aboutsummaryrefslogtreecommitdiff
path: root/sim/m68hc11/interp.c
blob: cba7232a5ed6b18be4b33c035731d6c4126ad0fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/* interp.c -- Simulator for Motorola 68HC11/68HC12
   Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
   Written by Stephane Carrez (stcarrez@worldnet.fr)

This file is part of GDB, the GNU debugger.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "sim-main.h"
#include "sim-assert.h"
#include "sim-hw.h"
#include "sim-options.h"
#include "hw-tree.h"
#include "hw-device.h"
#include "hw-ports.h"

#ifndef MONITOR_BASE
# define MONITOR_BASE (0x0C000)
# define MONITOR_SIZE (0x04000)
#endif

static void sim_get_info (SIM_DESC sd, char *cmd);


char *interrupt_names[] = {
  "reset",
  "nmi",
  "int",
  NULL
};

#ifndef INLINE
#if defined(__GNUC__) && defined(__OPTIMIZE__)
#define INLINE __inline__
#else
#define INLINE
#endif
#endif

struct sim_info_list
{
  const char *name;
  const char *device;
};

struct sim_info_list dev_list_68hc11[] = {
  {"cpu", "/m68hc11"},
  {"timer", "/m68hc11/m68hc11tim"},
  {"sio", "/m68hc11/m68hc11sio"},
  {"spi", "/m68hc11/m68hc11spi"},
  {"eeprom", "/m68hc11/m68hc11eepr"},
  {0, 0}
};

struct sim_info_list dev_list_68hc12[] = {
  {"cpu", "/m68hc12"},
  {"timer", "/m68hc12/m68hc12tim"},
  {"sio", "/m68hc12/m68hc12sio"},
  {"spi", "/m68hc12/m68hc12spi"},
  {"eeprom", "/m68hc12/m68hc12eepr"},
  {0, 0}
};

/* Cover function of sim_state_free to free the cpu buffers as well.  */

static void
free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);

  sim_state_free (sd);
}

/* Give some information about the simulator.  */
static void
sim_get_info (SIM_DESC sd, char *cmd)
{
  sim_cpu *cpu;

  cpu = STATE_CPU (sd, 0);
  if (cmd != 0 && (cmd[0] == ' ' || cmd[0] == '-'))
    {
      int i;
      struct hw *hw_dev;
      struct sim_info_list *dev_list;
      const struct bfd_arch_info *arch;

      arch = STATE_ARCHITECTURE (sd);
      cmd++;

      if (arch->arch == bfd_arch_m68hc11)
        dev_list = dev_list_68hc11;
      else
        dev_list = dev_list_68hc12;

      for (i = 0; dev_list[i].name; i++)
	if (strcmp (cmd, dev_list[i].name) == 0)
	  break;

      if (dev_list[i].name == 0)
	{
	  sim_io_eprintf (sd, "Device '%s' not found.\n", cmd);
	  sim_io_eprintf (sd, "Valid devices: cpu timer sio eeprom\n");
	  return;
	}
      hw_dev = sim_hw_parse (sd, dev_list[i].device);
      if (hw_dev == 0)
	{
	  sim_io_eprintf (sd, "Device '%s' not found\n", dev_list[i].device);
	  return;
	}
      hw_ioctl (hw_dev, 23, 0);
      return;
    }

  cpu_info (sd, cpu);
  interrupts_info (sd, &cpu->cpu_interrupts);
}


void
sim_board_reset (SIM_DESC sd)
{
  struct hw *hw_cpu;
  sim_cpu *cpu;
  const struct bfd_arch_info *arch;
  const char *cpu_type;

  cpu = STATE_CPU (sd, 0);
  arch = STATE_ARCHITECTURE (sd);

