aboutsummaryrefslogtreecommitdiff
path: root/sim/m68hc11/interrupts.c
blob: 44771bb4e03f426f81cfee7beb2ca9f1f96ab319 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/* interrupts.c -- 68HC11 Interrupts Emulation
   Copyright 1999, 2000 Free Software Foundation, Inc.
   Written by Stephane Carrez (stcarrez@worldnet.fr)

This file is part of GDB, GAS, and the GNU binutils.

GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
1, or (at your option) any later version.

GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this file; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "sim-main.h"

struct interrupt_def idefs[] = {
  /* Serial interrupts.  */
  { M6811_INT_SCI,      M6811_SCSR,   M6811_TDRE,  M6811_SCCR2,  M6811_TIE },
  { M6811_INT_SCI,      M6811_SCSR,   M6811_TC,    M6811_SCCR2,  M6811_TCIE },
  { M6811_INT_SCI,      M6811_SCSR,   M6811_RDRF,  M6811_SCCR2,  M6811_RIE },
  { M6811_INT_SCI,      M6811_SCSR,   M6811_IDLE,  M6811_SCCR2,  M6811_ILIE },

  /* SPI interrupts.  */
  { M6811_INT_SPI,      M6811_SPSR,   M6811_SPIF,  M6811_SPCR,   M6811_SPIE },

  /* Realtime interrupts.  */
  { M6811_INT_TCTN,     M6811_TFLG2,  M6811_TOF,   M6811_TMSK2,  M6811_TOI },
  { M6811_INT_RT,       M6811_TFLG2,  M6811_RTIF,  M6811_TMSK2,  M6811_RTII },

  /* Output compare interrupts.  */
  { M6811_INT_OUTCMP1,  M6811_TFLG1,  M6811_OC1F,  M6811_TMSK1,  M6811_OC1I },
  { M6811_INT_OUTCMP2,  M6811_TFLG1,  M6811_OC2F,  M6811_TMSK1,  M6811_OC2I },
  { M6811_INT_OUTCMP3,  M6811_TFLG1,  M6811_OC3F,  M6811_TMSK1,  M6811_OC3I },
  { M6811_INT_OUTCMP4,  M6811_TFLG1,  M6811_OC4F,  M6811_TMSK1,  M6811_OC4I },
  { M6811_INT_OUTCMP5,  M6811_TFLG1,  M6811_OC5F,  M6811_TMSK1,  M6811_OC5I },

  /* Input compare interrupts.  */
  { M6811_INT_INCMP1,   M6811_TFLG1,  M6811_IC1F,  M6811_TMSK1,  M6811_IC1I },
  { M6811_INT_INCMP2,   M6811_TFLG1,  M6811_IC2F,  M6811_TMSK1,  M6811_IC2I },
  { M6811_INT_INCMP3,   M6811_TFLG1,  M6811_IC3F,  M6811_TMSK1,  M6811_IC3I },
#if 0
  { M6811_INT_COPRESET, M6811_CONFIG, M6811_NOCOP, 0,            0 },
  { M6811_INT_COPFAIL,  M6811_CONFIG, M6811_NOCOP, 0,            0 }
#endif
};

#define TableSize(X) (sizeof X / sizeof(X[0]))
#define CYCLES_MAX ((((signed64) 1) << 62) - 1)

/* Initialize the interrupts of the processor.  */
int
interrupts_initialize (struct _sim_cpu *proc)
{
  struct interrupts *interrupts = &proc->cpu_interrupts;
  int i;
  
  interrupts->cpu          = proc;
  interrupts->pending_mask = 0;
  interrupts->vectors_addr = 0xffc0;
  interrupts->nb_interrupts_raised = 0;
  interrupts->min_mask_cycles = CYCLES_MAX;
  interrupts->max_mask_cycles = 0;
  interrupts->start_mask_cycle = -1;
  interrupts->xirq_start_mask_cycle = -1;
  interrupts->xirq_max_mask_cycles = 0;
  interrupts->xirq_min_mask_cycles = CYCLES_MAX;
  
  for (i = 0; i < M6811_INT_NUMBER; i++)
    {
      interrupts->interrupt_order[i] = i;
    }
  return 0;
}


