	{
	  tsp -= 4;
	  registers[i + 16] = load_word ((uword64) tsp);
	}

      SP += 32;

      if (aregs == 5)
	{
	  FGR[0] = WORD64LO (GPR[4]);
	  fpr_state[0] = fmt_uninterpreted;
	}
      else if (aregs == 6)
	{
	  FGR[0] = WORD64LO (GPR[5]);
	  FGR[1] = WORD64LO (GPR[4]);
	  fpr_state[0] = fmt_uninterpreted;
	  fpr_state[1] = fmt_uninterpreted;
	}

      PC = RA;
    }
}

void
sim_warning(char *fmt,...)
{
  char buf[256];
  va_list ap;

  va_start (ap,fmt);
  vsprintf (buf, fmt, ap);
  va_end (ap);
  
  if (logfh != NULL) {
    fprintf(logfh,"SIM Warning: %s\n", buf);
  } else {
    callback->printf_filtered(callback,"SIM Warning: %s\n", buf);
  }
  /* This used to call SignalException with a SimulatorFault, but that causes
     the simulator to exit, and that is inappropriate for a warning.  */
  return;
}

void
sim_error(char *fmt,...)
{
  char buf[256];
  va_list ap;

  va_start (ap,fmt);
  vsprintf (buf, fmt, ap);
  va_end (ap);

  callback->printf_filtered(callback,"SIM Error: %s", buf);
  SignalException (SimulatorFault, buf);
  return;
}

static unsigned int
power2(value)
     unsigned int value;
{
  int loop,tmp;

  /* Round *UP* to the nearest power-of-2 if not already one */
  if (value != (value & ~(value - 1))) {
    for (tmp = value, loop = 0; (tmp != 0); loop++)
     tmp >>= 1;
    value = (1 << loop);
  }

  return(value);
}

static long
getnum(value)
     char *value;
{
  long num;
  char *end;

  num = strtol(value,&end,10);
  if (end == value)
   callback->printf_filtered(callback,"Warning: Invalid number \"%s\" ignored, using zero\n",value);
  else {
    if (*end && ((tolower(*end) == 'k') || (tolower(*end) == 'm'))) {
      if (tolower(*end) == 'k')
       num *= (1 << 10);
      else
       num *= (1 << 20);
      end++;
    }
    if (*end)
     callback->printf_filtered(callback,"Warning: Spurious characters \"%s\" at end of number ignored\n",end);
  }

  return(num);
}

/*-- trace support ----------------------------------------------------------*/

/* The TRACE support is provided (if required) in the memory accessing
   routines. Since we are also providing the architecture specific
   features, the architecture simulation code can also deal with
   notifying the TRACE world of cache flushes, etc. Similarly we do
   not need to provide profiling support in the simulator engine,
   since we can sample in the instruction fetch control loop. By
   defining the TRACE manifest, we add tracing as a run-time
   option. */

#if defined(TRACE)
/* Tracing by default produces "din" format (as required by
   dineroIII). Each line of such a trace file *MUST* have a din label
   and address field. The rest of the line is ignored, so comments can
   be included if desired. The first field is the label which must be
   one of the following values:

	0       read data
        1       write data
        2       instruction fetch
        3       escape record (treated as unknown access type)
        4       escape record (causes cache flush)

   The address field is a 32bit (lower-case) hexadecimal address
   value. The address should *NOT* be preceded by "0x".

   The size of the memory transfer is not important when dealing with
   cache lines (as long as no more than a cache line can be
   transferred in a single operation :-), however more information
   could be given following the dineroIII requirement to allow more
   complete memory and cache simulators to provide better
   results. i.e. the University of Pisa has a cache simulator that can
   also take bus size and speed as (variable) inputs to calculate
   complete system performance (a much more useful ability when trying
   to construct an end product, rather than a processor). They
   currently have an ARM version of their tool called ChARM. */


static
void dotrace(FILE *tracefh,int type,SIM_ADDR address,int width,char *comment,...)
{
  if (state & simTRACE) {
    va_list ap;
    fprintf(tracefh,"%d %s ; width %d ; ", 
		type,
		pr_addr(address),
		width);
    va_start(ap,comment);
    vfprintf(tracefh,comment,ap);
    va_end(ap);
    fprintf(tracefh,"\n");
  }
  /* NOTE: Since the "din" format will only accept 32bit addresses, and
     we may be generating 64bit ones, we should put the hi-32bits of the
     address into the comment field. */

  /* TODO: Provide a buffer for the trace lines. We can then avoid
     performing writes until the buffer is filled, or the file is
     being closed. */

  /* NOTE: We could consider adding a comment field to the "din" file
     produced using type 3 markers (unknown access). This would then
     allow information about the program that the "din" is for, and
     the MIPs world that was being simulated, to be placed into the
     trace file. */

  return;
}
#endif /* TRACE */

/*---------------------------------------------------------------------------*/
/*-- host<->target transfers ------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* The following routines allow conditionals to be avoided during the
   simulation, at the cost of increasing the image and source size. */

static unsigned int
xfer_direct_word(unsigned char *memory)
{
  return *((unsigned int *)memory);
}

static uword64
xfer_direct_long(unsigned char *memory)
{
  return *((uword64 *)memory);
}

static unsigned int
swap_direct_word(unsigned int data)
{
  return data;
}

static uword64
swap_direct_long(uword64 data)
{
  return data;
}

static unsigned int
xfer_big_word(unsigned char *memory)
{
  return ((memory[0] << 24) | (memory[1] << 16) | (memory[2] << 8) | memory[3]);
}

static uword64
xfer_big_long(unsigned char *memory)
{
  return (((uword64)memory[0] << 56) | ((uword64)memory[1] << 48)
          | ((uword64)memory[2] << 40) | ((uword64)memory[3] << 32)
          | ((uword64)memory[4] << 24) | ((uword64)memory[5] << 16) 
	  | ((uword64)memory[6] << 8) | ((uword64)memory[7]));
}

static unsigned int
xfer_little_word(unsigned char *memory)
{
  return ((memory[3] << 24) | (memory[2] << 16) | (memory[1] << 8) | memory[0]);
}

static uword64
xfer_little_long(unsigned char *memory)
{
  return (((uword64)memory[7] << 56) | ((uword64)memory[6] << 48)
          | ((uword64)memory[5] << 40) | ((uword64)memory[4] << 32)
          | ((uword64)memory[3] << 24) | ((uword64)memory[2] << 16) 
	  | ((uword64)memory[1] << 8) | (uword64)memory[0]);
}

static unsigned int
swap_word(unsigned int data)
{
  unsigned int result;
  result = (((data & 0xff) << 24) | ((data & 0xff00) << 8)
	    | ((data >> 8) & 0xff00) | ((data >> 24) & 0xff));
  return result;
}

static uword64
swap_long(uword64 data)
{
  unsigned int tmphi = WORD64HI(data);
  unsigned int tmplo = WORD64LO(data);
  tmphi = swap_word(tmphi);
  tmplo = swap_word(tmplo);
  /* Now swap the HI and LO parts */
  return SET64LO(tmphi) | SET64HI(tmplo);
}

/*---------------------------------------------------------------------------*/
/*-- simulator engine -------------------------------------------------------*/
/*---------------------------------------------------------------------------*/

static void
set_endianness ()
{
  /* In reality this check should be performed at various points
     within the simulation, since it is possible to change the
     endianness of user programs. However, we perform the check here
     to ensure that the start-of-day values agree.  */
  if (target_byte_order == 4321)
    state |= simBE;

  /* ??? This is a lot more code than is necessary to solve the problem.
     It would be simpler to handle this like the SH simulator.  */
  if (!ByteSwapMem) {
    host_read_word = xfer_direct_word;
    host_read_long = xfer_direct_long;
    host_swap_word = swap_direct_word;
    host_swap_long = swap_direct_long;
  } else if (state & simHOSTBE) {
    host_read_word = xfer_little_word;
    host_read_long = xfer_little_long;
    host_swap_word = swap_word;
    host_swap_long = swap_long;
  } else { /* HOST little-endian */
    host_read_word = xfer_big_word;
    host_read_long = xfer_big_long;
    host_swap_word = swap_word;
    host_swap_long = swap_long;
  }
}

static void
ColdReset()
{
  /* RESET: Fixed PC address: */
  PC = (((uword64)0xFFFFFFFF<<32) | 0xBFC00000);
  /* The reset vector address is in the unmapped, uncached memory space. */

  SR &= ~(status_SR | status_TS | status_RP);
  SR |= (status_ERL | status_BEV);

#if defined(HASFPU) && (GPRLEN == (64))
  /* Cheat and allow access to the complete register set immediately: */
  SR |= status_FR; /* 64bit registers */
#endif /* HASFPU and 64bit FP registers */

  /* Ensure that any instructions with pending register updates are
     cleared: */
  {
    int loop;
    for (loop = 0; (loop < PSLOTS); loop++)
     pending_slot_reg[loop] = (LAST_EMBED_REGNUM + 1);
    pending_in = pending_out = pending_total = 0;
  }

#if defined(HASFPU)
  /* Initialise the FPU registers to the unknown state */
  {
    int rn;
    for (rn = 0; (rn < 32); rn++)
     fpr_state[rn] = fmt_uninterpreted;
  }
#endif /* HASFPU */

  return;
}

/* Description from page A-22 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Translate a virtual address to a physical address and cache
   coherence algorithm describing the mechanism used to resolve the
   memory reference. Given the virtual address vAddr, and whether the
   reference is to Instructions ot Data (IorD), find the corresponding
   physical address (pAddr) and the cache coherence algorithm (CCA)
   used to resolve the reference. If the virtual address is in one of
   the unmapped address spaces the physical address and the CCA are
   determined directly by the virtual address. If the virtual address
   is in one of the mapped address spaces then the TLB is used to
   determine the physical address and access type; if the required
   translation is not present in the TLB or the desired access is not
   permitted the function fails and an exception is taken.