  /*  hw_cpu = sim_hw_parse (sd, "/"); */
  if (arch->arch == bfd_arch_m68hc11)
    {
      cpu->cpu_type = CPU_M6811;
      cpu_type = "/m68hc11";
    }
  else
    {
      cpu->cpu_type = CPU_M6812;
      cpu_type = "/m68hc12";
    }
  
  hw_cpu = sim_hw_parse (sd, cpu_type);
  if (hw_cpu == 0)
    {
      sim_io_eprintf (sd, "%s cpu not found in device tree.", cpu_type);
      return;
    }

  cpu_reset (cpu);
  hw_port_event (hw_cpu, 3, 0);
  cpu_restart (cpu);
}

int
sim_hw_configure (SIM_DESC sd)
{
  const struct bfd_arch_info *arch;
  struct hw *device_tree;
  int m6811_mode;
  sim_cpu *cpu;
  
  arch = STATE_ARCHITECTURE (sd);
  if (arch == 0)
    return 0;

  cpu = STATE_CPU (sd, 0);
  cpu->cpu_configured_arch = arch;
  device_tree = sim_hw_parse (sd, "/");
  if (arch->arch == bfd_arch_m68hc11)
    {
      cpu->cpu_interpretor = cpu_interp_m6811;
      if (hw_tree_find_property (device_tree, "/m68hc11/reg") == 0)
	{
	  /* Allocate core managed memory */

	  /* the monitor  */
	  sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
			   /* MONITOR_BASE, MONITOR_SIZE */
			   0x8000, M6811_RAM_LEVEL, 0x8000);
	  sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
			   M6811_RAM_LEVEL);
	  sim_hw_parse (sd, "/m68hc11/reg 0x1000 0x03F");
	}

      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11sio/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc11/m68hc11sio/reg 0x2b 0x5");
	  sim_hw_parse (sd, "/m68hc11/m68hc11sio/backend stdio");
	  sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11sio");
	}
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11tim/reg") == 0)
	{
	  /* M68hc11 Timer configuration. */
	  sim_hw_parse (sd, "/m68hc11/m68hc11tim/reg 0x1b 0x5");
	  sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11tim");
	}

      /* Create the SPI device.  */
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11spi/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc11/m68hc11spi/reg 0x28 0x3");
	  sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11spi");
	}
      if (hw_tree_find_property (device_tree, "/m68hc11/nvram/reg") == 0)
	{
	  /* M68hc11 persistent ram configuration. */
	  sim_hw_parse (sd, "/m68hc11/nvram/reg 0x0 256");
	  sim_hw_parse (sd, "/m68hc11/nvram/file m68hc11.ram");
	  sim_hw_parse (sd, "/m68hc11/nvram/mode save-modified");
	  /*sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/pram"); */
	}
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11eepr/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc11/m68hc11eepr/reg 0xb000 512");
	  sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11eepr");
	}
    }
  else
    {
      cpu->cpu_interpretor = cpu_interp_m6812;
      if (hw_tree_find_property (device_tree, "/m68hc12/reg") == 0)
	{
	  /* Allocate core external memory.  */
	  sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
			   0x8000, M6811_RAM_LEVEL, 0x8000);
	  sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
			   M6811_RAM_LEVEL);

	  sim_hw_parse (sd, "/m68hc12/reg 0x0 0x3FF");
	}

      if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@1/reg"))
	{
	  sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/reg 0xC0 0x8");
	  sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/backend stdio");
	  sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@1");
	}
      if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@2/reg"))
	{
	  sim_hw_parse (sd, "/m68hc12/m68hc12sio@2/reg 0xC8 0x8");
	  sim_hw_parse (sd, "/m68hc12/m68hc12sio@2/backend tcp");
	  sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@2");
	}
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12tim/reg") == 0)
	{
	  /* M68hc11 Timer configuration. */
	  sim_hw_parse (sd, "/m68hc12/m68hc12tim/reg 0x1b 0x5");
	  sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12tim");
	}

      /* Create the SPI device.  */
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12spi/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc12/m68hc12spi/reg 0x28 0x3");
	  sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12spi");
	}
      if (hw_tree_find_property (device_tree, "/m68hc12/nvram/reg") == 0)
	{
	  /* M68hc11 persistent ram configuration. */
	  sim_hw_parse (sd, "/m68hc12/nvram/reg 0x2000 8192");
	  sim_hw_parse (sd, "/m68hc12/nvram/file m68hc12.ram");
	  sim_hw_parse (sd, "/m68hc12/nvram/mode save-modified");
	}
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12eepr/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc12/m68hc12eepr/reg 0x0800 2048");
	  sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12eepr");
	}
    }
  return 0;
}

static int
sim_prepare_for_program (SIM_DESC sd, struct _bfd* abfd)
{
  sim_cpu *cpu;

  cpu = STATE_CPU (sd, 0);

  sim_hw_configure (sd);
  if (abfd != NULL)
    {
      cpu->cpu_elf_start = bfd_get_start_address (abfd);
    }