/* Update the mask of pending interrupts.  This operation must be called
   when the state of some 68HC11 IO registers changes.  It looks the
   different registers that indicate a pending interrupt (timer, SCI, SPI,
   ...) and records the interrupt if it's there and enabled.  */
void
interrupts_update_pending (struct interrupts *interrupts)
{
  int i;
  uint8 *ioregs;

  ioregs = &interrupts->cpu->ios[0];
  
  for (i = 0; i < TableSize(idefs); i++)
    {
      struct interrupt_def *idef = &idefs[i];
      uint8 data;
      
      /* Look if the interrupt is enabled.  */
      if (idef->enable_paddr)
	{
	  data = ioregs[idef->enable_paddr];
	  if (!(data & idef->enabled_mask))
            {
              /* Disable it.  */
              interrupts->pending_mask &= ~(1 << idef->int_number);
              continue;
            }
	}

      /* Interrupt is enabled, see if it's there.  */
      data = ioregs[idef->int_paddr];
      if (!(data & idef->int_mask))
        {
          /* Disable it.  */
          interrupts->pending_mask &= ~(1 << idef->int_number);
          continue;
        }

      /* Ok, raise it.  */
      interrupts->pending_mask |= (1 << idef->int_number);
    }
}


/* Finds the current active and non-masked interrupt.
   Returns the interrupt number (index in the vector table) or -1
   if no interrupt can be serviced.  */
int
interrupts_get_current (struct interrupts *interrupts)
{
  int i;
  
  if (interrupts->pending_mask == 0)
    return -1;

  /* SWI and illegal instructions are simulated by an interrupt.
     They are not maskable.  */
  if (interrupts->pending_mask & (1 << M6811_INT_SWI))
    {
      interrupts->pending_mask &= ~(1 << M6811_INT_SWI);
      return M6811_INT_SWI;
    }
  if (interrupts->pending_mask & (1 << M6811_INT_ILLEGAL))
    {
      interrupts->pending_mask &= ~(1 << M6811_INT_ILLEGAL);
      return M6811_INT_ILLEGAL;
    }
  
  /* If there is a non maskable interrupt, go for it (unless we are masked
     by the X-bit.  */
  if (interrupts->pending_mask & (1 << M6811_INT_XIRQ))
    {
      if (cpu_get_ccr_X (interrupts->cpu) == 0)
	{
	  interrupts->pending_mask &= ~(1 << M6811_INT_XIRQ);
	  return M6811_INT_XIRQ;
	}
      return -1;
    }

  /* Interrupts are masked, do nothing.  */
  if (cpu_get_ccr_I (interrupts->cpu) == 1)
    {
      return -1;
    }

  /* Returns the first interrupt number which is pending.
     The interrupt priority is specified by the table `interrupt_order'.
     For these interrupts, the pending mask is cleared when the program
     performs some actions on the corresponding device.  If the device
     is not reset, the interrupt remains and will be re-raised when
     we return from the interrupt (see 68HC11 pink book).  */
  for (i = 0; i < M6811_INT_NUMBER; i++)
    {
      enum M6811_INT int_number = interrupts->interrupt_order[i];

      if (interrupts->pending_mask & (1 << int_number))
	{
	  return int_number;
	}
    }
  return -1;
}


/* Process the current interrupt if there is one.  This operation must
   be called after each instruction to handle the interrupts.  If interrupts
   are masked, it does nothing.  */
int
interrupts_process (struct interrupts *interrupts)
{
  int id;
  uint8 ccr;