   NOTE: This function is extended to return an exception state. This,
   along with the exception generation is used to notify whether a
   valid address translation occured */

static int
AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw)
     uword64 vAddr;
     int IorD;
     int LorS;
     uword64 *pAddr;
     int *CCA;
     int host;
     int raw;
{
  int res = -1; /* TRUE : Assume good return */

#ifdef DEBUG
  callback->printf_filtered(callback,"AddressTranslation(0x%s,%s,%s,...);\n",pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"),(LorS ? "iSTORE" : "isLOAD"));
#endif

  /* Check that the address is valid for this memory model */

  /* For a simple (flat) memory model, we simply pass virtual
     addressess through (mostly) unchanged. */
  vAddr &= 0xFFFFFFFF;

  /* Treat the kernel memory spaces identically for the moment: */
  if ((membank_base == K1BASE) && (vAddr >= K0BASE) && (vAddr < (K0BASE + K0SIZE)))
    vAddr += (K1BASE - K0BASE);

  /* Also assume that the K1BASE memory wraps. This is required to
     allow the PMON run-time __sizemem() routine to function (without
     having to provide exception simulation). NOTE: A kludge to work
     around the fact that the monitor memory is currently held in the
     K1BASE space. */
  if (((vAddr < monitor_base) || (vAddr >= (monitor_base + monitor_size))) && (vAddr >= K1BASE && vAddr < (K1BASE + K1SIZE)))
    vAddr = (K1BASE | (vAddr & (membank_size - 1)));

  *pAddr = vAddr; /* default for isTARGET */
  *CCA = Uncached; /* not used for isHOST */

  /* NOTE: This is a duplicate of the code that appears in the
     LoadMemory and StoreMemory functions. They should be merged into
     a single function (that can be in-lined if required). */
  if ((vAddr >= membank_base) && (vAddr < (membank_base + membank_size))) {
    if (host)
     *pAddr = (int)&membank[((unsigned int)(vAddr - membank_base) & (membank_size - 1))];
  } else if ((vAddr >= monitor_base) && (vAddr < (monitor_base + monitor_size))) {
    if (host)
     *pAddr = (int)&monitor[((unsigned int)(vAddr - monitor_base) & (monitor_size - 1))];
  } else {
#ifdef DEBUG
    sim_warning("Failed: AddressTranslation(0x%s,%s,%s,...) IPC = 0x%s",pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"),(LorS ? "isSTORE" : "isLOAD"),pr_addr(IPC));
#endif /* DEBUG */
    res = 0; /* AddressTranslation has failed */
    *pAddr = (SIM_ADDR)-1;
    if (!raw) /* only generate exceptions on real memory transfers */
     SignalException((LorS == isSTORE) ? AddressStore : AddressLoad);
#ifdef DEBUG
    else
     /* This is a normal occurance during gdb operation, for instance trying
	to print parameters at function start before they have been setup,
	and hence we should not print a warning except when debugging the
	simulator.  */
     sim_warning("AddressTranslation for %s %s from 0x%s failed",(IorD ? "data" : "instruction"),(LorS ? "store" : "load"),pr_addr(vAddr));
#endif
  }

  return(res);
}

/* Description from page A-23 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Prefetch data from memory. Prefetch is an advisory instruction for
   which an implementation specific action is taken. The action taken
   may increase performance, but must not change the meaning of the
   program, or alter architecturally-visible state. */
static void
Prefetch(CCA,pAddr,vAddr,DATA,hint)
     int CCA;
     uword64 pAddr;
     uword64 vAddr;
     int DATA;
     int hint;
{
#ifdef DEBUG
  callback->printf_filtered(callback,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
#endif /* DEBUG */

  /* For our simple memory model we do nothing */
  return;
}

/* Description from page A-22 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Load a value from memory. Use the cache and main memory as
   specified in the Cache Coherence Algorithm (CCA) and the sort of
   access (IorD) to find the contents of AccessLength memory bytes
   starting at physical location pAddr. The data is returned in the
   fixed width naturally-aligned memory element (MemElem). The
   low-order two (or three) bits of the address and the AccessLength
   indicate which of the bytes within MemElem needs to be given to the
   processor. If the memory access type of the reference is uncached
   then only the referenced bytes are read from memory and valid
   within the memory element. If the access type is cached, and the
   data is not present in cache, an implementation specific size and
   alignment block of memory is read and loaded into the cache to
   satisfy a load reference. At a minimum, the block is the entire
   memory element. */
static void
LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw)
     uword64* memvalp;
     uword64* memval1p;
     int CCA;
     int AccessLength;
     uword64 pAddr;
     uword64 vAddr;
     int IorD;
     int raw;
{
  uword64 value;
  uword64 value1;

#ifdef DEBUG
  if (membank == NULL)
   callback->printf_filtered(callback,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"),(raw ? "isRAW" : "isREAL"));
#endif /* DEBUG */

#if defined(WARN_MEM)
  if (CCA != uncached)
   sim_warning("LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)",CCA);

  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK) {
    /* In reality this should be a Bus Error */
    sim_error("AccessLength of %d would extend over %dbit aligned boundary for physical address 0x%s\n",AccessLength,(LOADDRMASK + 1)<<2,pr_addr(pAddr));
  }
#endif /* WARN_MEM */

  /* Decide which physical memory locations are being dealt with. At
     this point we should be able to split the pAddr bits into the
     relevant address map being simulated. If the "raw" variable is
     set, the memory read being performed should *NOT* update any I/O
     state or affect the CPU state. This also includes avoiding
     affecting statistics gathering. */

  /* If instruction fetch then we need to check that the two lo-order
     bits are zero, otherwise raise a InstructionFetch exception: */
  if ((IorD == isINSTRUCTION)
      && ((pAddr & 0x3) != 0)
      && (((pAddr & 0x1) != 0) || ((vAddr & 0x1) == 0)))
   SignalException(InstructionFetch);
  else {
    unsigned int index;
    unsigned char *mem = NULL;

#if defined(TRACE)
    if (!raw)
     dotrace(tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
#endif /* TRACE */

    /* NOTE: Quicker methods of decoding the address space can be used
       when a real memory map is being simulated (i.e. using hi-order
       address bits to select device). */
    if ((pAddr >= membank_base) && (pAddr < (membank_base + membank_size))) {
      index = ((unsigned int)(pAddr - membank_base) & (membank_size - 1));
      mem = membank;
    } else if ((pAddr >= monitor_base) && (pAddr < (monitor_base + monitor_size))) {
      index = ((unsigned int)(pAddr - monitor_base) & (monitor_size - 1));
      mem = monitor;
    }
    if (mem == NULL)
     sim_error("Simulator memory not found for physical address 0x%s\n",pr_addr(pAddr));
    else {
      /* If we obtained the endianness of the host, and it is the same
         as the target memory system we can optimise the memory
         accesses. However, without that information we must perform
         slow transfer, and hope that the compiler optimisation will
         merge successive loads. */
      value = 0; /* no data loaded yet */
      value1 = 0;

      /* In reality we should always be loading a doubleword value (or
         word value in 32bit memory worlds). The external code then
         extracts the required bytes. However, to keep performance
         high we only load the required bytes into the relevant
         slots. */
      if (BigEndianMem)
       switch (AccessLength) { /* big-endian memory */
         case AccessLength_QUADWORD :
          value1 |= ((uword64)mem[index++] << 56);
         case 14:   /* AccessLength is one less than datalen */
          value1 |= ((uword64)mem[index++] << 48);
         case 13:
          value1 |= ((uword64)mem[index++] << 40);
         case 12:
          value1 |= ((uword64)mem[index++] << 32);
         case 11:
          value1 |= ((unsigned int)mem[index++] << 24);
         case 10:
          value1 |= ((unsigned int)mem[index++] << 16);
         case 9:
          value1 |= ((unsigned int)mem[index++] << 8);
         case 8:
          value1 |= mem[index];

         case AccessLength_DOUBLEWORD :
          value |= ((uword64)mem[index++] << 56);
         case AccessLength_SEPTIBYTE :
          value |= ((uword64)mem[index++] << 48);
         case AccessLength_SEXTIBYTE :
          value |= ((uword64)mem[index++] << 40);
         case AccessLength_QUINTIBYTE :
          value |= ((uword64)mem[index++] << 32);
         case AccessLength_WORD :
          value |= ((unsigned int)mem[index++] << 24);
         case AccessLength_TRIPLEBYTE :
          value |= ((unsigned int)mem[index++] << 16);
         case AccessLength_HALFWORD :
          value |= ((unsigned int)mem[index++] << 8);
         case AccessLength_BYTE :
          value |= mem[index];
          break;
       }
      else {
        index += (AccessLength + 1);
        switch (AccessLength) { /* little-endian memory */
          case AccessLength_QUADWORD :
           value1 |= ((uword64)mem[--index] << 56);
         case 14:   /* AccessLength is one less than datalen */
           value1 |= ((uword64)mem[--index] << 48);
         case 13:
           value1 |= ((uword64)mem[--index] << 40);
         case 12:
           value1 |= ((uword64)mem[--index] << 32);
         case 11:
           value1 |= ((uword64)mem[--index] << 24);
         case 10:
           value1 |= ((uword64)mem[--index] << 16);
         case 9:
           value1 |= ((uword64)mem[--index] << 8);
         case 8:
           value1 |= ((uword64)mem[--index] << 0);

          case AccessLength_DOUBLEWORD :
           value |= ((uword64)mem[--index] << 56);
          case AccessLength_SEPTIBYTE :
           value |= ((uword64)mem[--index] << 48);
          case AccessLength_SEXTIBYTE :
           value |= ((uword64)mem[--index] << 40);
          case AccessLength_QUINTIBYTE :
           value |= ((uword64)mem[--index] << 32);
          case AccessLength_WORD :
           value |= ((uword64)mem[--index] << 24);
          case AccessLength_TRIPLEBYTE :
           value |= ((uword64)mem[--index] << 16);
          case AccessLength_HALFWORD :
           value |= ((uword64)mem[--index] << 8);
          case AccessLength_BYTE :
           value |= ((uword64)mem[--index] << 0);
           break;
        }
      }