  /* reset all state information */
  sim_board_reset (sd);

  return SIM_RC_OK;
}

SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *callback,
          struct _bfd *abfd, char **argv)
{
  char **p;
  SIM_DESC sd;
  sim_cpu *cpu;
  struct hw *device_tree;

  sd = sim_state_alloc (kind, callback);
  cpu = STATE_CPU (sd, 0);

  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* for compatibility */
  current_alignment = NONSTRICT_ALIGNMENT;
  current_target_byte_order = BIG_ENDIAN;

  cpu_initialize (sd, cpu);

  cpu->cpu_use_elf_start = 1;
  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* getopt will print the error message so we just have to exit if this fails.
     FIXME: Hmmm...  in the case of gdb we need getopt to call
     print_filtered.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
         file descriptor leaks, etc.  */
      free_state (sd);
      return 0;
    }

  /* Check for/establish the a reference program image.  */
  if (sim_analyze_program (sd,
			   (STATE_PROG_ARGV (sd) != NULL
			    ? *STATE_PROG_ARGV (sd)
			    : NULL), abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Establish any remaining configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
         file descriptor leaks, etc.  */
      free_state (sd);
      return 0;
    }

  sim_hw_configure (sd);

  /* Fudge our descriptor.  */
  return sd;
}


void
sim_close (SIM_DESC sd, int quitting)
{
  /* shut down modules */
  sim_module_uninstall (sd);

  /* Ensure that any resources allocated through the callback
     mechanism are released: */
  sim_io_shutdown (sd);

  /* FIXME - free SD */
  sim_state_free (sd);
  return;
}

void
sim_set_profile (int n)
{
}

void
sim_set_profile_size (int n)
{
}

/* Generic implementation of sim_engine_run that works within the
   sim_engine setjmp/longjmp framework. */

void
sim_engine_run (SIM_DESC sd,
                int next_cpu_nr,	/* ignore */
		int nr_cpus,	/* ignore */
		int siggnal)	/* ignore */
{
  sim_cpu *cpu;

  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  cpu = STATE_CPU (sd, 0);
  while (1)
    {
      cpu_single_step (cpu);

      /* process any events */
      if (sim_events_tickn (sd, cpu->cpu_current_cycle))
	{
	  sim_events_process (sd);
	}
    }
}

int
sim_trace (SIM_DESC sd)
{
  sim_resume (sd, 0, 0);
  return 1;
}

void
sim_info (SIM_DESC sd, int verbose)
{
  const char *cpu_type;
  const struct bfd_arch_info *arch;

  /* Nothing to do if there is no verbose flag set.  */
  if (verbose == 0 && STATE_VERBOSE_P (sd) == 0)
    return;

  arch = STATE_ARCHITECTURE (sd);
  if (arch->arch == bfd_arch_m68hc11)
    cpu_type = "68HC11";
  else
    cpu_type = "68HC12";

  sim_io_eprintf (sd, "Simulator info:\n");
  sim_io_eprintf (sd, "  CPU Motorola %s\n", cpu_type);
  sim_get_info (sd, 0);
  sim_module_info (sd, verbose || STATE_VERBOSE_P (sd));
}

SIM_RC
sim_create_inferior (SIM_DESC sd, struct _bfd *abfd,
                     char **argv, char **env)
{
  return sim_prepare_for_program (sd, abfd);
}


void
sim_set_callbacks (host_callback *p)
{
  /*  m6811_callback = p; */
}


int
sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
  sim_cpu *cpu;
  uint16 val;

  cpu = STATE_CPU (sd, 0);
  switch (rn)
    {
    case A_REGNUM:
      val = cpu_get_a (cpu);
      break;

    case B_REGNUM:
      val = cpu_get_b (cpu);
      break;

    case D_REGNUM:
      val = cpu_get_d (cpu);
      break;

    case X_REGNUM:
      val = cpu_get_x (cpu);
      break;

    case Y_REGNUM:
      val = cpu_get_y (cpu);
      break;

    case SP_REGNUM:
      val = cpu_get_sp (cpu);
      break;

    case PC_REGNUM:
      val = cpu_get_pc (cpu);
      break;

    case PSW_REGNUM:
      val = cpu_get_ccr (cpu);
      break;

    default:
      val = 0;
      break;
    }
  memory[0] = val >> 8;
  memory[1] = val & 0x0FF;
  return 2;
}