  /* See if interrupts are enabled/disabled and keep track of the
     number of cycles the interrupts are masked.  Such information is
     then reported by the info command.  */
  ccr = cpu_get_ccr (interrupts->cpu);
  if (ccr & M6811_I_BIT)
    {
      if (interrupts->start_mask_cycle < 0)
        interrupts->start_mask_cycle = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->start_mask_cycle >= 0
           && (ccr & M6811_I_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->start_mask_cycle;
      if (t < interrupts->min_mask_cycles)
        interrupts->min_mask_cycles = t;
      if (t > interrupts->max_mask_cycles)
        interrupts->max_mask_cycles = t;
      interrupts->start_mask_cycle = -1;
    }
  if (ccr & M6811_X_BIT)
    {
      if (interrupts->xirq_start_mask_cycle < 0)
        interrupts->xirq_start_mask_cycle
	  = cpu_current_cycle (interrupts->cpu);
    }
  else if (interrupts->xirq_start_mask_cycle >= 0
           && (ccr & M6811_X_BIT) == 0)
    {
      signed64 t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->xirq_start_mask_cycle;
      if (t < interrupts->xirq_min_mask_cycles)
        interrupts->xirq_min_mask_cycles = t;
      if (t > interrupts->xirq_max_mask_cycles)
        interrupts->xirq_max_mask_cycles = t;
      interrupts->xirq_start_mask_cycle = -1;
    }

  id = interrupts_get_current (interrupts);
  if (id >= 0)
    {
      uint16 addr;
      
      cpu_push_all (interrupts->cpu);
      addr = memory_read16 (interrupts->cpu,
                            interrupts->vectors_addr + id * 2);
      cpu_call (interrupts->cpu, addr);

      /* Now, protect from nested interrupts.  */
      if (id == M6811_INT_XIRQ)
	{
	  cpu_set_ccr_X (interrupts->cpu, 1);
	}
      else
	{
	  cpu_set_ccr_I (interrupts->cpu, 1);
	}

      interrupts->nb_interrupts_raised++;
      cpu_add_cycles (interrupts->cpu, 14);
      return 1;
    }
  return 0;
}

void
interrupts_raise (struct interrupts *interrupts, enum M6811_INT number)
{
  interrupts->pending_mask |= (1 << number);
  interrupts->nb_interrupts_raised ++;
}



void
interrupts_info (SIM_DESC sd, struct interrupts *interrupts)
{
  signed64 t;
  
  if (interrupts->start_mask_cycle >= 0)
    {
      t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->start_mask_cycle;
      if (t > interrupts->max_mask_cycles)
        interrupts->max_mask_cycles = t;
    }
  if (interrupts->xirq_start_mask_cycle >= 0)
    {
      t = cpu_current_cycle (interrupts->cpu);

      t -= interrupts->xirq_start_mask_cycle;
      if (t > interrupts->xirq_max_mask_cycles)
        interrupts->xirq_max_mask_cycles = t;
    }

  sim_io_printf (sd, "Interrupts Info:\n");
  sim_io_printf (sd, "  Interrupts raised: %lu\n",
                 interrupts->nb_interrupts_raised);

  t = interrupts->min_mask_cycles == CYCLES_MAX ?
    interrupts->max_mask_cycles :
    interrupts->min_mask_cycles;
  sim_io_printf (sd, "  Shortest interrupts masked sequence: %s\n",
                 cycle_to_string (interrupts->cpu, t));

  t = interrupts->max_mask_cycles;
  sim_io_printf (sd, "  Longest interrupts masked sequence: %s\n",
                 cycle_to_string (interrupts->cpu, t));

  t = interrupts->xirq_min_mask_cycles == CYCLES_MAX ?
    interrupts->xirq_max_mask_cycles :
    interrupts->xirq_min_mask_cycles;
  sim_io_printf (sd, "  XIRQ Min interrupts masked sequence: %s\n",
                 cycle_to_string (interrupts->cpu, t));

  t = interrupts->xirq_max_mask_cycles;
  sim_io_printf (sd, "  XIRQ Max interrupts masked sequence: %s\n",
                 cycle_to_string (interrupts->cpu, t));
}