#ifdef DEBUG
      printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
             (int)(pAddr & LOADDRMASK),pr_addr(value1),pr_addr(value));
#endif /* DEBUG */

      /* TODO: We could try and avoid the shifts when dealing with raw
         memory accesses. This would mean updating the LoadMemory and
         StoreMemory routines to avoid shifting the data before
         returning or using it. */
      if (AccessLength <= AccessLength_DOUBLEWORD) {
        if (!raw) { /* do nothing for raw accessess */
          if (BigEndianMem)
            value <<= (((7 - (pAddr & LOADDRMASK)) - AccessLength) * 8);
          else /* little-endian only needs to be shifted up to the correct byte offset */
            value <<= ((pAddr & LOADDRMASK) * 8);
        }
      }

#ifdef DEBUG
      printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
             pr_addr(value1),pr_addr(value));
#endif /* DEBUG */
    }
  }

*memvalp = value;
if (memval1p) *memval1p = value1;
}


/* Description from page A-23 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Store a value to memory. The specified data is stored into the
   physical location pAddr using the memory hierarchy (data caches and
   main memory) as specified by the Cache Coherence Algorithm
   (CCA). The MemElem contains the data for an aligned, fixed-width
   memory element (word for 32-bit processors, doubleword for 64-bit
   processors), though only the bytes that will actually be stored to
   memory need to be valid. The low-order two (or three) bits of pAddr
   and the AccessLength field indicates which of the bytes within the
   MemElem data should actually be stored; only these bytes in memory
   will be changed. */

static void
StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw)
     int CCA;
     int AccessLength;
     uword64 MemElem;
     uword64 MemElem1;   /* High order 64 bits */
     uword64 pAddr;
     uword64 vAddr;
     int raw;
{
#ifdef DEBUG
  callback->printf_filtered(callback,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s,%s)\n",CCA,AccessLength,pr_addr(MemElem),pr_addr(MemElem1),pr_addr(pAddr),pr_addr(vAddr),(raw ? "isRAW" : "isREAL"));
#endif /* DEBUG */

#if defined(WARN_MEM)
  if (CCA != uncached)
   sim_warning("StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)",CCA);
 
  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
   sim_error("AccessLength of %d would extend over %dbit aligned boundary for physical address 0x%s\n",AccessLength,(LOADDRMASK + 1)<<2,pr_addr(pAddr));
#endif /* WARN_MEM */

#if defined(TRACE)
  if (!raw)
   dotrace(tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
#endif /* TRACE */

  /* See the comments in the LoadMemory routine about optimising
     memory accesses. Also if we wanted to make the simulator smaller,
     we could merge a lot of this code with the LoadMemory
     routine. However, this would slow the simulator down with
     run-time conditionals. */
  {
    unsigned int index;
    unsigned char *mem = NULL;

    if ((pAddr >= membank_base) && (pAddr < (membank_base + membank_size))) {
      index = ((unsigned int)(pAddr - membank_base) & (membank_size - 1));
      mem = membank;
    } else if ((pAddr >= monitor_base) && (pAddr < (monitor_base + monitor_size))) {
      index = ((unsigned int)(pAddr - monitor_base) & (monitor_size - 1));
      mem = monitor;
    }

    if (mem == NULL)
     sim_error("Simulator memory not found for physical address 0x%s\n",pr_addr(pAddr));
    else {
      int shift = 0;

#ifdef DEBUG
      printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_addr(MemElem1),pr_addr(MemElem));
#endif /* DEBUG */

      if (AccessLength <= AccessLength_DOUBLEWORD) {
        if (BigEndianMem) {
          if (raw)
            shift = ((7 - AccessLength) * 8);
          else /* real memory access */
            shift = ((pAddr & LOADDRMASK) * 8);
          MemElem <<= shift;
        } else {
          /* no need to shift raw little-endian data */
          if (!raw)
            MemElem >>= ((pAddr & LOADDRMASK) * 8);
        }
      }

#ifdef DEBUG
      printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_addr(MemElem1),pr_addr(MemElem));
#endif /* DEBUG */

      if (BigEndianMem) {
        switch (AccessLength) { /* big-endian memory */
          case AccessLength_QUADWORD :
           mem[index++] = (unsigned char)(MemElem1 >> 56);
           MemElem1 <<= 8;
          case 14 :
           mem[index++] = (unsigned char)(MemElem1 >> 56);
           MemElem1 <<= 8;
          case 13 :
           mem[index++] = (unsigned char)(MemElem1 >> 56);
           MemElem1 <<= 8;
          case 12 :
           mem[index++] = (unsigned char)(MemElem1 >> 56);
           MemElem1 <<= 8;
          case 11 :
           mem[index++] = (unsigned char)(MemElem1 >> 56);
           MemElem1 <<= 8;
          case 10 :
           mem[index++] = (unsigned char)(MemElem1 >> 56);
           MemElem1 <<= 8;
          case 9 :
           mem[index++] = (unsigned char)(MemElem1 >> 56);
           MemElem1 <<= 8;
          case 8 :
           mem[index++] = (unsigned char)(MemElem1 >> 56);

          case AccessLength_DOUBLEWORD :
           mem[index++] = (unsigned char)(MemElem >> 56);
           MemElem <<= 8;
          case AccessLength_SEPTIBYTE :
           mem[index++] = (unsigned char)(MemElem >> 56);
           MemElem <<= 8;
          case AccessLength_SEXTIBYTE :
           mem[index++] = (unsigned char)(MemElem >> 56);
           MemElem <<= 8;
          case AccessLength_QUINTIBYTE :
           mem[index++] = (unsigned char)(MemElem >> 56);
           MemElem <<= 8;
          case AccessLength_WORD :
           mem[index++] = (unsigned char)(MemElem >> 56);
           MemElem <<= 8;
          case AccessLength_TRIPLEBYTE :
           mem[index++] = (unsigned char)(MemElem >> 56);
           MemElem <<= 8;
          case AccessLength_HALFWORD :
           mem[index++] = (unsigned char)(MemElem >> 56);
           MemElem <<= 8;
          case AccessLength_BYTE :
           mem[index++] = (unsigned char)(MemElem >> 56);
           break;
        }
      } else {
        index += (AccessLength + 1);
        switch (AccessLength) { /* little-endian memory */
          case AccessLength_QUADWORD :
           mem[--index] = (unsigned char)(MemElem1 >> 56);
          case 14 :
           mem[--index] = (unsigned char)(MemElem1 >> 48);
          case 13 :
           mem[--index] = (unsigned char)(MemElem1 >> 40);
          case 12 :
           mem[--index] = (unsigned char)(MemElem1 >> 32);
          case 11 :
           mem[--index] = (unsigned char)(MemElem1 >> 24);
          case 10 :
           mem[--index] = (unsigned char)(MemElem1 >> 16);
          case 9 :
           mem[--index] = (unsigned char)(MemElem1 >> 8);
          case 8 :
           mem[--index] = (unsigned char)(MemElem1 >> 0);

          case AccessLength_DOUBLEWORD :
           mem[--index] = (unsigned char)(MemElem >> 56);
          case AccessLength_SEPTIBYTE :
           mem[--index] = (unsigned char)(MemElem >> 48);
          case AccessLength_SEXTIBYTE :
           mem[--index] = (unsigned char)(MemElem >> 40);
          case AccessLength_QUINTIBYTE :
           mem[--index] = (unsigned char)(MemElem >> 32);
          case AccessLength_WORD :
           mem[--index] = (unsigned char)(MemElem >> 24);
          case AccessLength_TRIPLEBYTE :
           mem[--index] = (unsigned char)(MemElem >> 16);
          case AccessLength_HALFWORD :
           mem[--index] = (unsigned char)(MemElem >> 8);
          case AccessLength_BYTE :
           mem[--index] = (unsigned char)(MemElem >> 0);
           break;
        }
      }
    }
  }

  return;
}


/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Order loads and stores to synchronise shared memory. Perform the
   action necessary to make the effects of groups of synchronizable
   loads and stores indicated by stype occur in the same order for all
   processors. */
static void
SyncOperation(stype)
     int stype;
{
#ifdef DEBUG
  callback->printf_filtered(callback,"SyncOperation(%d) : TODO\n",stype);
#endif /* DEBUG */
  return;
}