int
sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
  uint16 val;
  sim_cpu *cpu;

  cpu = STATE_CPU (sd, 0);

  val = *memory++;
  if (length == 2)
    val = (val << 8) | *memory;

  switch (rn)
    {
    case D_REGNUM:
      cpu_set_d (cpu, val);
      break;

    case A_REGNUM:
      cpu_set_a (cpu, val);
      break;

    case B_REGNUM:
      cpu_set_b (cpu, val);
      break;

    case X_REGNUM:
      cpu_set_x (cpu, val);
      break;

    case Y_REGNUM:
      cpu_set_y (cpu, val);
      break;

    case SP_REGNUM:
      cpu_set_sp (cpu, val);
      break;

    case PC_REGNUM:
      cpu_set_pc (cpu, val);
      break;

    case PSW_REGNUM:
      cpu_set_ccr (cpu, val);
      break;

    default:
      break;
    }

  return 2;
}

void
sim_size (int s)
{
  ;
}

void
sim_do_command (SIM_DESC sd, char *cmd)
{
  char *mm_cmd = "memory-map";
  char *int_cmd = "interrupt";
  sim_cpu *cpu;

  cpu = STATE_CPU (sd, 0);
  /* Commands available from GDB:   */
  if (sim_args_command (sd, cmd) != SIM_RC_OK)
    {
      if (strncmp (cmd, "info", sizeof ("info") - 1) == 0)
	sim_get_info (sd, &cmd[4]);
      else if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
	sim_io_eprintf (sd,
			"`memory-map' command replaced by `sim memory'\n");
      else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
	sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
      else
	sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
    }

  /* If the architecture changed, re-configure.  */
  if (STATE_ARCHITECTURE (sd) != cpu->cpu_configured_arch)
    sim_hw_configure (sd);
}

/* Halt the simulator after just one instruction */

static void
has_stepped (SIM_DESC sd,
	     void *data)
{
  ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  sim_engine_halt (sd, NULL, NULL, NULL_CIA, sim_stopped, SIM_SIGTRAP);
}


/* Generic resume - assumes the existance of sim_engine_run */

void
sim_resume (SIM_DESC sd,
	    int step,
	    int siggnal)
{
  sim_engine *engine = STATE_ENGINE (sd);
  jmp_buf buf;
  int jmpval;

  ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* we only want to be single stepping the simulator once */
  if (engine->stepper != NULL)
    {
      sim_events_deschedule (sd, engine->stepper);
      engine->stepper = NULL;
    }
  sim_module_resume (sd);

  /* run/resume the simulator */
  engine->jmpbuf = &buf;
  jmpval = setjmp (buf);
  if (jmpval == sim_engine_start_jmpval
      || jmpval == sim_engine_restart_jmpval)
    {
      int last_cpu_nr = sim_engine_last_cpu_nr (sd);
      int next_cpu_nr = sim_engine_next_cpu_nr (sd);
      int nr_cpus = sim_engine_nr_cpus (sd);

      sim_events_preprocess (sd, last_cpu_nr >= nr_cpus, next_cpu_nr >= nr_cpus);
      if (next_cpu_nr >= nr_cpus)
	next_cpu_nr = 0;

      /* Only deliver the siggnal ]sic] the first time through - don't
         re-deliver any siggnal during a restart. */
      if (jmpval == sim_engine_restart_jmpval)
	siggnal = 0;

      /* Install the stepping event after having processed some
         pending events.  This is necessary for HC11/HC12 simulator
         because the tick counter is incremented by the number of cycles
         the instruction took.  Some pending ticks to process can still
         be recorded internally by the simulator and sim_events_preprocess
         will handle them.  If the stepping event is inserted before,
         these pending ticks will raise the event and the simulator will
         stop without having executed any instruction.  */
      if (step)
        engine->stepper = sim_events_schedule (sd, 0, has_stepped, sd);

#ifdef SIM_CPU_EXCEPTION_RESUME
      {
	sim_cpu* cpu = STATE_CPU (sd, next_cpu_nr);
	SIM_CPU_EXCEPTION_RESUME(sd, cpu, siggnal);
      }
#endif

      sim_engine_run (sd, next_cpu_nr, nr_cpus, siggnal);
    }
  engine->jmpbuf = NULL;

  sim_module_suspend (sd);
}