/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Signal an exception condition. This will result in an exception
   that aborts the instruction. The instruction operation pseudocode
   will never see a return from this function call. */
static void
SignalException (int exception,...)
{
  /* Ensure that any active atomic read/modify/write operation will fail: */
  LLBIT = 0;

  switch (exception) {
    /* TODO: For testing purposes I have been ignoring TRAPs. In
       reality we should either simulate them, or allow the user to
       ignore them at run-time. */
    case Trap :
     sim_warning("Ignoring instruction TRAP (PC 0x%s)",pr_addr(IPC));
     break;

    case ReservedInstruction :
     {
       va_list ap;
       unsigned int instruction;
       va_start(ap,exception);
       instruction = va_arg(ap,unsigned int);
       va_end(ap);
       /* Provide simple monitor support using ReservedInstruction
          exceptions. The following code simulates the fixed vector
          entry points into the IDT monitor by causing a simulator
          trap, performing the monitor operation, and returning to
          the address held in the $ra register (standard PCS return
          address). This means we only need to pre-load the vector
          space with suitable instruction values. For systems were
          actual trap instructions are used, we would not need to
          perform this magic. */
       if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION) {
         sim_monitor( ((instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK) );
         PC = RA; /* simulate the return from the vector entry */
         /* NOTE: This assumes that a branch-and-link style
            instruction was used to enter the vector (which is the
            case with the current IDT monitor). */
         break; /* out of the switch statement */
       }
       /* Look for the mips16 entry and exit instructions, and
          simulate a handler for them.  */
       else if ((IPC & 1) != 0
		&& (instruction & 0xf81f) == 0xe809
		&& (instruction & 0x0c0) != 0x0c0) {
	 mips16_entry (instruction);
	 break;
       } /* else fall through to normal exception processing */
       sim_warning("ReservedInstruction 0x%08X at IPC = 0x%s",instruction,pr_addr(IPC));
     }

    default:
#ifdef DEBUG
     if (exception != BreakPoint)
      callback->printf_filtered(callback,"DBG: SignalException(%d) IPC = 0x%s\n",exception,pr_addr(IPC));
#endif /* DEBUG */
     /* Store exception code into current exception id variable (used
        by exit code): */

     /* TODO: If not simulating exceptions then stop the simulator
        execution. At the moment we always stop the simulation. */
     state |= (simSTOP | simEXCEPTION);

     /* Keep a copy of the current A0 in-case this is the program exit
        breakpoint:  */
     if (exception == BreakPoint) {
       va_list ap;
       unsigned int instruction;
       va_start(ap,exception);
       instruction = va_arg(ap,unsigned int);
       va_end(ap);
       /* Check for our special terminating BREAK: */
       if ((instruction & 0x03FFFFC0) == 0x03ff0000) {
         rcexit = (unsigned int)(A0 & 0xFFFFFFFF);
         state &= ~simEXCEPTION;
         state |= simEXIT;
       }
     }

     /* Store exception code into current exception id variable (used
        by exit code): */
     CAUSE = (exception << 2);
     if (state & simDELAYSLOT) {
       CAUSE |= cause_BD;
       EPC = (IPC - 4); /* reference the branch instruction */
     } else
      EPC = IPC;
     /* The following is so that the simulator will continue from the
        exception address on breakpoint operations. */
     PC = EPC;
     break;

    case SimulatorFault:
     {
       va_list ap;
       char *msg;
       va_start(ap,exception);
       msg = va_arg(ap,char *);
       fprintf(stderr,"FATAL: Simulator error \"%s\"\n",msg);
       va_end(ap);
     }
     exit(1);
   }

  return;
}

#if defined(WARN_RESULT)
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* This function indicates that the result of the operation is
   undefined. However, this should not affect the instruction
   stream. All that is meant to happen is that the destination
   register is set to an undefined result. To keep the simulator
   simple, we just don't bother updating the destination register, so
   the overall result will be undefined. If desired we can stop the
   simulator by raising a pseudo-exception. */
static void
UndefinedResult()
{
  sim_warning("UndefinedResult: IPC = 0x%s",pr_addr(IPC));
#if 0 /* Disabled for the moment, since it actually happens a lot at the moment. */
  state |= simSTOP;
#endif
  return;
}
#endif /* WARN_RESULT */

static void
CacheOp(op,pAddr,vAddr,instruction)
     int op;
     uword64 pAddr;
     uword64 vAddr;
     unsigned int instruction;
{
#if 1 /* stop warning message being displayed (we should really just remove the code) */
  static int icache_warning = 1;
  static int dcache_warning = 1;
#else
  static int icache_warning = 0;
  static int dcache_warning = 0;
#endif

  /* If CP0 is not useable (User or Supervisor mode) and the CP0
     enable bit in the Status Register is clear - a coprocessor
     unusable exception is taken. */
#if 0
  callback->printf_filtered(callback,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(IPC));
#endif

  switch (op & 0x3) {
    case 0: /* instruction cache */
      switch (op >> 2) {
        case 0: /* Index Invalidate */
        case 1: /* Index Load Tag */
        case 2: /* Index Store Tag */
        case 4: /* Hit Invalidate */
        case 5: /* Fill */
        case 6: /* Hit Writeback */
          if (!icache_warning)
            {
              sim_warning("Instruction CACHE operation %d to be coded",(op >> 2));
              icache_warning = 1;
            }
          break;

        default:
          SignalException(ReservedInstruction,instruction);
          break;
      }
      break;

    case 1: /* data cache */
      switch (op >> 2) {
        case 0: /* Index Writeback Invalidate */
        case 1: /* Index Load Tag */
        case 2: /* Index Store Tag */
        case 3: /* Create Dirty */
        case 4: /* Hit Invalidate */
        case 5: /* Hit Writeback Invalidate */
        case 6: /* Hit Writeback */ 
          if (!dcache_warning)
            {
              sim_warning("Data CACHE operation %d to be coded",(op >> 2));
              dcache_warning = 1;
            }
          break;

        default:
          SignalException(ReservedInstruction,instruction);
          break;
      }
      break;

    default: /* unrecognised cache ID */
      SignalException(ReservedInstruction,instruction);
      break;
  }

  return;
}

/*-- FPU support routines ---------------------------------------------------*/

#if defined(HASFPU) /* Only needed when building FPU aware simulators */

#if 1
#define SizeFGR() (GPRLEN)
#else
/* They depend on the CPU being simulated */
#define SizeFGR() ((PROCESSOR_64BIT && ((SR & status_FR) == 1)) ? 64 : 32)
#endif

/* Numbers are held in normalized form. The SINGLE and DOUBLE binary
   formats conform to ANSI/IEEE Std 754-1985. */
/* SINGLE precision floating:
 *    seeeeeeeefffffffffffffffffffffff
 *      s =  1bit  = sign
 *      e =  8bits = exponent
 *      f = 23bits = fraction
 */
/* SINGLE precision fixed:
 *    siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
 *      s =  1bit  = sign
 *      i = 31bits = integer
 */
/* DOUBLE precision floating:
 *    seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
 *      s =  1bit  = sign
 *      e = 11bits = exponent
 *      f = 52bits = fraction
 */
/* DOUBLE precision fixed:
 *    siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
 *      s =  1bit  = sign
 *      i = 63bits = integer
 */

/* Extract sign-bit: */
#define FP_S_s(v)    (((v) & ((unsigned)1 << 31)) ? 1 : 0)
#define FP_D_s(v)    (((v) & ((uword64)1 << 63)) ? 1 : 0)
/* Extract biased exponent: */
#define FP_S_be(v)   (((v) >> 23) & 0xFF)
#define FP_D_be(v)   (((v) >> 52) & 0x7FF)
/* Extract unbiased Exponent: */
#define FP_S_e(v)    (FP_S_be(v) - 0x7F)
#define FP_D_e(v)    (FP_D_be(v) - 0x3FF)
/* Extract complete fraction field: */
#define FP_S_f(v)    ((v) & ~((unsigned)0x1FF << 23))
#define FP_D_f(v)    ((v) & ~((uword64)0xFFF << 52))
/* Extract numbered fraction bit: */
#define FP_S_fb(b,v) (((v) & (1 << (23 - (b)))) ? 1 : 0)
#define FP_D_fb(b,v) (((v) & (1 << (52 - (b)))) ? 1 : 0)

/* Explicit QNaN values used when value required: */
#define FPQNaN_SINGLE   (0x7FBFFFFF)
#define FPQNaN_WORD     (0x7FFFFFFF)
#define FPQNaN_DOUBLE   (((uword64)0x7FF7FFFF << 32) | 0xFFFFFFFF)
#define FPQNaN_LONG     (((uword64)0x7FFFFFFF << 32) | 0xFFFFFFFF)

/* Explicit Infinity values used when required: */
#define FPINF_SINGLE    (0x7F800000)
#define FPINF_DOUBLE    (((uword64)0x7FF00000 << 32) | 0x00000000)

#if 1 /* def DEBUG */
#define RMMODE(v) (((v) == FP_RM_NEAREST) ? "Round" : (((v) == FP_RM_TOZERO) ? "Trunc" : (((v) == FP_RM_TOPINF) ? "Ceil" : "Floor")))
#define DOFMT(v)  (((v) == fmt_single) ? "single" : (((v) == fmt_double) ? "double" : (((v) == fmt_word) ? "word" : (((v) == fmt_long) ? "long" : (((v) == fmt_unknown) ? "<unknown>" : (((v) == fmt_uninterpreted) ? "<uninterpreted>" : "<format error>"))))))
#endif /* DEBUG */

static uword64
ValueFPR(fpr,fmt)
         int fpr;
         FP_formats fmt;
{
  uword64 value;
  int err = 0;

  /* Treat unused register values, as fixed-point 64bit values: */
  if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown))
#if 1
   /* If request to read data as "uninterpreted", then use the current
      encoding: */
   fmt = fpr_state[fpr];
#else
   fmt = fmt_long;
#endif

  /* For values not yet accessed, set to the desired format: */
  if (fpr_state[fpr] == fmt_uninterpreted) {
    fpr_state[fpr] = fmt;
#ifdef DEBUG
    printf("DBG: Register %d was fmt_uninterpreted. Now %s\n",fpr,DOFMT(fmt));
#endif /* DEBUG */
  }
  if (fmt != fpr_state[fpr]) {
    sim_warning("FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)",fpr,DOFMT(fpr_state[fpr]),DOFMT(fmt),pr_addr(IPC));
    fpr_state[fpr] = fmt_unknown;
  }

  if (fpr_state[fpr] == fmt_unknown) {
   /* Set QNaN value: */
   switch (fmt) {
    case fmt_single:
     value = FPQNaN_SINGLE;
     break;

    case fmt_double:
     value = FPQNaN_DOUBLE;
     break;

    case fmt_word:
     value = FPQNaN_WORD;
     break;

    case fmt_long:
     value = FPQNaN_LONG;
     break;

    default:
     err = -1;
     break;
   }
  } else if (SizeFGR() == 64) {
    switch (fmt) {
     case fmt_single:
     case fmt_word:
      value = (FGR[fpr] & 0xFFFFFFFF);
      break;

     case fmt_uninterpreted:
     case fmt_double:
     case fmt_long:
      value = FGR[fpr];
      break;

     default :
      err = -1;
      break;
    }
  } else {
    switch (fmt) {
     case fmt_single:
     case fmt_word:
      value = (FGR[fpr] & 0xFFFFFFFF);
      break;

     case fmt_uninterpreted:
     case fmt_double:
     case fmt_long:
      if ((fpr & 1) == 0) { /* even registers only */
	value = ((((uword64)FGR[fpr+1]) << 32) | (FGR[fpr] & 0xFFFFFFFF));
      } else {
	SignalException (ReservedInstruction, 0);
      }
      break;

     default :
      err = -1;
      break;
    }
  }

  if (err)
   SignalException(SimulatorFault,"Unrecognised FP format in ValueFPR()");

#ifdef DEBUG
  printf("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_addr(value),pr_addr(IPC),SizeFGR());
#endif /* DEBUG */

  return(value);
}

static void
StoreFPR(fpr,fmt,value)
     int fpr;
     FP_formats fmt;
     uword64 value;
{
  int err = 0;

#ifdef DEBUG
  printf("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_addr(value),pr_addr(IPC),SizeFGR());
#endif /* DEBUG */

  if (SizeFGR() == 64) {
    switch (fmt) {
      case fmt_single :
      case fmt_word :
       FGR[fpr] = (((uword64)0xDEADC0DE << 32) | (value & 0xFFFFFFFF));
       fpr_state[fpr] = fmt;
       break;

      case fmt_uninterpreted:
      case fmt_double :
      case fmt_long :
       FGR[fpr] = value;
       fpr_state[fpr] = fmt;
       break;

      default :
       fpr_state[fpr] = fmt_unknown;
       err = -1;
       break;
    }
  } else {
    switch (fmt) {
      case fmt_single :
      case fmt_word :
       FGR[fpr] = (value & 0xFFFFFFFF);
       fpr_state[fpr] = fmt;
       break;

      case fmt_uninterpreted:
      case fmt_double :
      case fmt_long :
	if ((fpr & 1) == 0) { /* even register number only */
	  FGR[fpr+1] = (value >> 32);
	  FGR[fpr] = (value & 0xFFFFFFFF);
	  fpr_state[fpr + 1] = fmt;
	  fpr_state[fpr] = fmt;
	} else {
	  fpr_state[fpr] = fmt_unknown;
	  fpr_state[fpr + 1] = fmt_unknown;
	  SignalException (ReservedInstruction, 0);
	}
       break;

      default :
       fpr_state[fpr] = fmt_unknown;
       err = -1;
       break;
    }
  }
#if defined(WARN_RESULT)
  else
    UndefinedResult();
#endif /* WARN_RESULT */

  if (err)
   SignalException(SimulatorFault,"Unrecognised FP format in StoreFPR()");

#ifdef DEBUG
  printf("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",fpr,pr_addr(FGR[fpr]),DOFMT(fmt));
#endif /* DEBUG */

  return;
}

static int
NaN(op,fmt)
     uword64 op;
     FP_formats fmt; 
{
  int boolean = 0;

  /* Check if (((E - bias) == (E_max + 1)) && (fraction != 0)). We
     know that the exponent field is biased... we we cheat and avoid
     removing the bias value. */
  switch (fmt) {
   case fmt_single:
    boolean = ((FP_S_be(op) == 0xFF) && (FP_S_f(op) != 0));
    /* We could use "FP_S_fb(1,op)" to ascertain whether we are
       dealing with a SNaN or QNaN */
    break;
   case fmt_double:
    boolean = ((FP_D_be(op) == 0x7FF) && (FP_D_f(op) != 0));
    /* We could use "FP_S_fb(1,op)" to ascertain whether we are
       dealing with a SNaN or QNaN */
    break;
   case fmt_word:
    boolean = (op == FPQNaN_WORD);
    break;
   case fmt_long:
    boolean = (op == FPQNaN_LONG);
    break;
  }

#ifdef DEBUG
printf("DBG: NaN: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
#endif /* DEBUG */

  return(boolean);
}

static int
Infinity(op,fmt)
     uword64 op;
     FP_formats fmt; 
{
  int boolean = 0;

#ifdef DEBUG
  printf("DBG: Infinity: format %s 0x%s (PC = 0x%s)\n",DOFMT(fmt),pr_addr(op),pr_addr(IPC));
#endif /* DEBUG */

  /* Check if (((E - bias) == (E_max + 1)) && (fraction == 0)). We
     know that the exponent field is biased... we we cheat and avoid
     removing the bias value. */
  switch (fmt) {
   case fmt_single:
    boolean = ((FP_S_be(op) == 0xFF) && (FP_S_f(op) == 0));
    break;
   case fmt_double:
    boolean = ((FP_D_be(op) == 0x7FF) && (FP_D_f(op) == 0));
    break;
   default:
    printf("DBG: TODO: unrecognised format (%s) for Infinity check\n",DOFMT(fmt));
    break;
  }

#ifdef DEBUG
  printf("DBG: Infinity: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
#endif /* DEBUG */

  return(boolean);
}

static int
Less(op1,op2,fmt)
     uword64 op1;
     uword64 op2;
     FP_formats fmt; 
{
  int boolean = 0;

  /* Argument checking already performed by the FPCOMPARE code */

#ifdef DEBUG
  printf("DBG: Less: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    {
      unsigned int wop1 = (unsigned int)op1;
      unsigned int wop2 = (unsigned int)op2;
      boolean = (*(float *)&wop1 < *(float *)&wop2);
    }
    break;
   case fmt_double:
    boolean = (*(double *)&op1 < *(double *)&op2);
    break;
  }

#ifdef DEBUG
  printf("DBG: Less: returning %d (format = %s)\n",boolean,DOFMT(fmt));
#endif /* DEBUG */

  return(boolean);
}

static int
Equal(op1,op2,fmt)
     uword64 op1;
     uword64 op2;
     FP_formats fmt; 
{
  int boolean = 0;

  /* Argument checking already performed by the FPCOMPARE code */

#ifdef DEBUG
  printf("DBG: Equal: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    boolean = ((op1 & 0xFFFFFFFF) == (op2 & 0xFFFFFFFF));
    break;
   case fmt_double:
    boolean = (op1 == op2);
    break;
  }

#ifdef DEBUG
  printf("DBG: Equal: returning %d (format = %s)\n",boolean,DOFMT(fmt));
#endif /* DEBUG */

  return(boolean);
}

static uword64
AbsoluteValue(op,fmt)
     uword64 op;
     FP_formats fmt; 
{
  uword64 result;

#ifdef DEBUG
  printf("DBG: AbsoluteValue: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
#endif /* DEBUG */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    {
      unsigned int wop = (unsigned int)op;
      float tmp = ((float)fabs((double)*(float *)&wop));
      result = (uword64)*(unsigned int *)&tmp;
    }
    break;
   case fmt_double:
    {
      double tmp = (fabs(*(double *)&op));
      result = *(uword64 *)&tmp;
    }
  }

  return(result);
}

static uword64
Negate(op,fmt)
     uword64 op;
     FP_formats fmt; 
{
  uword64 result;

#ifdef DEBUG
  printf("DBG: Negate: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
#endif /* DEBUG */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    {
      unsigned int wop = (unsigned int)op;
      float tmp = ((float)0.0 - *(float *)&wop);
      result = (uword64)*(unsigned int *)&tmp;
    }
    break;
   case fmt_double:
    {
      double tmp = ((double)0.0 - *(double *)&op);
      result = *(uword64 *)&tmp;
    }
    break;
  }

  return(result);
}

static uword64
Add(op1,op2,fmt)
     uword64 op1;
     uword64 op2;
     FP_formats fmt; 
{
  uword64 result;

#ifdef DEBUG
  printf("DBG: Add: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */

  /* The registers must specify FPRs valid for operands of type
     "fmt". If they are not valid, the result is undefined. */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    {
      unsigned int wop1 = (unsigned int)op1;
      unsigned int wop2 = (unsigned int)op2;
      float tmp = (*(float *)&wop1 + *(float *)&wop2);
      result = (uword64)*(unsigned int *)&tmp;
    }
    break;
   case fmt_double:
    {
      double tmp = (*(double *)&op1 + *(double *)&op2);
      result = *(uword64 *)&tmp;
    }
    break;
  }

#ifdef DEBUG
  printf("DBG: Add: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */

  return(result);
}

static uword64
Sub(op1,op2,fmt)
     uword64 op1;
     uword64 op2;
     FP_formats fmt; 
{
  uword64 result;

#ifdef DEBUG
  printf("DBG: Sub: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */

  /* The registers must specify FPRs valid for operands of type
     "fmt". If they are not valid, the result is undefined. */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    {
      unsigned int wop1 = (unsigned int)op1;
      unsigned int wop2 = (unsigned int)op2;
      float tmp = (*(float *)&wop1 - *(float *)&wop2);
      result = (uword64)*(unsigned int *)&tmp;
    }
    break;
   case fmt_double:
    {
      double tmp = (*(double *)&op1 - *(double *)&op2);
      result = *(uword64 *)&tmp;
    }
    break;
  }

#ifdef DEBUG
  printf("DBG: Sub: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */

  return(result);
}

static uword64
Multiply(op1,op2,fmt)
     uword64 op1;
     uword64 op2;
     FP_formats fmt; 
{
  uword64 result;

#ifdef DEBUG
  printf("DBG: Multiply: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */

  /* The registers must specify FPRs valid for operands of type
     "fmt". If they are not valid, the result is undefined. */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    {
      unsigned int wop1 = (unsigned int)op1;
      unsigned int wop2 = (unsigned int)op2;
      float tmp = (*(float *)&wop1 * *(float *)&wop2);
      result = (uword64)*(unsigned int *)&tmp;
    }
    break;
   case fmt_double:
    {
      double tmp = (*(double *)&op1 * *(double *)&op2);
      result = *(uword64 *)&tmp;
    }
    break;
  }

#ifdef DEBUG
  printf("DBG: Multiply: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */

  return(result);
}

static uword64
Divide(op1,op2,fmt)
     uword64 op1;
     uword64 op2;
     FP_formats fmt; 
{
  uword64 result;

#ifdef DEBUG
  printf("DBG: Divide: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
#endif /* DEBUG */

  /* The registers must specify FPRs valid for operands of type
     "fmt". If they are not valid, the result is undefined. */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    {
      unsigned int wop1 = (unsigned int)op1;
      unsigned int wop2 = (unsigned int)op2;
      float tmp = (*(float *)&wop1 / *(float *)&wop2);
      result = (uword64)*(unsigned int *)&tmp;
    }
    break;
   case fmt_double:
    {
      double tmp = (*(double *)&op1 / *(double *)&op2);
      result = *(uword64 *)&tmp;
    }
    break;
  }

#ifdef DEBUG
  printf("DBG: Divide: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */

  return(result);
}

static uword64
Recip(op,fmt)
     uword64 op;
     FP_formats fmt; 
{
  uword64 result;

#ifdef DEBUG
  printf("DBG: Recip: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
#endif /* DEBUG */

  /* The registers must specify FPRs valid for operands of type
     "fmt". If they are not valid, the result is undefined. */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    {
      unsigned int wop = (unsigned int)op;
      float tmp = ((float)1.0 / *(float *)&wop);
      result = (uword64)*(unsigned int *)&tmp;
    }
    break;
   case fmt_double:
    {
      double tmp = ((double)1.0 / *(double *)&op);
      result = *(uword64 *)&tmp;
    }
    break;
  }

#ifdef DEBUG
  printf("DBG: Recip: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */

  return(result);
}

static uword64
SquareRoot(op,fmt)
     uword64 op;
     FP_formats fmt; 
{
  uword64 result;

#ifdef DEBUG
  printf("DBG: SquareRoot: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
#endif /* DEBUG */

  /* The registers must specify FPRs valid for operands of type
     "fmt". If they are not valid, the result is undefined. */

  /* The format type should already have been checked: */
  switch (fmt) {
   case fmt_single:
    {
      unsigned int wop = (unsigned int)op;
#ifdef HAVE_SQRT
      float tmp = ((float)sqrt((double)*(float *)&wop));
      result = (uword64)*(unsigned int *)&tmp;
#else
      /* TODO: Provide square-root */
      result = (uword64)0;
#endif
    }
    break;
   case fmt_double:
    {
#ifdef HAVE_SQRT
      double tmp = (sqrt(*(double *)&op));
      result = *(uword64 *)&tmp;
#else
      /* TODO: Provide square-root */
      result = (uword64)0;
#endif
    }
    break;
  }

#ifdef DEBUG
  printf("DBG: SquareRoot: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
#endif /* DEBUG */

  return(result);
}

static uword64
Convert(rm,op,from,to)
     int rm;
     uword64 op;
     FP_formats from; 
     FP_formats to; 
{
  uword64 result;

#ifdef DEBUG
  printf("DBG: Convert: mode %s : op 0x%s : from %s : to %s : (PC = 0x%s)\n",RMMODE(rm),pr_addr(op),DOFMT(from),DOFMT(to),pr_addr(IPC));
#endif /* DEBUG */

  /* The value "op" is converted to the destination format, rounding
     using mode "rm". When the destination is a fixed-point format,
     then a source value of Infinity, NaN or one which would round to
     an integer outside the fixed point range then an IEEE Invalid
     Operation condition is raised. */
  switch (to) {
   case fmt_single:
    {
      float tmp;
      switch (from) {
       case fmt_double:
        tmp = (float)(*(double *)&op);
        break;

       case fmt_word:
        tmp = (float)((int)(op & 0xFFFFFFFF));
        break;

       case fmt_long:
        tmp = (float)((word64)op);
        break;
      }

#if 0
      /* FIXME: This code is incorrect.  The rounding mode does not
         round to integral values; it rounds to the nearest
         representable value in the format.  */

      switch (rm) {
       case FP_RM_NEAREST:
        /* Round result to nearest representable value. When two
           representable values are equally near, round to the value
           that has a least significant bit of zero (i.e. is even). */
#ifdef HAVE_ANINT
        tmp = (float)anint((double)tmp);
#else
        /* TODO: Provide round-to-nearest */
#endif
        break;

       case FP_RM_TOZERO:
        /* Round result to the value closest to, and not greater in
           magnitude than, the result. */
#ifdef HAVE_AINT
        tmp = (float)aint((double)tmp);
#else
        /* TODO: Provide round-to-zero */
#endif
        break;

       case FP_RM_TOPINF:
        /* Round result to the value closest to, and not less than,
           the result. */
        tmp = (float)ceil((double)tmp);
        break;

       case FP_RM_TOMINF:
        /* Round result to the value closest to, and not greater than,
           the result. */
        tmp = (float)floor((double)tmp);
        break;
      }
#endif /* 0 */

      result = (uword64)*(unsigned int *)&tmp;
    }
    break;

   case fmt_double:
    {
      double tmp;
      word64 xxx;

      switch (from) {
       case fmt_single:
        {
          unsigned int wop = (unsigned int)op;
          tmp = (double)(*(float *)&wop);
        }
        break;

       case fmt_word:
        xxx = SIGNEXTEND((op & 0xFFFFFFFF),32);
        tmp = (double)xxx;
        break;

       case fmt_long:
        tmp = (double)((word64)op);
        break;
      }

#if 0
      /* FIXME: This code is incorrect.  The rounding mode does not
         round to integral values; it rounds to the nearest
         representable value in the format.  */

      switch (rm) {
       case FP_RM_NEAREST:
#ifdef HAVE_ANINT
        tmp = anint(*(double *)&tmp);
#else
        /* TODO: Provide round-to-nearest */
#endif
        break;

       case FP_RM_TOZERO:
#ifdef HAVE_AINT
        tmp = aint(*(double *)&tmp);
#else
        /* TODO: Provide round-to-zero */
#endif
        break;

       case FP_RM_TOPINF:
        tmp = ceil(*(double *)&tmp);
        break;

       case FP_RM_TOMINF:
        tmp = floor(*(double *)&tmp);
        break;
      }
#endif /* 0 */

      result = *(uword64 *)&tmp;
    }
    break;

   case fmt_word:
   case fmt_long:
    if (Infinity(op,from) || NaN(op,from) || (1 == 0/*TODO: check range */)) {
      printf("DBG: TODO: update FCSR\n");
      SignalException(FPE);
    } else {
      if (to == fmt_word) {
        int tmp;
        switch (from) {
         case fmt_single:
          {
            unsigned int wop = (unsigned int)op;
            tmp = (int)*((float *)&wop);
          }
          break;
         case fmt_double:
          tmp = (int)*((double *)&op);
#ifdef DEBUG
          printf("DBG: from double %.30f (0x%s) to word: 0x%08X\n",*((double *)&op),pr_addr(op),tmp);
#endif /* DEBUG */
          break;
        }
        result = (uword64)tmp;
      } else { /* fmt_long */
	word64 tmp;
        switch (from) {
         case fmt_single:
          {
            unsigned int wop = (unsigned int)op;
            tmp = (word64)*((float *)&wop);
          }
          break;
         case fmt_double:
          tmp = (word64)*((double *)&op);
          break;
        }
	result = (uword64)tmp;
      }
    }
    break;
  }

#ifdef DEBUG
  printf("DBG: Convert: returning 0x%s (to format = %s)\n",pr_addr(result),DOFMT(to));
#endif /* DEBUG */

  return(result);
}
#endif /* HASFPU */

/*-- co-processor support routines ------------------------------------------*/

static int
CoProcPresent(coproc_number)
     unsigned int coproc_number;
{
  /* Return TRUE if simulator provides a model for the given co-processor number */
  return(0);
}

static void
COP_LW(coproc_num,coproc_reg,memword)
     int coproc_num, coproc_reg;
     unsigned int memword;
{
  switch (coproc_num) {
#if defined(HASFPU)
    case 1:
#ifdef DEBUG
    printf("DBG: COP_LW: memword = 0x%08X (uword64)memword = 0x%s\n",memword,pr_addr(memword));
#endif
     StoreFPR(coproc_reg,fmt_word,(uword64)memword);
     fpr_state[coproc_reg] = fmt_uninterpreted;
     break;
#endif /* HASFPU */

    default:
#if 0 /* this should be controlled by a configuration option */
     callback->printf_filtered(callback,"COP_LW(%d,%d,0x%08X) at IPC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,memword,pr_addr(IPC));
#endif
     break;
  }

  return;
}

static void
COP_LD(coproc_num,coproc_reg,memword)
     int coproc_num, coproc_reg;
     uword64 memword;
{
  switch (coproc_num) {
#if defined(HASFPU)
    case 1:
     StoreFPR(coproc_reg,fmt_uninterpreted,memword);
     break;
#endif /* HASFPU */

    default:
#if 0 /* this message should be controlled by a configuration option */
     callback->printf_filtered(callback,"COP_LD(%d,%d,0x%s) at IPC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(memword),pr_addr(IPC));
#endif
     break;
  }

  return;
}

static unsigned int
COP_SW(coproc_num,coproc_reg)
     int coproc_num, coproc_reg;
{
  unsigned int value = 0;
  FP_formats hold;

  switch (coproc_num) {
#if defined(HASFPU)
    case 1:
#if 1
     hold = fpr_state[coproc_reg];
     fpr_state[coproc_reg] = fmt_word;
     value = (unsigned int)ValueFPR(coproc_reg,fmt_uninterpreted);
     fpr_state[coproc_reg] = hold;
#else
#if 1
     value = (unsigned int)ValueFPR(coproc_reg,fpr_state[coproc_reg]);
#else
#ifdef DEBUG
     printf("DBG: COP_SW: reg in format %s (will be accessing as single)\n",DOFMT(fpr_state[coproc_reg])); 
#endif /* DEBUG */
     value = (unsigned int)ValueFPR(coproc_reg,fmt_single);
#endif
#endif
     break;
#endif /* HASFPU */

    default:
#if 0 /* should be controlled by configuration option */
     callback->printf_filtered(callback,"COP_SW(%d,%d) at IPC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(IPC));
#endif
     break;
  }

  return(value);
}

static uword64
COP_SD(coproc_num,coproc_reg)
     int coproc_num, coproc_reg;
{
  uword64 value = 0;
  switch (coproc_num) {
#if defined(HASFPU)
    case 1:
#if 1
     value = ValueFPR(coproc_reg,fmt_uninterpreted);
#else
#if 1
     value = ValueFPR(coproc_reg,fpr_state[coproc_reg]);
#else
#ifdef DEBUG
     printf("DBG: COP_SD: reg in format %s (will be accessing as double)\n",DOFMT(fpr_state[coproc_reg]));
#endif /* DEBUG */
     value = ValueFPR(coproc_reg,fmt_double);
#endif
#endif
     break;
#endif /* HASFPU */

    default:
#if 0 /* should be controlled by configuration option */
     callback->printf_filtered(callback,"COP_SD(%d,%d) at IPC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(IPC));
#endif
     break;
  }

  return(value);
}

static void
decode_coproc(instruction)
     unsigned int instruction;
{
  int coprocnum = ((instruction >> 26) & 3);

  switch (coprocnum) {
    case 0: /* standard CPU control and cache registers */
      {
        /* NOTEs:
           Standard CP0 registers
           	0 = Index               R4000   VR4100  VR4300
                1 = Random              R4000   VR4100  VR4300
                2 = EntryLo0            R4000   VR4100  VR4300
                3 = EntryLo1            R4000   VR4100  VR4300
                4 = Context             R4000   VR4100  VR4300
                5 = PageMask            R4000   VR4100  VR4300
                6 = Wired               R4000   VR4100  VR4300
                8 = BadVAddr            R4000   VR4100  VR4300
                9 = Count               R4000   VR4100  VR4300
                10 = EntryHi            R4000   VR4100  VR4300
                11 = Compare            R4000   VR4100  VR4300
                12 = SR                 R4000   VR4100  VR4300
                13 = Cause              R4000   VR4100  VR4300
                14 = EPC                R4000   VR4100  VR4300
                15 = PRId               R4000   VR4100  VR4300
                16 = Config             R4000   VR4100  VR4300
                17 = LLAddr             R4000   VR4100  VR4300
                18 = WatchLo            R4000   VR4100  VR4300
                19 = WatchHi            R4000   VR4100  VR4300
                20 = XContext           R4000   VR4100  VR4300
                26 = PErr or ECC        R4000   VR4100  VR4300
                27 = CacheErr           R4000   VR4100
                28 = TagLo              R4000   VR4100  VR4300
                29 = TagHi              R4000   VR4100  VR4300
                30 = ErrorEPC           R4000   VR4100  VR4300
        */
        int code = ((instruction >> 21) & 0x1F);
        /* R4000 Users Manual (second edition) lists the following CP0
           instructions:
           	DMFC0   Doubleword Move From CP0        (VR4100 = 01000000001tttttddddd00000000000)
                DMTC0   Doubleword Move To CP0          (VR4100 = 01000000101tttttddddd00000000000)
                MFC0    word Move From CP0              (VR4100 = 01000000000tttttddddd00000000000)
                MTC0    word Move To CP0                (VR4100 = 01000000100tttttddddd00000000000)
                TLBR    Read Indexed TLB Entry          (VR4100 = 01000010000000000000000000000001)
                TLBWI   Write Indexed TLB Entry         (VR4100 = 01000010000000000000000000000010)
                TLBWR   Write Random TLB Entry          (VR4100 = 01000010000000000000000000000110)
                TLBP    Probe TLB for Matching Entry    (VR4100 = 01000010000000000000000000001000)
                CACHE   Cache operation                 (VR4100 = 101111bbbbbpppppiiiiiiiiiiiiiiii)
                ERET    Exception return                (VR4100 = 01000010000000000000000000011000)
        */
        if (((code == 0x00) || (code == 0x04)) && ((instruction & 0x7FF) == 0)) {
          int rt = ((instruction >> 16) & 0x1F);
          int rd = ((instruction >> 11) & 0x1F);
          if (code == 0x00) { /* MF : move from */
#if 0 /* message should be controlled by configuration option */
            callback->printf_filtered(callback,"Warning: MFC0 %d,%d not handled yet (architecture specific)\n",rt,rd);
#endif
            GPR[rt] = 0xDEADC0DE; /* CPR[0,rd] */
          } else { /* MT : move to */
            /* CPR[0,rd] = GPR[rt]; */
#if 0 /* should be controlled by configuration option */
            callback->printf_filtered(callback,"Warning: MTC0 %d,%d not handled yet (architecture specific)\n",rt,rd);
#endif
          }
        } else
         sim_warning("Unrecognised COP0 instruction 0x%08X at IPC = 0x%s : No handler present",instruction,pr_addr(IPC));
        /* TODO: When executing an ERET or RFE instruction we should
           clear LLBIT, to ensure that any out-standing atomic
           read/modify/write sequence fails. */
      }
      break;

    case 2: /* undefined co-processor */
      sim_warning("COP2 instruction 0x%08X at IPC = 0x%s : No handler present",instruction,pr_addr(IPC));
      break;

    case 1: /* should not occur (FPU co-processor) */
    case 3: /* should not occur (FPU co-processor) */
      SignalException(ReservedInstruction,instruction);
      break;
  }

  return;
}

/*-- instruction simulation -------------------------------------------------*/

static void
simulate ()
{
  unsigned int pipeline_count = 1;

#ifdef DEBUG
  if (membank == NULL) {
    printf("DBG: simulate() entered with no memory\n");
    exit(1);
  }
#endif /* DEBUG */

#if 0 /* Disabled to check that everything works OK */
  /* The VR4300 seems to sign-extend the PC on its first
     access. However, this may just be because it is currently
     configured in 32bit mode. However... */
  PC = SIGNEXTEND(PC,32);
#endif

  /* main controlling loop */
  do {
    /* Fetch the next instruction from the simulator memory: */
    uword64 vaddr = (uword64)PC;
    uword64 paddr;
    int cca;
    unsigned int instruction;	/* uword64? what's this used for?  FIXME! */
    int dsstate = (state & simDELAYSLOT);

#ifdef DEBUG
    {
      printf("DBG: state = 0x%08X :",state);
      if (state & simSTOP) printf(" simSTOP");
      if (state & simSTEP) printf(" simSTEP");
      if (state & simHALTEX) printf(" simHALTEX");
      if (state & simHALTIN) printf(" simHALTIN");
      if (state & simBE) printf(" simBE");
      printf("\n");
    }
#endif /* DEBUG */

#ifdef DEBUG
    if (dsstate)
     callback->printf_filtered(callback,"DBG: DSPC = 0x%s\n",pr_addr(DSPC));
#endif /* DEBUG */

    if (AddressTranslation(PC,isINSTRUCTION,isLOAD,&paddr,&cca,isTARGET,isREAL)) {
      if ((vaddr & 1) == 0) {
	/* Copy the action of the LW instruction */
	unsigned int reverse = (ReverseEndian ? (LOADDRMASK >> 2) : 0);
	unsigned int bigend = (BigEndianCPU ? (LOADDRMASK >> 2) : 0);
	uword64 value;
	unsigned int byte;
	paddr = ((paddr & ~LOADDRMASK) | ((paddr & LOADDRMASK) ^ (reverse << 2)));
	LoadMemory(&value,NULL,cca,AccessLength_WORD,paddr,vaddr,isINSTRUCTION,isREAL);
	byte = ((vaddr & LOADDRMASK) ^ (bigend << 2));
	instruction = ((value >> (8 * byte)) & 0xFFFFFFFF);
      } else {
	/* Copy the action of the LH instruction */
	unsigned int reverse = (ReverseEndian ? (LOADDRMASK >> 1) : 0);
	unsigned int bigend = (BigEndianCPU ? (LOADDRMASK >> 1) : 0);
	uword64 value;
	unsigned int byte;
	paddr = (((paddr & ~ (uword64) 1) & ~LOADDRMASK)
		 | (((paddr & ~ (uword64) 1) & LOADDRMASK) ^ (reverse << 1)));
	LoadMemory(&value,NULL,cca, AccessLength_HALFWORD,
			   paddr & ~ (uword64) 1,
			   vaddr, isINSTRUCTION, isREAL);
	byte = (((vaddr &~ (uword64) 1) & LOADDRMASK) ^ (bigend << 1));
	instruction = ((value >> (8 * byte)) & 0xFFFF);
      }
    } else {
      fprintf(stderr,"Cannot translate address for PC = 0x%s failed\n",pr_addr(PC));
      exit(1);
    }

#ifdef DEBUG
    callback->printf_filtered(callback,"DBG: fetched 0x%08X from PC = 0x%s\n",instruction,pr_addr(PC));
#endif /* DEBUG */

#if !defined(FASTSIM) || defined(PROFILE)
    instruction_fetches++;
    /* Since we increment above, the value should only ever be zero if
       we have just overflowed: */
    if (instruction_fetches == 0)
      instruction_fetch_overflow++;
#if defined(PROFILE)
    if ((state & simPROFILE) && ((instruction_fetches % profile_frequency) == 0) && profile_hist) {
      unsigned n = ((unsigned int)(PC - profile_minpc) >> (profile_shift + 2));
      if (n < profile_nsamples) {
        /* NOTE: The counts for the profiling bins are only 16bits wide */
        if (profile_hist[n] != USHRT_MAX)
         (profile_hist[n])++;
      }
    }
#endif /* PROFILE */
#endif /* !FASTSIM && PROFILE */

    IPC = PC; /* copy PC for this instruction */
    /* This is required by exception processing, to ensure that we can
       cope with exceptions in the delay slots of branches that may
       already have changed the PC. */
    if ((vaddr & 1) == 0)
      PC += 4; /* increment ready for the next fetch */
    else
      PC += 2;
    /* NOTE: If we perform a delay slot change to the PC, this
       increment is not requuired. However, it would make the
       simulator more complicated to try and avoid this small hit. */

    /* Currently this code provides a simple model. For more
       complicated models we could perform exception status checks at
       this point, and set the simSTOP state as required. This could
       also include processing any hardware interrupts raised by any
       I/O model attached to the simulator context.

       Support for "asynchronous" I/O events within the simulated world
       could be providing by managing a counter, and calling a I/O
       specific handler when a particular threshold is reached. On most
       architectures a decrement and check for zero operation is
       usually quicker than an increment and compare. However, the
       process of managing a known value decrement to zero, is higher
       than the cost of using an explicit value UINT_MAX into the
       future. Which system is used will depend on how complicated the
       I/O model is, and how much it is likely to affect the simulator
       bandwidth.

       If events need to be scheduled further in the future than
       UINT_MAX event ticks, then the I/O model should just provide its
       own counter, triggered from the event system. */

    /* MIPS pipeline ticks. To allow for future support where the
       pipeline hit of individual instructions is known, this control
       loop manages a "pipeline_count" variable. It is initialised to
       1 (one), and will only be changed by the simulator engine when
       executing an instruction. If the engine does not have access to
       pipeline cycle count information then all instructions will be
       treated as using a single cycle. NOTE: A standard system is not
       provided by the default simulator because different MIPS
       architectures have different cycle counts for the same
       instructions. */

#if defined(HASFPU)
    /* Set previous flag, depending on current: */
    if (state & simPCOC0)
     state |= simPCOC1;
    else
     state &= ~simPCOC1;
    /* and update the current value: */
    if (GETFCC(0))
     state |= simPCOC0;
    else
     state &= ~simPCOC0;
#endif /* HASFPU */

/* NOTE: For multi-context simulation environments the "instruction"
   variable should be local to this routine. */

/* Shorthand accesses for engine. Note: If we wanted to use global
   variables (and a single-threaded simulator engine), then we can
   create the actual variables with these names. */

    if (!(state & simSKIPNEXT)) {
      /* Include the simulator engine */
#include "engine.c"
#if ((GPRLEN == 64) && !PROCESSOR_64BIT) || ((GPRLEN == 32) && PROCESSOR_64BIT)
#error "Mismatch between run-time simulator code and simulation engine"
#endif

#if defined(WARN_LOHI)
      /* Decrement the HI/LO validity ticks */
      if (HIACCESS > 0)
       HIACCESS--;
      if (LOACCESS > 0)
       LOACCESS--;
      if (HI1ACCESS > 0)
       HI1ACCESS--;
      if (LO1ACCESS > 0)
       LO1ACCESS--;
#endif /* WARN_LOHI */

#if defined(WARN_ZERO)
      /* For certain MIPS architectures, GPR[0] is hardwired to zero. We
         should check for it being changed. It is better doing it here,
         than within the simulator, since it will help keep the simulator
         small. */
      if (ZERO != 0) {
        sim_warning("The ZERO register has been updated with 0x%s (PC = 0x%s) (reset back to zero)",pr_addr(ZERO),pr_addr(IPC));
        ZERO = 0; /* reset back to zero before next instruction */
      }
#endif /* WARN_ZERO */
    } else /* simSKIPNEXT check */
     state &= ~simSKIPNEXT;

    /* If the delay slot was active before the instruction is
       executed, then update the PC to its new value: */
    if (dsstate) {
#ifdef DEBUG
      printf("DBG: dsstate set before instruction execution - updating PC to 0x%s\n",pr_addr(DSPC));
#endif /* DEBUG */
      PC = DSPC;
      state &= ~(simDELAYSLOT | simJALDELAYSLOT);
    }

    if (MIPSISA < 4) { /* The following is only required on pre MIPS IV processors: */
      /* Deal with pending register updates: */
#ifdef DEBUG
      printf("DBG: EMPTY BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",pending_in,pending_out,pending_total);
#endif /* DEBUG */
      if (pending_out != pending_in) {
        int loop;
        int index = pending_out;
        int total = pending_total;
        if (pending_total == 0) {
          fprintf(stderr,"FATAL: Mis-match on pending update pointers\n");
          exit(1);
        }
        for (loop = 0; (loop < total); loop++) {
#ifdef DEBUG
          printf("DBG: BEFORE index = %d, loop = %d\n",index,loop);
#endif /* DEBUG */
          if (pending_slot_reg[index] != (LAST_EMBED_REGNUM + 1)) {
#ifdef DEBUG
            printf("pending_slot_count[%d] = %d\n",index,pending_slot_count[index]);
#endif /* DEBUG */
            if (--(pending_slot_count[index]) == 0) {
#ifdef DEBUG
              printf("pending_slot_reg[%d] = %d\n",index,pending_slot_reg[index]);
              printf("pending_slot_value[%d] = 0x%s\n",index,pr_addr(pending_slot_value[index]));
#endif /* DEBUG */
              if (pending_slot_reg[index] == COCIDX) {
                SETFCC(0,((FCR31 & (1 << 23)) ? 1 : 0));
              } else {
                registers[pending_slot_reg[index]] = pending_slot_value[index];
#if defined(HASFPU)
                /* The only time we have PENDING updates to FPU
                   registers, is when performing binary transfers. This
                   means we should update the register type field.  */
                if ((pending_slot_reg[index] >= FGRIDX) && (pending_slot_reg[index] < (FGRIDX + 32)))
                 fpr_state[pending_slot_reg[index] - FGRIDX] = fmt_uninterpreted;
#endif /* HASFPU */
              }
#ifdef DEBUG
              printf("registers[%d] = 0x%s\n",pending_slot_reg[index],pr_addr(registers[pending_slot_reg[index]]));
#endif /* DEBUG */
              pending_slot_reg[index] = (LAST_EMBED_REGNUM + 1);
              pending_out++;
              if (pending_out == PSLOTS)
               pending_out = 0;
              pending_total--;
            }
          }
#ifdef DEBUG
          printf("DBG: AFTER  index = %d, loop = %d\n",index,loop);
#endif /* DEBUG */
          index++;
          if (index == PSLOTS)
           index = 0;
        }
      }
#ifdef DEBUG
      printf("DBG: EMPTY AFTER  pending_in = %d, pending_out = %d, pending_total = %d\n",pending_in,pending_out,pending_total);
#endif /* DEBUG */
    }

#if !defined(FASTSIM)
    pipeline_ticks += pipeline_count;
#endif /* FASTSIM */

    if (state & simSTEP)
     state |= simSTOP;
  } while (!(state & simSTOP));

#ifdef DEBUG
  if (membank == NULL) {
    printf("DBG: simulate() LEAVING with no memory\n");
    exit(1);
  }
#endif /* DEBUG */

  return;
}

/* This code copied from gdb's utils.c.  Would like to share this code,
   but don't know of a common place where both could get to it. */

/* Temporary storage using circular buffer */
#define NUMCELLS 16
#define CELLSIZE 32
static char*
get_cell()
{
  static char buf[NUMCELLS][CELLSIZE];
  static int cell=0;
  if (++cell>=NUMCELLS) cell=0;
  return buf[cell];
}     

/* Print routines to handle variable size regs, etc */

/* Eliminate warning from compiler on 32-bit systems */
static int thirty_two = 32;	

char* 
pr_addr(addr)
  SIM_ADDR addr;
{
  char *paddr_str=get_cell();
  switch (sizeof(addr))
    {
      case 8:
        sprintf(paddr_str,"%08x%08x",
		(unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
	break;
      case 4:
        sprintf(paddr_str,"%08x",(unsigned long)addr);
	break;
      case 2:
        sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
	break;
      default:
        sprintf(paddr_str,"%x",addr);
    }
  return paddr_str;
}

/*---------------------------------------------------------------------------*/
/*> EOF interp.c <*/